Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_LIBARTBASE_BASE_ARRAY_REF_H_
     18 #define ART_LIBARTBASE_BASE_ARRAY_REF_H_
     19 
     20 #include <type_traits>
     21 #include <vector>
     22 
     23 #include <android-base/logging.h>
     24 
     25 namespace art {
     26 
     27 /**
     28  * @brief A container that references an array.
     29  *
     30  * @details The template class ArrayRef provides a container that references
     31  * an external array. This external array must remain alive while the ArrayRef
     32  * object is in use. The external array may be a std::vector<>-backed storage
     33  * or any other contiguous chunk of memory but that memory must remain valid,
     34  * i.e. the std::vector<> must not be resized for example.
     35  *
     36  * Except for copy/assign and insert/erase/capacity functions, the interface
     37  * is essentially the same as std::vector<>. Since we don't want to throw
     38  * exceptions, at() is also excluded.
     39  */
     40 template <typename T>
     41 class ArrayRef {
     42  public:
     43   using value_type = T;
     44   using reference = T&;
     45   using const_reference = const T&;
     46   using pointer = T*;
     47   using const_pointer = const T*;
     48   using iterator = T*;
     49   using const_iterator = const T*;
     50   using reverse_iterator = std::reverse_iterator<iterator>;
     51   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
     52   using difference_type = ptrdiff_t;
     53   using size_type = size_t;
     54 
     55   // Constructors.
     56 
     57   constexpr ArrayRef()
     58       : array_(nullptr), size_(0u) {
     59   }
     60 
     61   template <size_t size>
     62   explicit constexpr ArrayRef(T (&array)[size])
     63       : array_(array), size_(size) {
     64   }
     65 
     66   template <typename U,
     67             size_t size,
     68             typename = typename std::enable_if<std::is_same<T, const U>::value>::type>
     69   explicit constexpr ArrayRef(U (&array)[size])
     70       : array_(array), size_(size) {
     71   }
     72 
     73   constexpr ArrayRef(T* array_in, size_t size_in)
     74       : array_(array_in), size_(size_in) {
     75   }
     76 
     77   template <typename Vector,
     78             typename = typename std::enable_if<
     79                 std::is_same<typename Vector::value_type, value_type>::value>::type>
     80   explicit ArrayRef(Vector& v)
     81       : array_(v.data()), size_(v.size()) {
     82   }
     83 
     84   template <typename Vector,
     85             typename = typename std::enable_if<
     86                 std::is_same<
     87                     typename std::add_const<typename Vector::value_type>::type,
     88                     value_type>::value>::type>
     89   explicit ArrayRef(const Vector& v)
     90       : array_(v.data()), size_(v.size()) {
     91   }
     92 
     93   ArrayRef(const ArrayRef&) = default;
     94 
     95   // Assignment operators.
     96 
     97   ArrayRef& operator=(const ArrayRef& other) {
     98     array_ = other.array_;
     99     size_ = other.size_;
    100     return *this;
    101   }
    102 
    103   template <typename U>
    104   typename std::enable_if<std::is_same<T, const U>::value, ArrayRef>::type&
    105   operator=(const ArrayRef<U>& other) {
    106     return *this = ArrayRef(other);
    107   }
    108 
    109   template <typename U>
    110   static ArrayRef Cast(const ArrayRef<U>& src) {
    111     return ArrayRef(reinterpret_cast<const T*>(src.data()),
    112                     src.size() * sizeof(T) / sizeof(U));
    113   }
    114 
    115   // Destructor.
    116   ~ArrayRef() = default;
    117 
    118   // Iterators.
    119   iterator begin() { return array_; }
    120   const_iterator begin() const { return array_; }
    121   const_iterator cbegin() const { return array_; }
    122   iterator end() { return array_ + size_; }
    123   const_iterator end() const { return array_ + size_; }
    124   const_iterator cend() const { return array_ + size_; }
    125   reverse_iterator rbegin() { return reverse_iterator(end()); }
    126   const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
    127   const_reverse_iterator crbegin() const { return const_reverse_iterator(cend()); }
    128   reverse_iterator rend() { return reverse_iterator(begin()); }
    129   const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
    130   const_reverse_iterator crend() const { return const_reverse_iterator(cbegin()); }
    131 
    132   // Size.
    133   size_type size() const { return size_; }
    134   bool empty() const { return size() == 0u; }
    135 
    136   // Element access. NOTE: Not providing at().
    137 
    138   reference operator[](size_type n) {
    139     DCHECK_LT(n, size_);
    140     return array_[n];
    141   }
    142 
    143   const_reference operator[](size_type n) const {
    144     DCHECK_LT(n, size_);
    145     return array_[n];
    146   }
    147 
    148   reference front() {
    149     DCHECK(!empty());
    150     return array_[0];
    151   }
    152 
    153   const_reference front() const {
    154     DCHECK(!empty());
    155     return array_[0];
    156   }
    157 
    158   reference back() {
    159     DCHECK(!empty());
    160     return array_[size_ - 1u];
    161   }
    162 
    163   const_reference back() const {
    164     DCHECK(!empty());
    165     return array_[size_ - 1u];
    166   }
    167 
    168   value_type* data() { return array_; }
    169   const value_type* data() const { return array_; }
    170 
    171   ArrayRef SubArray(size_type pos) {
    172     return SubArray(pos, size() - pos);
    173   }
    174 
    175   ArrayRef<const T> SubArray(size_type pos) const {
    176     return SubArray(pos, size() - pos);
    177   }
    178 
    179   ArrayRef SubArray(size_type pos, size_type length) {
    180     DCHECK_LE(pos, size());
    181     DCHECK_LE(length, size() - pos);
    182     return ArrayRef(data() + pos, length);
    183   }
    184 
    185   ArrayRef<const T> SubArray(size_type pos, size_type length) const {
    186     DCHECK_LE(pos, size());
    187     DCHECK_LE(length, size() - pos);
    188     return ArrayRef<const T>(data() + pos, length);
    189   }
    190 
    191  private:
    192   T* array_;
    193   size_t size_;
    194 };
    195 
    196 template <typename T>
    197 bool operator==(const ArrayRef<T>& lhs, const ArrayRef<T>& rhs) {
    198   return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
    199 }
    200 
    201 template <typename T>
    202 bool operator!=(const ArrayRef<T>& lhs, const ArrayRef<T>& rhs) {
    203   return !(lhs == rhs);
    204 }
    205 
    206 }  // namespace art
    207 
    208 
    209 #endif  // ART_LIBARTBASE_BASE_ARRAY_REF_H_
    210