/external/fio/lib/ |
gauss.c | 14 if (!gs->stddev) 18 vr = gs->stddev * (r / (FRAND32_MAX + 1.0)); 20 return vr - gs->stddev / 2; 33 if (gs->stddev) { 55 gs->stddev = ceil((double) (nranges * 100.0) / dev); 56 if (gs->stddev > nranges / 2) 57 gs->stddev = nranges / 2;
|
gauss.h | 10 unsigned int stddev; member in struct:gauss_state
|
/frameworks/av/media/libcpustats/ |
CentralTendencyStatistics.cpp | 70 double CentralTendencyStatistics::stddev() const function in class:CentralTendencyStatistics 72 double stddev; local 74 stddev = sqrt(variance()); 75 mStddev = stddev; 78 stddev = mStddev; 80 return stddev;
|
/external/v8/tools/unittests/ |
run_perf_test.py | 160 "stddev": trace["stddev"]} for trace in traces], 185 {"name": "Richards", "results": ["1.234"], "stddev": ""}, 186 {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, 198 {"name": "Richards", "results": ["1.234"], "stddev": ""}, 199 {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, 216 {"name": "Richards", "results": ["50.0", "100.0"], "stddev": ""}, 217 {"name": "DeltaBlue", "results": ["300.0", "200.0"], "stddev": ""}, 234 {"name": "Richards", "results": ["50.0", "100.0"], "stddev": ""}, 235 {"name": "DeltaBlue", "results": ["300.0", "200.0"], "stddev": ""} [all...] |
/test/suite_harness/common/util/tests/src/com/android/compatibility/common/util/ |
StatTest.java | 72 double stddev = Stat.getStat(values).mStddev; local 73 assertEquals(Math.sqrt(2.5), stddev, 0.00001); 76 stddev = Stat.getStat(values).mStddev; 77 assertEquals(Math.sqrt(2.5), stddev, 0.00001); 80 stddev = Stat.getStat(values).mStddev; 81 assertEquals(Math.sqrt(10.0), stddev, 0.00001);
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/mappers/ |
random_fourier_features_test.py | 49 def _compute_exact_rbf_kernel(x, y, stddev): 50 """Computes exact RBF kernel given input tensors x and y and stddev.""" 53 return math_ops.exp(-diff_squared_norm / (2 * stddev * stddev)) 94 stddev = 3.0 99 rffm1 = RandomFourierFeatureMapper(3, 100, stddev) 100 rffm2 = RandomFourierFeatureMapper(3, 100, stddev) 114 stddev = 3.0 119 rffm = RandomFourierFeatureMapper(3, 100, stddev, seed=0) 122 exact_kernel_value = _compute_exact_rbf_kernel(x, y, stddev) [all...] |
/external/autotest/frontend/migrations/ |
078_add_tko_iteration_perf_value.py | 7 stddev FLOAT DEFAULT NULL,
|
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.normal/ |
ctor_double_double.pass.cpp | 15 // explicit normal_distribution(result_type mean = 0, result_type stddev = 1); 26 assert(d.stddev() == 1); 32 assert(d.stddev() == 1); 38 assert(d.stddev() == 5.25);
|
param_ctor.pass.cpp | 28 assert(p.stddev() == 1); 35 assert(p.stddev() == 1); 42 assert(p.stddev() == 5);
|
/prebuilts/ndk/r16/sources/cxx-stl/llvm-libc++/test/std/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.normal/ |
ctor_double_double.pass.cpp | 15 // explicit normal_distribution(result_type mean = 0, result_type stddev = 1); 26 assert(d.stddev() == 1); 32 assert(d.stddev() == 1); 38 assert(d.stddev() == 5.25);
|
param_ctor.pass.cpp | 28 assert(p.stddev() == 1); 35 assert(p.stddev() == 1); 42 assert(p.stddev() == 5);
|
/frameworks/av/services/audioflinger/ |
FastMixerDumpState.cpp | 131 " mean=%.2f min=%.2f max=%.2f stddev=%.2f\n", 133 wall.stddev()*1e-6); 135 " mean=%.0f min=%.0f max=%.0f stddev=%.0f\n", 137 loadNs.stddev()*1e-3); 143 " mean=%.0f min=%.0f max=%.0f stddev=%.0f\n", 144 kHz.mean()*1e-3, kHz.minimum()*1e-3, kHz.maximum()*1e-3, kHz.stddev()*1e-3); 146 " mean=%.1f min=%.1f max=%.1f stddev=%.1f\n", 147 loadMHz.mean(), loadMHz.minimum(), loadMHz.maximum(), loadMHz.stddev()); 159 "(> ~3 stddev outliers):\n" 160 " left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n [all...] |
/external/skia/tools/skpbench/ |
_benchresult.py | 23 '(?P<stddev>' + FLOAT_REGEX + '%)' 47 self.stddev = float(match.group('stddev')[:-1]) # Drop '%' sign. 64 for name in ['accum', 'median', 'max', 'min', 'stddev',
|
/external/skqp/tools/skpbench/ |
_benchresult.py | 23 '(?P<stddev>' + FLOAT_REGEX + '%)' 47 self.stddev = float(match.group('stddev')[:-1]) # Drop '%' sign. 64 for name in ['accum', 'median', 'max', 'min', 'stddev',
|
/external/tensorflow/tensorflow/tools/api/golden/ |
tensorflow.initializers.random_normal.pbtxt | 8 argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \"<dtype: \'float32\'>\"], "
|
tensorflow.initializers.truncated_normal.pbtxt | 8 argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \"<dtype: \'float32\'>\"], "
|
tensorflow.keras.initializers.-random-normal.pbtxt | 8 argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \"<dtype: \'float32\'>\"], "
|
tensorflow.keras.initializers.-truncated-normal.pbtxt | 8 argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \"<dtype: \'float32\'>\"], "
|
tensorflow.random_normal_initializer.pbtxt | 8 argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \"<dtype: \'float32\'>\"], "
|
tensorflow.truncated_normal_initializer.pbtxt | 8 argspec: "args=[\'self\', \'mean\', \'stddev\', \'seed\', \'dtype\'], varargs=None, keywords=None, defaults=[\'0.0\', \'1.0\', \'None\', \"<dtype: \'float32\'>\"], "
|
/libcore/support/src/test/java/tests/util/ |
SummaryStatistics.java | 63 public double stddev() { method in class:SummaryStatistics 69 return stddev() / mean(); 80 sb.append(",stddev="); 81 sb.append(stddev()); method
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
parameterized_truncated_normal_op_test.py | 41 stddev = None variable in class:TruncatedNormalMoments 45 def __init__(self, mean, stddev, minval, maxval): 48 self.stddev = np.double(stddev) 69 dist = scipy.stats.norm(loc=self.mean, scale=self.stddev) 76 m = ((k - 1) * self.stddev**2 * m_k_minus_2 + self.mean * m_k_minus_1 - 77 self.stddev * numerator / denominator) 112 def validateMoments(self, shape, mean, stddev, minval, maxval, seed=1618): 119 samples = random_ops.parameterized_truncated_normal(shape, mean, stddev, 124 expected_moments = TruncatedNormalMoments(mean, stddev, minval, maxval [all...] |
/external/tensorflow/tensorflow/python/keras/_impl/keras/layers/ |
noise.py | 41 stddev: float, standard deviation of the noise distribution. 52 def __init__(self, stddev, **kwargs): 55 self.stddev = stddev 61 shape=K.shape(inputs), mean=0., stddev=self.stddev) 66 config = {'stddev': self.stddev} 105 stddev = np.sqrt(self.rate / (1.0 - self.rate)) 107 shape=K.shape(inputs), mean=1.0, stddev=stddev [all...] |
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/layers/ |
decisions_to_data.py | 44 mean=params.weight_init_mean, stddev=params.weight_init_std)) 50 mean=params.weight_init_mean, stddev=params.weight_init_std)) 85 mean=params.weight_init_mean, stddev=params.weight_init_std)) 91 mean=params.weight_init_mean, stddev=params.weight_init_std)) 130 mean=params.weight_init_mean, stddev=params.weight_init_std)) 136 mean=params.weight_init_mean, stddev=params.weight_init_std)) 168 mean=params.weight_init_mean, stddev=params.weight_init_std)) 174 mean=params.weight_init_mean, stddev=params.weight_init_std)) 220 mean=params.weight_init_mean, stddev=params.weight_init_std)) 226 mean=params.weight_init_mean, stddev=params.weight_init_std) [all...] |
/test/suite_harness/common/util/src/com/android/compatibility/common/util/ |
Stat.java | 31 * Collection of statistical propertirs like average, max, min, and stddev 39 public StatResult(double average, double min, double max, double stddev, int dataCount) { 43 mStddev = stddev; 49 * Calculate statistics properties likes average, min, max, and stddev for the given array 71 double stddev = Math.sqrt(variance); local 72 return new StatResult(average, min, max, stddev, data.length); 76 * Calculate statistics properties likes average, min, max, and stddev for the given array
|