Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_BASE_QUASI_ATOMIC_H_
     18 #define ART_RUNTIME_BASE_QUASI_ATOMIC_H_
     19 
     20 #include <stdint.h>
     21 #include <atomic>
     22 #include <limits>
     23 #include <vector>
     24 
     25 #include <android-base/logging.h>
     26 
     27 #include "arch/instruction_set.h"
     28 #include "base/macros.h"
     29 
     30 namespace art {
     31 
     32 class Mutex;
     33 
     34 // QuasiAtomic encapsulates two separate facilities that we are
     35 // trying to move away from:  "quasiatomic" 64 bit operations
     36 // and custom memory fences.  For the time being, they remain
     37 // exposed.  Clients should be converted to use either class Atomic
     38 // below whenever possible, and should eventually use C++11 atomics.
     39 // The two facilities that do not have a good C++11 analog are
     40 // ThreadFenceForConstructor and Atomic::*JavaData.
     41 //
     42 // NOTE: Two "quasiatomic" operations on the exact same memory address
     43 // are guaranteed to operate atomically with respect to each other,
     44 // but no guarantees are made about quasiatomic operations mixed with
     45 // non-quasiatomic operations on the same address, nor about
     46 // quasiatomic operations that are performed on partially-overlapping
     47 // memory.
     48 class QuasiAtomic {
     49   static constexpr bool NeedSwapMutexes(InstructionSet isa) {
     50     // TODO - mips64 still need this for Cas64 ???
     51     return (isa == InstructionSet::kMips) || (isa == InstructionSet::kMips64);
     52   }
     53 
     54  public:
     55   static void Startup();
     56 
     57   static void Shutdown();
     58 
     59   // Reads the 64-bit value at "addr" without tearing.
     60   static int64_t Read64(volatile const int64_t* addr) {
     61     if (!NeedSwapMutexes(kRuntimeISA)) {
     62       int64_t value;
     63 #if defined(__LP64__)
     64       value = *addr;
     65 #else
     66 #if defined(__arm__)
     67 #if defined(__ARM_FEATURE_LPAE)
     68       // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
     69       __asm__ __volatile__("@ QuasiAtomic::Read64\n"
     70         "ldrd     %0, %H0, %1"
     71         : "=r" (value)
     72         : "m" (*addr));
     73 #else
     74       // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
     75       __asm__ __volatile__("@ QuasiAtomic::Read64\n"
     76         "ldrexd     %0, %H0, %1"
     77         : "=r" (value)
     78         : "Q" (*addr));
     79 #endif
     80 #elif defined(__i386__)
     81   __asm__ __volatile__(
     82       "movq     %1, %0\n"
     83       : "=x" (value)
     84       : "m" (*addr));
     85 #else
     86       LOG(FATAL) << "Unsupported architecture";
     87 #endif
     88 #endif  // defined(__LP64__)
     89       return value;
     90     } else {
     91       return SwapMutexRead64(addr);
     92     }
     93   }
     94 
     95   // Writes to the 64-bit value at "addr" without tearing.
     96   static void Write64(volatile int64_t* addr, int64_t value) {
     97     if (!NeedSwapMutexes(kRuntimeISA)) {
     98 #if defined(__LP64__)
     99       *addr = value;
    100 #else
    101 #if defined(__arm__)
    102 #if defined(__ARM_FEATURE_LPAE)
    103     // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
    104     __asm__ __volatile__("@ QuasiAtomic::Write64\n"
    105       "strd     %1, %H1, %0"
    106       : "=m"(*addr)
    107       : "r" (value));
    108 #else
    109     // The write is done as a swap so that the cache-line is in the exclusive state for the store.
    110     int64_t prev;
    111     int status;
    112     do {
    113       __asm__ __volatile__("@ QuasiAtomic::Write64\n"
    114         "ldrexd     %0, %H0, %2\n"
    115         "strexd     %1, %3, %H3, %2"
    116         : "=&r" (prev), "=&r" (status), "+Q"(*addr)
    117         : "r" (value)
    118         : "cc");
    119       } while (UNLIKELY(status != 0));
    120 #endif
    121 #elif defined(__i386__)
    122       __asm__ __volatile__(
    123         "movq     %1, %0"
    124         : "=m" (*addr)
    125         : "x" (value));
    126 #else
    127       LOG(FATAL) << "Unsupported architecture";
    128 #endif
    129 #endif  // defined(__LP64__)
    130     } else {
    131       SwapMutexWrite64(addr, value);
    132     }
    133   }
    134 
    135   // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
    136   // and return true. Otherwise, don't swap, and return false.
    137   // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
    138   // semantics (assuming all other accesses use a mutex if this one does).
    139   // This has "strong" semantics; if it fails then it is guaranteed that
    140   // at some point during the execution of Cas64, *addr was not equal to
    141   // old_value.
    142   static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
    143     if (!NeedSwapMutexes(kRuntimeISA)) {
    144       return __sync_bool_compare_and_swap(addr, old_value, new_value);
    145     } else {
    146       return SwapMutexCas64(old_value, new_value, addr);
    147     }
    148   }
    149 
    150   // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
    151   static bool LongAtomicsUseMutexes(InstructionSet isa) {
    152     return NeedSwapMutexes(isa);
    153   }
    154 
    155   static void ThreadFenceAcquire() {
    156     std::atomic_thread_fence(std::memory_order_acquire);
    157   }
    158 
    159   static void ThreadFenceRelease() {
    160     std::atomic_thread_fence(std::memory_order_release);
    161   }
    162 
    163   static void ThreadFenceForConstructor() {
    164     #if defined(__aarch64__)
    165       __asm__ __volatile__("dmb ishst" : : : "memory");
    166     #else
    167       std::atomic_thread_fence(std::memory_order_release);
    168     #endif
    169   }
    170 
    171   static void ThreadFenceSequentiallyConsistent() {
    172     std::atomic_thread_fence(std::memory_order_seq_cst);
    173   }
    174 
    175  private:
    176   static Mutex* GetSwapMutex(const volatile int64_t* addr);
    177   static int64_t SwapMutexRead64(volatile const int64_t* addr);
    178   static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
    179   static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);
    180 
    181   // We stripe across a bunch of different mutexes to reduce contention.
    182   static constexpr size_t kSwapMutexCount = 32;
    183   static std::vector<Mutex*>* gSwapMutexes;
    184 
    185   DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
    186 };
    187 
    188 }  // namespace art
    189 
    190 #endif  // ART_RUNTIME_BASE_QUASI_ATOMIC_H_
    191