Home | History | Annotate | Download | only in x86_64
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "calling_convention_x86_64.h"
     18 
     19 #include <android-base/logging.h>
     20 
     21 #include "base/bit_utils.h"
     22 #include "handle_scope-inl.h"
     23 #include "utils/x86_64/managed_register_x86_64.h"
     24 
     25 namespace art {
     26 namespace x86_64 {
     27 
     28 constexpr size_t kFramePointerSize = static_cast<size_t>(PointerSize::k64);
     29 static_assert(kX86_64PointerSize == PointerSize::k64, "Unexpected x86_64 pointer size");
     30 static_assert(kStackAlignment >= 16u, "System V AMD64 ABI requires at least 16 byte stack alignment");
     31 
     32 // XMM0..XMM7 can be used to pass the first 8 floating args. The rest must go on the stack.
     33 // -- Managed and JNI calling conventions.
     34 constexpr size_t kMaxFloatOrDoubleRegisterArguments = 8u;
     35 // Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be
     36 // enregistered. The rest of the args must go on the stack.
     37 // -- JNI calling convention only (Managed excludes RDI, so it's actually 5).
     38 constexpr size_t kMaxIntLikeRegisterArguments = 6u;
     39 
     40 static constexpr ManagedRegister kCalleeSaveRegisters[] = {
     41     // Core registers.
     42     X86_64ManagedRegister::FromCpuRegister(RBX),
     43     X86_64ManagedRegister::FromCpuRegister(RBP),
     44     X86_64ManagedRegister::FromCpuRegister(R12),
     45     X86_64ManagedRegister::FromCpuRegister(R13),
     46     X86_64ManagedRegister::FromCpuRegister(R14),
     47     X86_64ManagedRegister::FromCpuRegister(R15),
     48     // Hard float registers.
     49     X86_64ManagedRegister::FromXmmRegister(XMM12),
     50     X86_64ManagedRegister::FromXmmRegister(XMM13),
     51     X86_64ManagedRegister::FromXmmRegister(XMM14),
     52     X86_64ManagedRegister::FromXmmRegister(XMM15),
     53 };
     54 
     55 static constexpr uint32_t CalculateCoreCalleeSpillMask() {
     56   // The spilled PC gets a special marker.
     57   uint32_t result = 1 << kNumberOfCpuRegisters;
     58   for (auto&& r : kCalleeSaveRegisters) {
     59     if (r.AsX86_64().IsCpuRegister()) {
     60       result |= (1 << r.AsX86_64().AsCpuRegister().AsRegister());
     61     }
     62   }
     63   return result;
     64 }
     65 
     66 static constexpr uint32_t CalculateFpCalleeSpillMask() {
     67   uint32_t result = 0;
     68   for (auto&& r : kCalleeSaveRegisters) {
     69     if (r.AsX86_64().IsXmmRegister()) {
     70       result |= (1 << r.AsX86_64().AsXmmRegister().AsFloatRegister());
     71     }
     72   }
     73   return result;
     74 }
     75 
     76 static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
     77 static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask();
     78 
     79 // Calling convention
     80 
     81 ManagedRegister X86_64ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
     82   return X86_64ManagedRegister::FromCpuRegister(RAX);
     83 }
     84 
     85 ManagedRegister X86_64JniCallingConvention::InterproceduralScratchRegister() {
     86   return X86_64ManagedRegister::FromCpuRegister(RAX);
     87 }
     88 
     89 ManagedRegister X86_64JniCallingConvention::ReturnScratchRegister() const {
     90   return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
     91 }
     92 
     93 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni ATTRIBUTE_UNUSED) {
     94   if (shorty[0] == 'F' || shorty[0] == 'D') {
     95     return X86_64ManagedRegister::FromXmmRegister(XMM0);
     96   } else if (shorty[0] == 'J') {
     97     return X86_64ManagedRegister::FromCpuRegister(RAX);
     98   } else if (shorty[0] == 'V') {
     99     return ManagedRegister::NoRegister();
    100   } else {
    101     return X86_64ManagedRegister::FromCpuRegister(RAX);
    102   }
    103 }
    104 
    105 ManagedRegister X86_64ManagedRuntimeCallingConvention::ReturnRegister() {
    106   return ReturnRegisterForShorty(GetShorty(), false);
    107 }
    108 
    109 ManagedRegister X86_64JniCallingConvention::ReturnRegister() {
    110   return ReturnRegisterForShorty(GetShorty(), true);
    111 }
    112 
    113 ManagedRegister X86_64JniCallingConvention::IntReturnRegister() {
    114   return X86_64ManagedRegister::FromCpuRegister(RAX);
    115 }
    116 
    117 // Managed runtime calling convention
    118 
    119 ManagedRegister X86_64ManagedRuntimeCallingConvention::MethodRegister() {
    120   return X86_64ManagedRegister::FromCpuRegister(RDI);
    121 }
    122 
    123 bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
    124   return !IsCurrentParamOnStack();
    125 }
    126 
    127 bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
    128   // We assume all parameters are on stack, args coming via registers are spilled as entry_spills
    129   return true;
    130 }
    131 
    132 ManagedRegister X86_64ManagedRuntimeCallingConvention::CurrentParamRegister() {
    133   ManagedRegister res = ManagedRegister::NoRegister();
    134   if (!IsCurrentParamAFloatOrDouble()) {
    135     switch (itr_args_ - itr_float_and_doubles_) {
    136     case 0: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
    137     case 1: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
    138     case 2: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
    139     case 3: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
    140     case 4: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
    141     }
    142   } else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
    143     // First eight float parameters are passed via XMM0..XMM7
    144     res = X86_64ManagedRegister::FromXmmRegister(
    145                                  static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
    146   }
    147   return res;
    148 }
    149 
    150 FrameOffset X86_64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
    151   return FrameOffset(displacement_.Int32Value() +  // displacement
    152                      static_cast<size_t>(kX86_64PointerSize) +  // Method ref
    153                      itr_slots_ * sizeof(uint32_t));  // offset into in args
    154 }
    155 
    156 const ManagedRegisterEntrySpills& X86_64ManagedRuntimeCallingConvention::EntrySpills() {
    157   // We spill the argument registers on X86 to free them up for scratch use, we then assume
    158   // all arguments are on the stack.
    159   if (entry_spills_.size() == 0) {
    160     ResetIterator(FrameOffset(0));
    161     while (HasNext()) {
    162       ManagedRegister in_reg = CurrentParamRegister();
    163       if (!in_reg.IsNoRegister()) {
    164         int32_t size = IsParamALongOrDouble(itr_args_) ? 8 : 4;
    165         int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
    166         ManagedRegisterSpill spill(in_reg, size, spill_offset);
    167         entry_spills_.push_back(spill);
    168       }
    169       Next();
    170     }
    171   }
    172   return entry_spills_;
    173 }
    174 
    175 // JNI calling convention
    176 
    177 X86_64JniCallingConvention::X86_64JniCallingConvention(bool is_static,
    178                                                        bool is_synchronized,
    179                                                        bool is_critical_native,
    180                                                        const char* shorty)
    181     : JniCallingConvention(is_static,
    182                            is_synchronized,
    183                            is_critical_native,
    184                            shorty,
    185                            kX86_64PointerSize) {
    186 }
    187 
    188 uint32_t X86_64JniCallingConvention::CoreSpillMask() const {
    189   return kCoreCalleeSpillMask;
    190 }
    191 
    192 uint32_t X86_64JniCallingConvention::FpSpillMask() const {
    193   return kFpCalleeSpillMask;
    194 }
    195 
    196 size_t X86_64JniCallingConvention::FrameSize() {
    197   // Method*, PC return address and callee save area size, local reference segment state
    198   const size_t method_ptr_size = static_cast<size_t>(kX86_64PointerSize);
    199   const size_t pc_return_addr_size = kFramePointerSize;
    200   const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
    201   size_t frame_data_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
    202 
    203   if (LIKELY(HasLocalReferenceSegmentState())) {                     // local ref. segment state
    204     // Local reference segment state is sometimes excluded.
    205     frame_data_size += kFramePointerSize;
    206   }
    207 
    208   // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header
    209   const size_t handle_scope_size = HandleScope::SizeOf(kX86_64PointerSize, ReferenceCount());
    210 
    211   size_t total_size = frame_data_size;
    212   if (LIKELY(HasHandleScope())) {
    213     // HandleScope is sometimes excluded.
    214     total_size += handle_scope_size;                                 // handle scope size
    215   }
    216 
    217   // Plus return value spill area size
    218   total_size += SizeOfReturnValue();
    219 
    220   return RoundUp(total_size, kStackAlignment);
    221 }
    222 
    223 size_t X86_64JniCallingConvention::OutArgSize() {
    224   return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
    225 }
    226 
    227 ArrayRef<const ManagedRegister> X86_64JniCallingConvention::CalleeSaveRegisters() const {
    228   return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
    229 }
    230 
    231 bool X86_64JniCallingConvention::IsCurrentParamInRegister() {
    232   return !IsCurrentParamOnStack();
    233 }
    234 
    235 bool X86_64JniCallingConvention::IsCurrentParamOnStack() {
    236   return CurrentParamRegister().IsNoRegister();
    237 }
    238 
    239 ManagedRegister X86_64JniCallingConvention::CurrentParamRegister() {
    240   ManagedRegister res = ManagedRegister::NoRegister();
    241   if (!IsCurrentParamAFloatOrDouble()) {
    242     switch (itr_args_ - itr_float_and_doubles_) {
    243     case 0: res = X86_64ManagedRegister::FromCpuRegister(RDI); break;
    244     case 1: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
    245     case 2: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
    246     case 3: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
    247     case 4: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
    248     case 5: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
    249     static_assert(5u == kMaxIntLikeRegisterArguments - 1, "Missing case statement(s)");
    250     }
    251   } else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
    252     // First eight float parameters are passed via XMM0..XMM7
    253     res = X86_64ManagedRegister::FromXmmRegister(
    254                                  static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
    255   }
    256   return res;
    257 }
    258 
    259 FrameOffset X86_64JniCallingConvention::CurrentParamStackOffset() {
    260   CHECK(IsCurrentParamOnStack());
    261   size_t args_on_stack = itr_args_
    262       - std::min(kMaxFloatOrDoubleRegisterArguments,
    263                  static_cast<size_t>(itr_float_and_doubles_))
    264           // Float arguments passed through Xmm0..Xmm7
    265       - std::min(kMaxIntLikeRegisterArguments,
    266                  static_cast<size_t>(itr_args_ - itr_float_and_doubles_));
    267           // Integer arguments passed through GPR
    268   size_t offset = displacement_.Int32Value() - OutArgSize() + (args_on_stack * kFramePointerSize);
    269   CHECK_LT(offset, OutArgSize());
    270   return FrameOffset(offset);
    271 }
    272 
    273 // TODO: Calling this "NumberArgs" is misleading.
    274 // It's really more like NumberSlots (like itr_slots_)
    275 // because doubles/longs get counted twice.
    276 size_t X86_64JniCallingConvention::NumberOfOutgoingStackArgs() {
    277   size_t static_args = HasSelfClass() ? 1 : 0;  // count jclass
    278   // regular argument parameters and this
    279   size_t param_args = NumArgs() + NumLongOrDoubleArgs();
    280   // count JNIEnv* and return pc (pushed after Method*)
    281   size_t internal_args = 1 /* return pc */ + (HasJniEnv() ? 1 : 0 /* jni env */);
    282   size_t total_args = static_args + param_args + internal_args;
    283 
    284   // Float arguments passed through Xmm0..Xmm7
    285   // Other (integer) arguments passed through GPR (RDI, RSI, RDX, RCX, R8, R9)
    286   size_t total_stack_args = total_args
    287                             - std::min(kMaxFloatOrDoubleRegisterArguments, static_cast<size_t>(NumFloatOrDoubleArgs()))
    288                             - std::min(kMaxIntLikeRegisterArguments, static_cast<size_t>(NumArgs() - NumFloatOrDoubleArgs()));
    289 
    290   return total_stack_args;
    291 }
    292 
    293 }  // namespace x86_64
    294 }  // namespace art
    295