Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <string>
     18 
     19 #include "scheduler.h"
     20 
     21 #include "base/scoped_arena_allocator.h"
     22 #include "base/scoped_arena_containers.h"
     23 #include "data_type-inl.h"
     24 #include "prepare_for_register_allocation.h"
     25 
     26 #ifdef ART_ENABLE_CODEGEN_arm64
     27 #include "scheduler_arm64.h"
     28 #endif
     29 
     30 #ifdef ART_ENABLE_CODEGEN_arm
     31 #include "scheduler_arm.h"
     32 #endif
     33 
     34 namespace art {
     35 
     36 void SchedulingGraph::AddDependency(SchedulingNode* node,
     37                                     SchedulingNode* dependency,
     38                                     bool is_data_dependency) {
     39   if (node == nullptr || dependency == nullptr) {
     40     // A `nullptr` node indicates an instruction out of scheduling range (eg. in
     41     // an other block), so we do not need to add a dependency edge to the graph.
     42     return;
     43   }
     44 
     45   if (is_data_dependency) {
     46     if (!HasImmediateDataDependency(node, dependency)) {
     47       node->AddDataPredecessor(dependency);
     48     }
     49   } else if (!HasImmediateOtherDependency(node, dependency)) {
     50     node->AddOtherPredecessor(dependency);
     51   }
     52 }
     53 
     54 static bool MayHaveReorderingDependency(SideEffects node, SideEffects other) {
     55   // Read after write.
     56   if (node.MayDependOn(other)) {
     57     return true;
     58   }
     59 
     60   // Write after read.
     61   if (other.MayDependOn(node)) {
     62     return true;
     63   }
     64 
     65   // Memory write after write.
     66   if (node.DoesAnyWrite() && other.DoesAnyWrite()) {
     67     return true;
     68   }
     69 
     70   return false;
     71 }
     72 
     73 size_t SchedulingGraph::ArrayAccessHeapLocation(HInstruction* array, HInstruction* index) const {
     74   DCHECK(heap_location_collector_ != nullptr);
     75   size_t heap_loc = heap_location_collector_->GetArrayHeapLocation(array, index);
     76   // This array access should be analyzed and added to HeapLocationCollector before.
     77   DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound);
     78   return heap_loc;
     79 }
     80 
     81 bool SchedulingGraph::ArrayAccessMayAlias(const HInstruction* node,
     82                                           const HInstruction* other) const {
     83   DCHECK(heap_location_collector_ != nullptr);
     84   size_t node_heap_loc = ArrayAccessHeapLocation(node->InputAt(0), node->InputAt(1));
     85   size_t other_heap_loc = ArrayAccessHeapLocation(other->InputAt(0), other->InputAt(1));
     86 
     87   // For example: arr[0] and arr[0]
     88   if (node_heap_loc == other_heap_loc) {
     89     return true;
     90   }
     91 
     92   // For example: arr[0] and arr[i]
     93   if (heap_location_collector_->MayAlias(node_heap_loc, other_heap_loc)) {
     94     return true;
     95   }
     96 
     97   return false;
     98 }
     99 
    100 static bool IsArrayAccess(const HInstruction* instruction) {
    101   return instruction->IsArrayGet() || instruction->IsArraySet();
    102 }
    103 
    104 static bool IsInstanceFieldAccess(const HInstruction* instruction) {
    105   return instruction->IsInstanceFieldGet() ||
    106          instruction->IsInstanceFieldSet() ||
    107          instruction->IsUnresolvedInstanceFieldGet() ||
    108          instruction->IsUnresolvedInstanceFieldSet();
    109 }
    110 
    111 static bool IsStaticFieldAccess(const HInstruction* instruction) {
    112   return instruction->IsStaticFieldGet() ||
    113          instruction->IsStaticFieldSet() ||
    114          instruction->IsUnresolvedStaticFieldGet() ||
    115          instruction->IsUnresolvedStaticFieldSet();
    116 }
    117 
    118 static bool IsResolvedFieldAccess(const HInstruction* instruction) {
    119   return instruction->IsInstanceFieldGet() ||
    120          instruction->IsInstanceFieldSet() ||
    121          instruction->IsStaticFieldGet() ||
    122          instruction->IsStaticFieldSet();
    123 }
    124 
    125 static bool IsUnresolvedFieldAccess(const HInstruction* instruction) {
    126   return instruction->IsUnresolvedInstanceFieldGet() ||
    127          instruction->IsUnresolvedInstanceFieldSet() ||
    128          instruction->IsUnresolvedStaticFieldGet() ||
    129          instruction->IsUnresolvedStaticFieldSet();
    130 }
    131 
    132 static bool IsFieldAccess(const HInstruction* instruction) {
    133   return IsResolvedFieldAccess(instruction) || IsUnresolvedFieldAccess(instruction);
    134 }
    135 
    136 static const FieldInfo* GetFieldInfo(const HInstruction* instruction) {
    137   if (instruction->IsInstanceFieldGet()) {
    138     return &instruction->AsInstanceFieldGet()->GetFieldInfo();
    139   } else if (instruction->IsInstanceFieldSet()) {
    140     return &instruction->AsInstanceFieldSet()->GetFieldInfo();
    141   } else if (instruction->IsStaticFieldGet()) {
    142     return &instruction->AsStaticFieldGet()->GetFieldInfo();
    143   } else if (instruction->IsStaticFieldSet()) {
    144     return &instruction->AsStaticFieldSet()->GetFieldInfo();
    145   } else {
    146     LOG(FATAL) << "Unexpected field access type";
    147     UNREACHABLE();
    148   }
    149 }
    150 
    151 size_t SchedulingGraph::FieldAccessHeapLocation(HInstruction* obj, const FieldInfo* field) const {
    152   DCHECK(obj != nullptr);
    153   DCHECK(field != nullptr);
    154   DCHECK(heap_location_collector_ != nullptr);
    155 
    156   size_t heap_loc = heap_location_collector_->GetFieldHeapLocation(obj, field);
    157   // This field access should be analyzed and added to HeapLocationCollector before.
    158   DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound);
    159 
    160   return heap_loc;
    161 }
    162 
    163 bool SchedulingGraph::FieldAccessMayAlias(const HInstruction* node,
    164                                           const HInstruction* other) const {
    165   DCHECK(heap_location_collector_ != nullptr);
    166 
    167   // Static and instance field accesses should not alias.
    168   if ((IsInstanceFieldAccess(node) && IsStaticFieldAccess(other)) ||
    169       (IsStaticFieldAccess(node) && IsInstanceFieldAccess(other))) {
    170     return false;
    171   }
    172 
    173   // If either of the field accesses is unresolved.
    174   if (IsUnresolvedFieldAccess(node) || IsUnresolvedFieldAccess(other)) {
    175     // Conservatively treat these two accesses may alias.
    176     return true;
    177   }
    178 
    179   // If both fields accesses are resolved.
    180   const FieldInfo* node_field = GetFieldInfo(node);
    181   const FieldInfo* other_field = GetFieldInfo(other);
    182 
    183   size_t node_loc = FieldAccessHeapLocation(node->InputAt(0), node_field);
    184   size_t other_loc = FieldAccessHeapLocation(other->InputAt(0), other_field);
    185 
    186   if (node_loc == other_loc) {
    187     return true;
    188   }
    189 
    190   if (!heap_location_collector_->MayAlias(node_loc, other_loc)) {
    191     return false;
    192   }
    193 
    194   return true;
    195 }
    196 
    197 bool SchedulingGraph::HasMemoryDependency(const HInstruction* node,
    198                                           const HInstruction* other) const {
    199   if (!MayHaveReorderingDependency(node->GetSideEffects(), other->GetSideEffects())) {
    200     return false;
    201   }
    202 
    203   if (heap_location_collector_ == nullptr ||
    204       heap_location_collector_->GetNumberOfHeapLocations() == 0) {
    205     // Without HeapLocation information from load store analysis,
    206     // we cannot do further disambiguation analysis on these two instructions.
    207     // Just simply say that those two instructions have memory dependency.
    208     return true;
    209   }
    210 
    211   if (IsArrayAccess(node) && IsArrayAccess(other)) {
    212     return ArrayAccessMayAlias(node, other);
    213   }
    214   if (IsFieldAccess(node) && IsFieldAccess(other)) {
    215     return FieldAccessMayAlias(node, other);
    216   }
    217 
    218   // TODO(xueliang): LSA to support alias analysis among HVecLoad, HVecStore and ArrayAccess
    219   if (node->IsVecMemoryOperation() && other->IsVecMemoryOperation()) {
    220     return true;
    221   }
    222   if (node->IsVecMemoryOperation() && IsArrayAccess(other)) {
    223     return true;
    224   }
    225   if (IsArrayAccess(node) && other->IsVecMemoryOperation()) {
    226     return true;
    227   }
    228 
    229   // Heap accesses of different kinds should not alias.
    230   if (IsArrayAccess(node) && IsFieldAccess(other)) {
    231     return false;
    232   }
    233   if (IsFieldAccess(node) && IsArrayAccess(other)) {
    234     return false;
    235   }
    236   if (node->IsVecMemoryOperation() && IsFieldAccess(other)) {
    237     return false;
    238   }
    239   if (IsFieldAccess(node) && other->IsVecMemoryOperation()) {
    240     return false;
    241   }
    242 
    243   // We conservatively treat all other cases having dependency,
    244   // for example, Invoke and ArrayGet.
    245   return true;
    246 }
    247 
    248 bool SchedulingGraph::HasExceptionDependency(const HInstruction* node,
    249                                              const HInstruction* other) const {
    250   if (other->CanThrow() && node->GetSideEffects().DoesAnyWrite()) {
    251     return true;
    252   }
    253   if (other->GetSideEffects().DoesAnyWrite() && node->CanThrow()) {
    254     return true;
    255   }
    256   if (other->CanThrow() && node->CanThrow()) {
    257     return true;
    258   }
    259 
    260   // Above checks should cover all cases where we cannot reorder two
    261   // instructions which may throw exception.
    262   return false;
    263 }
    264 
    265 // Check whether `node` depends on `other`, taking into account `SideEffect`
    266 // information and `CanThrow` information.
    267 bool SchedulingGraph::HasSideEffectDependency(const HInstruction* node,
    268                                               const HInstruction* other) const {
    269   if (HasMemoryDependency(node, other)) {
    270     return true;
    271   }
    272 
    273   // Even if above memory dependency check has passed, it is still necessary to
    274   // check dependencies between instructions that can throw and instructions
    275   // that write to memory.
    276   if (HasExceptionDependency(node, other)) {
    277     return true;
    278   }
    279 
    280   return false;
    281 }
    282 
    283 void SchedulingGraph::AddDependencies(HInstruction* instruction, bool is_scheduling_barrier) {
    284   SchedulingNode* instruction_node = GetNode(instruction);
    285 
    286   // Define-use dependencies.
    287   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
    288     AddDataDependency(GetNode(use.GetUser()), instruction_node);
    289   }
    290 
    291   // Scheduling barrier dependencies.
    292   DCHECK(!is_scheduling_barrier || contains_scheduling_barrier_);
    293   if (contains_scheduling_barrier_) {
    294     // A barrier depends on instructions after it. And instructions before the
    295     // barrier depend on it.
    296     for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) {
    297       SchedulingNode* other_node = GetNode(other);
    298       CHECK(other_node != nullptr)
    299           << other->DebugName()
    300           << " is in block " << other->GetBlock()->GetBlockId()
    301           << ", and expected in block " << instruction->GetBlock()->GetBlockId();
    302       bool other_is_barrier = other_node->IsSchedulingBarrier();
    303       if (is_scheduling_barrier || other_is_barrier) {
    304         AddOtherDependency(other_node, instruction_node);
    305       }
    306       if (other_is_barrier) {
    307         // This other scheduling barrier guarantees ordering of instructions after
    308         // it, so avoid creating additional useless dependencies in the graph.
    309         // For example if we have
    310         //     instr_1
    311         //     barrier_2
    312         //     instr_3
    313         //     barrier_4
    314         //     instr_5
    315         // we only create the following non-data dependencies
    316         //     1 -> 2
    317         //     2 -> 3
    318         //     2 -> 4
    319         //     3 -> 4
    320         //     4 -> 5
    321         // and do not create
    322         //     1 -> 4
    323         //     2 -> 5
    324         // Note that in this example we could also avoid creating the dependency
    325         // `2 -> 4`.  But if we remove `instr_3` that dependency is required to
    326         // order the barriers. So we generate it to avoid a special case.
    327         break;
    328       }
    329     }
    330   }
    331 
    332   // Side effect dependencies.
    333   if (!instruction->GetSideEffects().DoesNothing() || instruction->CanThrow()) {
    334     for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) {
    335       SchedulingNode* other_node = GetNode(other);
    336       if (other_node->IsSchedulingBarrier()) {
    337         // We have reached a scheduling barrier so we can stop further
    338         // processing.
    339         DCHECK(HasImmediateOtherDependency(other_node, instruction_node));
    340         break;
    341       }
    342       if (HasSideEffectDependency(other, instruction)) {
    343         AddOtherDependency(other_node, instruction_node);
    344       }
    345     }
    346   }
    347 
    348   // Environment dependencies.
    349   // We do not need to process those if the instruction is a scheduling barrier,
    350   // since the barrier already has non-data dependencies on all following
    351   // instructions.
    352   if (!is_scheduling_barrier) {
    353     for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
    354       // Note that here we could stop processing if the environment holder is
    355       // across a scheduling barrier. But checking this would likely require
    356       // more work than simply iterating through environment uses.
    357       AddOtherDependency(GetNode(use.GetUser()->GetHolder()), instruction_node);
    358     }
    359   }
    360 }
    361 
    362 bool SchedulingGraph::HasImmediateDataDependency(const SchedulingNode* node,
    363                                                  const SchedulingNode* other) const {
    364   return ContainsElement(node->GetDataPredecessors(), other);
    365 }
    366 
    367 bool SchedulingGraph::HasImmediateDataDependency(const HInstruction* instruction,
    368                                                  const HInstruction* other_instruction) const {
    369   const SchedulingNode* node = GetNode(instruction);
    370   const SchedulingNode* other = GetNode(other_instruction);
    371   if (node == nullptr || other == nullptr) {
    372     // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
    373     // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
    374     // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
    375     // instruction and other_instruction are in different basic blocks.
    376     return false;
    377   }
    378   return HasImmediateDataDependency(node, other);
    379 }
    380 
    381 bool SchedulingGraph::HasImmediateOtherDependency(const SchedulingNode* node,
    382                                                   const SchedulingNode* other) const {
    383   return ContainsElement(node->GetOtherPredecessors(), other);
    384 }
    385 
    386 bool SchedulingGraph::HasImmediateOtherDependency(const HInstruction* instruction,
    387                                                   const HInstruction* other_instruction) const {
    388   const SchedulingNode* node = GetNode(instruction);
    389   const SchedulingNode* other = GetNode(other_instruction);
    390   if (node == nullptr || other == nullptr) {
    391     // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
    392     // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
    393     // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
    394     // instruction and other_instruction are in different basic blocks.
    395     return false;
    396   }
    397   return HasImmediateOtherDependency(node, other);
    398 }
    399 
    400 static const std::string InstructionTypeId(const HInstruction* instruction) {
    401   return DataType::TypeId(instruction->GetType()) + std::to_string(instruction->GetId());
    402 }
    403 
    404 // Ideally we would reuse the graph visualizer code, but it is not available
    405 // from here and it is not worth moving all that code only for our use.
    406 static void DumpAsDotNode(std::ostream& output, const SchedulingNode* node) {
    407   const HInstruction* instruction = node->GetInstruction();
    408   // Use the instruction typed id as the node identifier.
    409   std::string instruction_id = InstructionTypeId(instruction);
    410   output << instruction_id << "[shape=record, label=\""
    411       << instruction_id << ' ' << instruction->DebugName() << " [";
    412   // List the instruction's inputs in its description. When visualizing the
    413   // graph this helps differentiating data inputs from other dependencies.
    414   const char* seperator = "";
    415   for (const HInstruction* input : instruction->GetInputs()) {
    416     output << seperator << InstructionTypeId(input);
    417     seperator = ",";
    418   }
    419   output << "]";
    420   // Other properties of the node.
    421   output << "\\ninternal_latency: " << node->GetInternalLatency();
    422   output << "\\ncritical_path: " << node->GetCriticalPath();
    423   if (node->IsSchedulingBarrier()) {
    424     output << "\\n(barrier)";
    425   }
    426   output << "\"];\n";
    427   // We want program order to go from top to bottom in the graph output, so we
    428   // reverse the edges and specify `dir=back`.
    429   for (const SchedulingNode* predecessor : node->GetDataPredecessors()) {
    430     const HInstruction* predecessor_instruction = predecessor->GetInstruction();
    431     output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n "
    432         << "[label=\"" << predecessor->GetLatency() << "\",dir=back]\n";
    433   }
    434   for (const SchedulingNode* predecessor : node->GetOtherPredecessors()) {
    435     const HInstruction* predecessor_instruction = predecessor->GetInstruction();
    436     output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n "
    437         << "[dir=back,color=blue]\n";
    438   }
    439 }
    440 
    441 void SchedulingGraph::DumpAsDotGraph(const std::string& description,
    442                                      const ScopedArenaVector<SchedulingNode*>& initial_candidates) {
    443   // TODO(xueliang): ideally we should move scheduling information into HInstruction, after that
    444   // we should move this dotty graph dump feature to visualizer, and have a compiler option for it.
    445   std::ofstream output("scheduling_graphs.dot", std::ofstream::out | std::ofstream::app);
    446   // Description of this graph, as a comment.
    447   output << "// " << description << "\n";
    448   // Start the dot graph. Use an increasing index for easier differentiation.
    449   output << "digraph G {\n";
    450   for (const auto& entry : nodes_map_) {
    451     SchedulingNode* node = entry.second.get();
    452     DumpAsDotNode(output, node);
    453   }
    454   // Create a fake 'end_of_scheduling' node to help visualization of critical_paths.
    455   for (SchedulingNode* node : initial_candidates) {
    456     const HInstruction* instruction = node->GetInstruction();
    457     output << InstructionTypeId(instruction) << ":s -> end_of_scheduling:n "
    458       << "[label=\"" << node->GetLatency() << "\",dir=back]\n";
    459   }
    460   // End of the dot graph.
    461   output << "}\n";
    462   output.close();
    463 }
    464 
    465 SchedulingNode* CriticalPathSchedulingNodeSelector::SelectMaterializedCondition(
    466     ScopedArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) const {
    467   // Schedule condition inputs that can be materialized immediately before their use.
    468   // In following example, after we've scheduled HSelect, we want LessThan to be scheduled
    469   // immediately, because it is a materialized condition, and will be emitted right before HSelect
    470   // in codegen phase.
    471   //
    472   // i20 HLessThan [...]                  HLessThan    HAdd      HAdd
    473   // i21 HAdd [...]                ===>      |          |         |
    474   // i22 HAdd [...]                          +----------+---------+
    475   // i23 HSelect [i21, i22, i20]                     HSelect
    476 
    477   if (prev_select_ == nullptr) {
    478     return nullptr;
    479   }
    480 
    481   const HInstruction* instruction = prev_select_->GetInstruction();
    482   const HCondition* condition = nullptr;
    483   DCHECK(instruction != nullptr);
    484 
    485   if (instruction->IsIf()) {
    486     condition = instruction->AsIf()->InputAt(0)->AsCondition();
    487   } else if (instruction->IsSelect()) {
    488     condition = instruction->AsSelect()->GetCondition()->AsCondition();
    489   }
    490 
    491   SchedulingNode* condition_node = (condition != nullptr) ? graph.GetNode(condition) : nullptr;
    492 
    493   if ((condition_node != nullptr) &&
    494       condition->HasOnlyOneNonEnvironmentUse() &&
    495       ContainsElement(*nodes, condition_node)) {
    496     DCHECK(!condition_node->HasUnscheduledSuccessors());
    497     // Remove the condition from the list of candidates and schedule it.
    498     RemoveElement(*nodes, condition_node);
    499     return condition_node;
    500   }
    501 
    502   return nullptr;
    503 }
    504 
    505 SchedulingNode* CriticalPathSchedulingNodeSelector::PopHighestPriorityNode(
    506     ScopedArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) {
    507   DCHECK(!nodes->empty());
    508   SchedulingNode* select_node = nullptr;
    509 
    510   // Optimize for materialized condition and its emit before use scenario.
    511   select_node = SelectMaterializedCondition(nodes, graph);
    512 
    513   if (select_node == nullptr) {
    514     // Get highest priority node based on critical path information.
    515     select_node = (*nodes)[0];
    516     size_t select = 0;
    517     for (size_t i = 1, e = nodes->size(); i < e; i++) {
    518       SchedulingNode* check = (*nodes)[i];
    519       SchedulingNode* candidate = (*nodes)[select];
    520       select_node = GetHigherPrioritySchedulingNode(candidate, check);
    521       if (select_node == check) {
    522         select = i;
    523       }
    524     }
    525     DeleteNodeAtIndex(nodes, select);
    526   }
    527 
    528   prev_select_ = select_node;
    529   return select_node;
    530 }
    531 
    532 SchedulingNode* CriticalPathSchedulingNodeSelector::GetHigherPrioritySchedulingNode(
    533     SchedulingNode* candidate, SchedulingNode* check) const {
    534   uint32_t candidate_path = candidate->GetCriticalPath();
    535   uint32_t check_path = check->GetCriticalPath();
    536   // First look at the critical_path.
    537   if (check_path != candidate_path) {
    538     return check_path < candidate_path ? check : candidate;
    539   }
    540   // If both critical paths are equal, schedule instructions with a higher latency
    541   // first in program order.
    542   return check->GetLatency() < candidate->GetLatency() ? check : candidate;
    543 }
    544 
    545 void HScheduler::Schedule(HGraph* graph) {
    546   // We run lsa here instead of in a separate pass to better control whether we
    547   // should run the analysis or not.
    548   LoadStoreAnalysis lsa(graph);
    549   if (!only_optimize_loop_blocks_ || graph->HasLoops()) {
    550     lsa.Run();
    551     scheduling_graph_.SetHeapLocationCollector(lsa.GetHeapLocationCollector());
    552   }
    553 
    554   for (HBasicBlock* block : graph->GetReversePostOrder()) {
    555     if (IsSchedulable(block)) {
    556       Schedule(block);
    557     }
    558   }
    559 }
    560 
    561 void HScheduler::Schedule(HBasicBlock* block) {
    562   ScopedArenaVector<SchedulingNode*> scheduling_nodes(allocator_->Adapter(kArenaAllocScheduler));
    563 
    564   // Build the scheduling graph.
    565   scheduling_graph_.Clear();
    566   for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    567     HInstruction* instruction = it.Current();
    568     CHECK_EQ(instruction->GetBlock(), block)
    569         << instruction->DebugName()
    570         << " is in block " << instruction->GetBlock()->GetBlockId()
    571         << ", and expected in block " << block->GetBlockId();
    572     SchedulingNode* node = scheduling_graph_.AddNode(instruction, IsSchedulingBarrier(instruction));
    573     CalculateLatency(node);
    574     scheduling_nodes.push_back(node);
    575   }
    576 
    577   if (scheduling_graph_.Size() <= 1) {
    578     scheduling_graph_.Clear();
    579     return;
    580   }
    581 
    582   cursor_ = block->GetLastInstruction();
    583 
    584   // Find the initial candidates for scheduling.
    585   candidates_.clear();
    586   for (SchedulingNode* node : scheduling_nodes) {
    587     if (!node->HasUnscheduledSuccessors()) {
    588       node->MaybeUpdateCriticalPath(node->GetLatency());
    589       candidates_.push_back(node);
    590     }
    591   }
    592 
    593   ScopedArenaVector<SchedulingNode*> initial_candidates(allocator_->Adapter(kArenaAllocScheduler));
    594   if (kDumpDotSchedulingGraphs) {
    595     // Remember the list of initial candidates for debug output purposes.
    596     initial_candidates.assign(candidates_.begin(), candidates_.end());
    597   }
    598 
    599   // Schedule all nodes.
    600   while (!candidates_.empty()) {
    601     Schedule(selector_->PopHighestPriorityNode(&candidates_, scheduling_graph_));
    602   }
    603 
    604   if (kDumpDotSchedulingGraphs) {
    605     // Dump the graph in `dot` format.
    606     HGraph* graph = block->GetGraph();
    607     std::stringstream description;
    608     description << graph->GetDexFile().PrettyMethod(graph->GetMethodIdx())
    609         << " B" << block->GetBlockId();
    610     scheduling_graph_.DumpAsDotGraph(description.str(), initial_candidates);
    611   }
    612 }
    613 
    614 void HScheduler::Schedule(SchedulingNode* scheduling_node) {
    615   // Check whether any of the node's predecessors will be valid candidates after
    616   // this node is scheduled.
    617   uint32_t path_to_node = scheduling_node->GetCriticalPath();
    618   for (SchedulingNode* predecessor : scheduling_node->GetDataPredecessors()) {
    619     predecessor->MaybeUpdateCriticalPath(
    620         path_to_node + predecessor->GetInternalLatency() + predecessor->GetLatency());
    621     predecessor->DecrementNumberOfUnscheduledSuccessors();
    622     if (!predecessor->HasUnscheduledSuccessors()) {
    623       candidates_.push_back(predecessor);
    624     }
    625   }
    626   for (SchedulingNode* predecessor : scheduling_node->GetOtherPredecessors()) {
    627     // Do not update the critical path.
    628     // The 'other' (so 'non-data') dependencies (usually) do not represent a
    629     // 'material' dependency of nodes on others. They exist for program
    630     // correctness. So we do not use them to compute the critical path.
    631     predecessor->DecrementNumberOfUnscheduledSuccessors();
    632     if (!predecessor->HasUnscheduledSuccessors()) {
    633       candidates_.push_back(predecessor);
    634     }
    635   }
    636 
    637   Schedule(scheduling_node->GetInstruction());
    638 }
    639 
    640 // Move an instruction after cursor instruction inside one basic block.
    641 static void MoveAfterInBlock(HInstruction* instruction, HInstruction* cursor) {
    642   DCHECK_EQ(instruction->GetBlock(), cursor->GetBlock());
    643   DCHECK_NE(cursor, cursor->GetBlock()->GetLastInstruction());
    644   DCHECK(!instruction->IsControlFlow());
    645   DCHECK(!cursor->IsControlFlow());
    646   instruction->MoveBefore(cursor->GetNext(), /* do_checks */ false);
    647 }
    648 
    649 void HScheduler::Schedule(HInstruction* instruction) {
    650   if (instruction == cursor_) {
    651     cursor_ = cursor_->GetPrevious();
    652   } else {
    653     MoveAfterInBlock(instruction, cursor_);
    654   }
    655 }
    656 
    657 bool HScheduler::IsSchedulable(const HInstruction* instruction) const {
    658   // We want to avoid exhaustively listing all instructions, so we first check
    659   // for instruction categories that we know are safe.
    660   if (instruction->IsControlFlow() ||
    661       instruction->IsConstant()) {
    662     return true;
    663   }
    664   // Currently all unary and binary operations are safe to schedule, so avoid
    665   // checking for each of them individually.
    666   // Since nothing prevents a new scheduling-unsafe HInstruction to subclass
    667   // HUnaryOperation (or HBinaryOperation), check in debug mode that we have
    668   // the exhaustive lists here.
    669   if (instruction->IsUnaryOperation()) {
    670     DCHECK(instruction->IsBooleanNot() ||
    671            instruction->IsNot() ||
    672            instruction->IsNeg()) << "unexpected instruction " << instruction->DebugName();
    673     return true;
    674   }
    675   if (instruction->IsBinaryOperation()) {
    676     DCHECK(instruction->IsAdd() ||
    677            instruction->IsAnd() ||
    678            instruction->IsCompare() ||
    679            instruction->IsCondition() ||
    680            instruction->IsDiv() ||
    681            instruction->IsMul() ||
    682            instruction->IsOr() ||
    683            instruction->IsRem() ||
    684            instruction->IsRor() ||
    685            instruction->IsShl() ||
    686            instruction->IsShr() ||
    687            instruction->IsSub() ||
    688            instruction->IsUShr() ||
    689            instruction->IsXor()) << "unexpected instruction " << instruction->DebugName();
    690     return true;
    691   }
    692   // The scheduler should not see any of these.
    693   DCHECK(!instruction->IsParallelMove()) << "unexpected instruction " << instruction->DebugName();
    694   // List of instructions explicitly excluded:
    695   //    HClearException
    696   //    HClinitCheck
    697   //    HDeoptimize
    698   //    HLoadClass
    699   //    HLoadException
    700   //    HMemoryBarrier
    701   //    HMonitorOperation
    702   //    HNativeDebugInfo
    703   //    HThrow
    704   //    HTryBoundary
    705   // TODO: Some of the instructions above may be safe to schedule (maybe as
    706   // scheduling barriers).
    707   return instruction->IsArrayGet() ||
    708       instruction->IsArraySet() ||
    709       instruction->IsArrayLength() ||
    710       instruction->IsBoundType() ||
    711       instruction->IsBoundsCheck() ||
    712       instruction->IsCheckCast() ||
    713       instruction->IsClassTableGet() ||
    714       instruction->IsCurrentMethod() ||
    715       instruction->IsDivZeroCheck() ||
    716       (instruction->IsInstanceFieldGet() && !instruction->AsInstanceFieldGet()->IsVolatile()) ||
    717       (instruction->IsInstanceFieldSet() && !instruction->AsInstanceFieldSet()->IsVolatile()) ||
    718       instruction->IsInstanceOf() ||
    719       instruction->IsInvokeInterface() ||
    720       instruction->IsInvokeStaticOrDirect() ||
    721       instruction->IsInvokeUnresolved() ||
    722       instruction->IsInvokeVirtual() ||
    723       instruction->IsLoadString() ||
    724       instruction->IsNewArray() ||
    725       instruction->IsNewInstance() ||
    726       instruction->IsNullCheck() ||
    727       instruction->IsPackedSwitch() ||
    728       instruction->IsParameterValue() ||
    729       instruction->IsPhi() ||
    730       instruction->IsReturn() ||
    731       instruction->IsReturnVoid() ||
    732       instruction->IsSelect() ||
    733       (instruction->IsStaticFieldGet() && !instruction->AsStaticFieldGet()->IsVolatile()) ||
    734       (instruction->IsStaticFieldSet() && !instruction->AsStaticFieldSet()->IsVolatile()) ||
    735       instruction->IsSuspendCheck() ||
    736       instruction->IsTypeConversion();
    737 }
    738 
    739 bool HScheduler::IsSchedulable(const HBasicBlock* block) const {
    740   // We may be only interested in loop blocks.
    741   if (only_optimize_loop_blocks_ && !block->IsInLoop()) {
    742     return false;
    743   }
    744   if (block->GetTryCatchInformation() != nullptr) {
    745     // Do not schedule blocks that are part of try-catch.
    746     // Because scheduler cannot see if catch block has assumptions on the instruction order in
    747     // the try block. In following example, if we enable scheduler for the try block,
    748     // MulitiplyAccumulate may be scheduled before DivZeroCheck,
    749     // which can result in an incorrect value in the catch block.
    750     //   try {
    751     //     a = a/b;    // DivZeroCheck
    752     //                 // Div
    753     //     c = c*d+e;  // MulitiplyAccumulate
    754     //   } catch {System.out.print(c); }
    755     return false;
    756   }
    757   // Check whether all instructions in this block are schedulable.
    758   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    759     if (!IsSchedulable(it.Current())) {
    760       return false;
    761     }
    762   }
    763   return true;
    764 }
    765 
    766 bool HScheduler::IsSchedulingBarrier(const HInstruction* instr) const {
    767   return instr->IsControlFlow() ||
    768       // Don't break calling convention.
    769       instr->IsParameterValue() ||
    770       // Code generation of goto relies on SuspendCheck's position.
    771       instr->IsSuspendCheck();
    772 }
    773 
    774 void HInstructionScheduling::Run(bool only_optimize_loop_blocks,
    775                                  bool schedule_randomly) {
    776 #if defined(ART_ENABLE_CODEGEN_arm64) || defined(ART_ENABLE_CODEGEN_arm)
    777   // Phase-local allocator that allocates scheduler internal data structures like
    778   // scheduling nodes, internel nodes map, dependencies, etc.
    779   ScopedArenaAllocator allocator(graph_->GetArenaStack());
    780   CriticalPathSchedulingNodeSelector critical_path_selector;
    781   RandomSchedulingNodeSelector random_selector;
    782   SchedulingNodeSelector* selector = schedule_randomly
    783       ? static_cast<SchedulingNodeSelector*>(&random_selector)
    784       : static_cast<SchedulingNodeSelector*>(&critical_path_selector);
    785 #else
    786   // Avoid compilation error when compiling for unsupported instruction set.
    787   UNUSED(only_optimize_loop_blocks);
    788   UNUSED(schedule_randomly);
    789   UNUSED(codegen_);
    790 #endif
    791 
    792   switch (instruction_set_) {
    793 #ifdef ART_ENABLE_CODEGEN_arm64
    794     case InstructionSet::kArm64: {
    795       arm64::HSchedulerARM64 scheduler(&allocator, selector);
    796       scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks);
    797       scheduler.Schedule(graph_);
    798       break;
    799     }
    800 #endif
    801 #if defined(ART_ENABLE_CODEGEN_arm)
    802     case InstructionSet::kThumb2:
    803     case InstructionSet::kArm: {
    804       arm::SchedulingLatencyVisitorARM arm_latency_visitor(codegen_);
    805       arm::HSchedulerARM scheduler(&allocator, selector, &arm_latency_visitor);
    806       scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks);
    807       scheduler.Schedule(graph_);
    808       break;
    809     }
    810 #endif
    811     default:
    812       break;
    813   }
    814 }
    815 
    816 }  // namespace art
    817