/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
regression_test.py | 39 regressor = learn.LinearRegressor( 42 regressor.fit(x, y, steps=200) 43 self.assertIn("linear//weight", regressor.get_variable_names()) 44 regressor_weights = regressor.get_variable_value("linear//weight") 48 # assert abs(bias - regressor.bias_) < 0.1
|
nonlinear_test.py | 67 regressor = dnn.DNNRegressor( 71 regressor.fit(boston.data, 75 weights = ([regressor.get_variable_value("dnn/hiddenlayer_0/weights")] + 76 [regressor.get_variable_value("dnn/hiddenlayer_1/weights")] + 77 [regressor.get_variable_value("dnn/hiddenlayer_2/weights")] + 78 [regressor.get_variable_value("dnn/logits/weights")]) 84 biases = ([regressor.get_variable_value("dnn/hiddenlayer_0/biases")] + 85 [regressor.get_variable_value("dnn/hiddenlayer_1/biases")] + 86 [regressor.get_variable_value("dnn/hiddenlayer_2/biases")] + 87 [regressor.get_variable_value("dnn/logits/biases")] [all...] |
linear_test.py | [all...] |
multioutput_test.py | 38 regressor = learn.LinearRegressor( 41 regressor.fit(x, y, steps=100) 42 score = mean_squared_error(np.array(list(regressor.predict_scores(x))), y)
|
debug_test.py | 628 regressor = debug.DebugRegressor( 631 regressor.fit(input_fn=input_fn, steps=200) 632 scores = regressor.evaluate(input_fn=input_fn, steps=1) 645 regressor = debug.DebugRegressor( 648 regressor.fit(input_fn=_input_fn, steps=200) 649 scores = regressor.evaluate(input_fn=_input_fn, steps=1) 657 regressor = debug.DebugRegressor( 659 regressor.fit(x=train_x, y=train_y, steps=200) 660 scores = regressor.evaluate(x=train_x, y=train_y, steps=1) 681 regressor = debug.DebugRegressor [all...] |
dnn_test.py | [all...] |
dnn_linear_combined_test.py | [all...] |
logistic_regressor_test.py | 71 regressor = logistic_regressor.LogisticRegressor( 75 regressor.fit(input_fn=_iris_data_input_fn, steps=1) 76 eval_metrics = regressor.evaluate(input_fn=_iris_data_input_fn, steps=1) 92 regressor.fit(input_fn=_iris_data_input_fn, steps=100) 93 eval_metrics = regressor.evaluate(input_fn=_iris_data_input_fn, steps=1)
|
debug.py | 238 """A regressor for TensorFlow Debug models. 245 regressor = DebugRegressor() 255 regressor.fit(input_fn=input_fn_train) 258 loss = regressor.evaluate(input_fn=input_fn_eval)["loss"] 261 predicted_targets = regressor.predict_scores(new_samples)
|
__init__.py | 107 A regressor for TensorFlow DNN models.
|
/external/webrtc/webrtc/modules/audio_coding/codecs/ilbc/ |
xcorr_coef.c | 28 int16_t *regressor, /* (i) second array */ 58 max=WebRtcSpl_MaxAbsValueW16(regressor, subl + searchLen - 1); 59 rp_beg = regressor; 60 rp_end = regressor + subl; 62 max = WebRtcSpl_MaxAbsValueW16(regressor - searchLen, subl + searchLen - 1); 63 rp_beg = regressor - 1; 64 rp_end = regressor + subl - 1; 78 Energy=WebRtcSpl_DotProductWithScale(regressor, regressor, subl, shifts); 82 rp = ®ressor[pos] [all...] |
enhancer_interface.c | 57 int16_t *target, *regressor; local 119 regressor = target - 10; 122 max16 = WebRtcSpl_MaxAbsValueW16(®ressor[-50], ENH_BLOCKL_HALF + 50 - 1); 127 WebRtcSpl_CrossCorrelation(corr32, target, regressor, ENH_BLOCKL_HALF, 50, 148 ener = WebRtcSpl_DotProductWithScale(regressor - lagmax[i], 149 regressor - lagmax[i], 201 regressor=in+tlag-1; 204 max16 = WebRtcSpl_MaxAbsValueW16(regressor, plc_blockl + 3 - 1); 211 WebRtcSpl_CrossCorrelation(corr32, target, regressor, plc_blockl, 3, shifts,
|
xcorr_coef.h | 31 int16_t *regressor, /* (i) second array */
|
/external/tensorflow/tensorflow/contrib/linear_optimizer/python/ |
sdca_estimator_test.py | 262 regressor = sdca_estimator.SDCALinearRegressor( 266 regressor.fit(input_fn=input_fn, steps=20) 267 loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] 269 self.assertIn('linear/x/weight', regressor.get_variable_names()) 270 regressor_weights = regressor.get_variable_value('linear/x/weight') 303 regressor = sdca_estimator.SDCALinearRegressor( 310 regressor.fit(input_fn=input_fn, steps=20) 311 loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] 336 # Regressor with no L1 regularization. 337 regressor = sdca_estimator.SDCALinearRegressor [all...] |
sdca_estimator.py | 420 regressor = SDCALinearRegressor( 435 regressor.fit(input_fn=input_fn_train) 436 regressor.evaluate(input_fn=input_fn_eval) 437 regressor.predict_scores(input_fn=input_fn_test) # returns predicted scores.
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/utils/ |
export_test.py | 92 regressor = learn.LinearRegressor(feature_columns=cont_features) 96 regressor.fit(x, y, steps=10, monitors=[export_monitor]) 110 regressor = learn.LinearRegressor(feature_columns=cont_features) 111 regressor.fit(x, y, steps=10, monitors=[export_monitor]) 131 regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) 133 regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) 149 regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) 152 regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) 173 regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) 175 regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor] [all...] |
/external/tensorflow/tensorflow/examples/learn/ |
boston.py | 45 regressor = tf.estimator.DNNRegressor( 51 regressor.train(input_fn=train_input_fn, steps=2000) 57 predictions = regressor.predict(input_fn=test_input_fn) 66 scores = regressor.evaluate(input_fn=test_input_fn)
|
/external/tensorflow/tensorflow/examples/tutorials/input_fn/ |
boston.py | 57 regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, 62 regressor.train(input_fn=get_input_fn(training_set), steps=5000) 65 ev = regressor.evaluate( 71 y = regressor.predict(
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
structural_ensemble_test.py | 107 regressor = estimators.StructuralEnsembleRegressor( 119 regressor.train(input_fn=train_input_fn, steps=1) 122 evaluation = regressor.evaluate(input_fn=eval_input_fn, steps=1) 126 regressor.predict(input_fn=predict_input_fn) 133 regressor = estimators.StructuralEnsembleRegressor( 143 regressor.train(input_fn=train_input_fn, steps=1) 146 evaluation = regressor.evaluate(input_fn=eval_input_fn, steps=1) 149 regressor.predict(input_fn=predict_input_fn)
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
random_forest_test.py | 60 regressor = random_forest.TensorForestEstimator(hparams.fill()) 66 regressor.fit(x=data, y=labels, steps=100, batch_size=50) 67 regressor.evaluate(x=data, y=labels, steps=10)
|
/external/tensorflow/tensorflow/python/estimator/canned/ |
prediction_keys.py | 26 PREDICTIONS: Used by models that predict values, such as regressor models.
|
baseline.py | 282 """A regressor that can establish a simple baseline. 284 This regressor ignores feature values and will learn to predict the average 292 regressor = BaselineRegressor() 302 regressor.train(input_fn=input_fn_train) 305 loss = regressor.evaluate(input_fn=input_fn_eval)["loss"] 308 predictions = regressor.predict(new_samples)
|
parsing_utils.py | 184 * It is difficult to map expected label by a regressor such as `DNNRegressor` 211 Example usage with a regressor: 220 # This label configuration tells the regressor the following:
|
linear_test.py | 34 # Tests for Linear Regressor.
|
dnn_linear_combined_test.py | 96 # A function to mimic linear-regressor init reuse same tests. 427 # A function to mimic dnn-regressor init reuse same tests. [all...] |