Home | History | Annotate | Download | only in common_audio
      1 /*
      2  *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <cmath>
     12 #include <algorithm>
     13 #include <vector>
     14 
     15 #include "testing/gtest/include/gtest/gtest.h"
     16 #include "webrtc/base/arraysize.h"
     17 #include "webrtc/base/format_macros.h"
     18 #include "webrtc/base/scoped_ptr.h"
     19 #include "webrtc/common_audio/audio_converter.h"
     20 #include "webrtc/common_audio/channel_buffer.h"
     21 #include "webrtc/common_audio/resampler/push_sinc_resampler.h"
     22 
     23 namespace webrtc {
     24 
     25 typedef rtc::scoped_ptr<ChannelBuffer<float>> ScopedBuffer;
     26 
     27 // Sets the signal value to increase by |data| with every sample.
     28 ScopedBuffer CreateBuffer(const std::vector<float>& data, size_t frames) {
     29   const size_t num_channels = data.size();
     30   ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels));
     31   for (size_t i = 0; i < num_channels; ++i)
     32     for (size_t j = 0; j < frames; ++j)
     33       sb->channels()[i][j] = data[i] * j;
     34   return sb;
     35 }
     36 
     37 void VerifyParams(const ChannelBuffer<float>& ref,
     38                   const ChannelBuffer<float>& test) {
     39   EXPECT_EQ(ref.num_channels(), test.num_channels());
     40   EXPECT_EQ(ref.num_frames(), test.num_frames());
     41 }
     42 
     43 // Computes the best SNR based on the error between |ref_frame| and
     44 // |test_frame|. It searches around |expected_delay| in samples between the
     45 // signals to compensate for the resampling delay.
     46 float ComputeSNR(const ChannelBuffer<float>& ref,
     47                  const ChannelBuffer<float>& test,
     48                  size_t expected_delay) {
     49   VerifyParams(ref, test);
     50   float best_snr = 0;
     51   size_t best_delay = 0;
     52 
     53   // Search within one sample of the expected delay.
     54   for (size_t delay = std::max(expected_delay, static_cast<size_t>(1)) - 1;
     55        delay <= std::min(expected_delay + 1, ref.num_frames());
     56        ++delay) {
     57     float mse = 0;
     58     float variance = 0;
     59     float mean = 0;
     60     for (size_t i = 0; i < ref.num_channels(); ++i) {
     61       for (size_t j = 0; j < ref.num_frames() - delay; ++j) {
     62         float error = ref.channels()[i][j] - test.channels()[i][j + delay];
     63         mse += error * error;
     64         variance += ref.channels()[i][j] * ref.channels()[i][j];
     65         mean += ref.channels()[i][j];
     66       }
     67     }
     68 
     69     const size_t length = ref.num_channels() * (ref.num_frames() - delay);
     70     mse /= length;
     71     variance /= length;
     72     mean /= length;
     73     variance -= mean * mean;
     74     float snr = 100;  // We assign 100 dB to the zero-error case.
     75     if (mse > 0)
     76       snr = 10 * std::log10(variance / mse);
     77     if (snr > best_snr) {
     78       best_snr = snr;
     79       best_delay = delay;
     80     }
     81   }
     82   printf("SNR=%.1f dB at delay=%" PRIuS "\n", best_snr, best_delay);
     83   return best_snr;
     84 }
     85 
     86 // Sets the source to a linearly increasing signal for which we can easily
     87 // generate a reference. Runs the AudioConverter and ensures the output has
     88 // sufficiently high SNR relative to the reference.
     89 void RunAudioConverterTest(size_t src_channels,
     90                            int src_sample_rate_hz,
     91                            size_t dst_channels,
     92                            int dst_sample_rate_hz) {
     93   const float kSrcLeft = 0.0002f;
     94   const float kSrcRight = 0.0001f;
     95   const float resampling_factor = (1.f * src_sample_rate_hz) /
     96       dst_sample_rate_hz;
     97   const float dst_left = resampling_factor * kSrcLeft;
     98   const float dst_right = resampling_factor * kSrcRight;
     99   const float dst_mono = (dst_left + dst_right) / 2;
    100   const size_t src_frames = static_cast<size_t>(src_sample_rate_hz / 100);
    101   const size_t dst_frames = static_cast<size_t>(dst_sample_rate_hz / 100);
    102 
    103   std::vector<float> src_data(1, kSrcLeft);
    104   if (src_channels == 2)
    105     src_data.push_back(kSrcRight);
    106   ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames);
    107 
    108   std::vector<float> dst_data(1, 0);
    109   std::vector<float> ref_data;
    110   if (dst_channels == 1) {
    111     if (src_channels == 1)
    112       ref_data.push_back(dst_left);
    113     else
    114       ref_data.push_back(dst_mono);
    115   } else {
    116     dst_data.push_back(0);
    117     ref_data.push_back(dst_left);
    118     if (src_channels == 1)
    119       ref_data.push_back(dst_left);
    120     else
    121       ref_data.push_back(dst_right);
    122   }
    123   ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames);
    124   ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames);
    125 
    126   // The sinc resampler has a known delay, which we compute here.
    127   const size_t delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 :
    128       static_cast<size_t>(
    129           PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) *
    130           dst_sample_rate_hz);
    131   // SNR reported on the same line later.
    132   printf("(%" PRIuS ", %d Hz) -> (%" PRIuS ", %d Hz) ",
    133          src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);
    134 
    135   rtc::scoped_ptr<AudioConverter> converter = AudioConverter::Create(
    136       src_channels, src_frames, dst_channels, dst_frames);
    137   converter->Convert(src_buffer->channels(), src_buffer->size(),
    138                      dst_buffer->channels(), dst_buffer->size());
    139 
    140   EXPECT_LT(43.f,
    141             ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames));
    142 }
    143 
    144 TEST(AudioConverterTest, ConversionsPassSNRThreshold) {
    145   const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000};
    146   const size_t kChannels[] = {1, 2};
    147   for (size_t src_rate = 0; src_rate < arraysize(kSampleRates); ++src_rate) {
    148     for (size_t dst_rate = 0; dst_rate < arraysize(kSampleRates); ++dst_rate) {
    149       for (size_t src_channel = 0; src_channel < arraysize(kChannels);
    150            ++src_channel) {
    151         for (size_t dst_channel = 0; dst_channel < arraysize(kChannels);
    152              ++dst_channel) {
    153           RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate],
    154                                 kChannels[dst_channel], kSampleRates[dst_rate]);
    155         }
    156       }
    157     }
    158   }
    159 }
    160 
    161 }  // namespace webrtc
    162