Home | History | Annotate | Download | only in jit
      1 /*
      2  * Copyright 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "jit.h"
     18 
     19 #include <dlfcn.h>
     20 
     21 #include "art_method-inl.h"
     22 #include "base/enums.h"
     23 #include "base/logging.h"  // For VLOG.
     24 #include "base/memory_tool.h"
     25 #include "base/runtime_debug.h"
     26 #include "base/utils.h"
     27 #include "debugger.h"
     28 #include "entrypoints/runtime_asm_entrypoints.h"
     29 #include "interpreter/interpreter.h"
     30 #include "java_vm_ext.h"
     31 #include "jit_code_cache.h"
     32 #include "oat_file_manager.h"
     33 #include "oat_quick_method_header.h"
     34 #include "profile_compilation_info.h"
     35 #include "profile_saver.h"
     36 #include "runtime.h"
     37 #include "runtime_options.h"
     38 #include "stack.h"
     39 #include "stack_map.h"
     40 #include "thread-inl.h"
     41 #include "thread_list.h"
     42 
     43 namespace art {
     44 namespace jit {
     45 
     46 static constexpr bool kEnableOnStackReplacement = true;
     47 // At what priority to schedule jit threads. 9 is the lowest foreground priority on device.
     48 static constexpr int kJitPoolThreadPthreadPriority = 9;
     49 
     50 // Different compilation threshold constants. These can be overridden on the command line.
     51 static constexpr size_t kJitDefaultCompileThreshold           = 10000;  // Non-debug default.
     52 static constexpr size_t kJitStressDefaultCompileThreshold     = 100;    // Fast-debug build.
     53 static constexpr size_t kJitSlowStressDefaultCompileThreshold = 2;      // Slow-debug build.
     54 
     55 // JIT compiler
     56 void* Jit::jit_library_handle_ = nullptr;
     57 void* Jit::jit_compiler_handle_ = nullptr;
     58 void* (*Jit::jit_load_)(bool*) = nullptr;
     59 void (*Jit::jit_unload_)(void*) = nullptr;
     60 bool (*Jit::jit_compile_method_)(void*, ArtMethod*, Thread*, bool) = nullptr;
     61 void (*Jit::jit_types_loaded_)(void*, mirror::Class**, size_t count) = nullptr;
     62 bool Jit::generate_debug_info_ = false;
     63 
     64 struct StressModeHelper {
     65   DECLARE_RUNTIME_DEBUG_FLAG(kSlowMode);
     66 };
     67 DEFINE_RUNTIME_DEBUG_FLAG(StressModeHelper, kSlowMode);
     68 
     69 JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) {
     70   auto* jit_options = new JitOptions;
     71   jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation);
     72 
     73   jit_options->code_cache_initial_capacity_ =
     74       options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity);
     75   jit_options->code_cache_max_capacity_ =
     76       options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity);
     77   jit_options->dump_info_on_shutdown_ =
     78       options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown);
     79   jit_options->profile_saver_options_ =
     80       options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts);
     81 
     82   if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) {
     83     jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold);
     84   } else {
     85     jit_options->compile_threshold_ =
     86         kIsDebugBuild
     87             ? (StressModeHelper::kSlowMode
     88                    ? kJitSlowStressDefaultCompileThreshold
     89                    : kJitStressDefaultCompileThreshold)
     90             : kJitDefaultCompileThreshold;
     91   }
     92   if (jit_options->compile_threshold_ > std::numeric_limits<uint16_t>::max()) {
     93     LOG(FATAL) << "Method compilation threshold is above its internal limit.";
     94   }
     95 
     96   if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) {
     97     jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold);
     98     if (jit_options->warmup_threshold_ > std::numeric_limits<uint16_t>::max()) {
     99       LOG(FATAL) << "Method warmup threshold is above its internal limit.";
    100     }
    101   } else {
    102     jit_options->warmup_threshold_ = jit_options->compile_threshold_ / 2;
    103   }
    104 
    105   if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) {
    106     jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold);
    107     if (jit_options->osr_threshold_ > std::numeric_limits<uint16_t>::max()) {
    108       LOG(FATAL) << "Method on stack replacement threshold is above its internal limit.";
    109     }
    110   } else {
    111     jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2;
    112     if (jit_options->osr_threshold_ > std::numeric_limits<uint16_t>::max()) {
    113       jit_options->osr_threshold_ = std::numeric_limits<uint16_t>::max();
    114     }
    115   }
    116 
    117   if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) {
    118     jit_options->priority_thread_weight_ =
    119         *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight);
    120     if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) {
    121       LOG(FATAL) << "Priority thread weight is above the warmup threshold.";
    122     } else if (jit_options->priority_thread_weight_ == 0) {
    123       LOG(FATAL) << "Priority thread weight cannot be 0.";
    124     }
    125   } else {
    126     jit_options->priority_thread_weight_ = std::max(
    127         jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio,
    128         static_cast<size_t>(1));
    129   }
    130 
    131   if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) {
    132     jit_options->invoke_transition_weight_ =
    133         *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight);
    134     if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) {
    135       LOG(FATAL) << "Invoke transition weight is above the warmup threshold.";
    136     } else if (jit_options->invoke_transition_weight_  == 0) {
    137       LOG(FATAL) << "Invoke transition weight cannot be 0.";
    138     }
    139   } else {
    140     jit_options->invoke_transition_weight_ = std::max(
    141         jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio,
    142         static_cast<size_t>(1));
    143   }
    144 
    145   return jit_options;
    146 }
    147 
    148 bool Jit::ShouldUsePriorityThreadWeight(Thread* self) {
    149   return self->IsJitSensitiveThread() && Runtime::Current()->InJankPerceptibleProcessState();
    150 }
    151 
    152 void Jit::DumpInfo(std::ostream& os) {
    153   code_cache_->Dump(os);
    154   cumulative_timings_.Dump(os);
    155   MutexLock mu(Thread::Current(), lock_);
    156   memory_use_.PrintMemoryUse(os);
    157 }
    158 
    159 void Jit::DumpForSigQuit(std::ostream& os) {
    160   DumpInfo(os);
    161   ProfileSaver::DumpInstanceInfo(os);
    162 }
    163 
    164 void Jit::AddTimingLogger(const TimingLogger& logger) {
    165   cumulative_timings_.AddLogger(logger);
    166 }
    167 
    168 Jit::Jit() : dump_info_on_shutdown_(false),
    169              cumulative_timings_("JIT timings"),
    170              memory_use_("Memory used for compilation", 16),
    171              lock_("JIT memory use lock"),
    172              use_jit_compilation_(true),
    173              hot_method_threshold_(0),
    174              warm_method_threshold_(0),
    175              osr_method_threshold_(0),
    176              priority_thread_weight_(0),
    177              invoke_transition_weight_(0) {}
    178 
    179 Jit* Jit::Create(JitOptions* options, std::string* error_msg) {
    180   DCHECK(options->UseJitCompilation() || options->GetProfileSaverOptions().IsEnabled());
    181   std::unique_ptr<Jit> jit(new Jit);
    182   jit->dump_info_on_shutdown_ = options->DumpJitInfoOnShutdown();
    183   if (jit_compiler_handle_ == nullptr && !LoadCompiler(error_msg)) {
    184     return nullptr;
    185   }
    186   bool code_cache_only_for_profile_data = !options->UseJitCompilation();
    187   jit->code_cache_.reset(JitCodeCache::Create(
    188       options->GetCodeCacheInitialCapacity(),
    189       options->GetCodeCacheMaxCapacity(),
    190       jit->generate_debug_info_,
    191       code_cache_only_for_profile_data,
    192       error_msg));
    193   if (jit->GetCodeCache() == nullptr) {
    194     return nullptr;
    195   }
    196   jit->use_jit_compilation_ = options->UseJitCompilation();
    197   jit->profile_saver_options_ = options->GetProfileSaverOptions();
    198   VLOG(jit) << "JIT created with initial_capacity="
    199       << PrettySize(options->GetCodeCacheInitialCapacity())
    200       << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity())
    201       << ", compile_threshold=" << options->GetCompileThreshold()
    202       << ", profile_saver_options=" << options->GetProfileSaverOptions();
    203 
    204 
    205   jit->hot_method_threshold_ = options->GetCompileThreshold();
    206   jit->warm_method_threshold_ = options->GetWarmupThreshold();
    207   jit->osr_method_threshold_ = options->GetOsrThreshold();
    208   jit->priority_thread_weight_ = options->GetPriorityThreadWeight();
    209   jit->invoke_transition_weight_ = options->GetInvokeTransitionWeight();
    210 
    211   jit->CreateThreadPool();
    212 
    213   // Notify native debugger about the classes already loaded before the creation of the jit.
    214   jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker());
    215   return jit.release();
    216 }
    217 
    218 bool Jit::LoadCompilerLibrary(std::string* error_msg) {
    219   jit_library_handle_ = dlopen(
    220       kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW);
    221   if (jit_library_handle_ == nullptr) {
    222     std::ostringstream oss;
    223     oss << "JIT could not load libart-compiler.so: " << dlerror();
    224     *error_msg = oss.str();
    225     return false;
    226   }
    227   jit_load_ = reinterpret_cast<void* (*)(bool*)>(dlsym(jit_library_handle_, "jit_load"));
    228   if (jit_load_ == nullptr) {
    229     dlclose(jit_library_handle_);
    230     *error_msg = "JIT couldn't find jit_load entry point";
    231     return false;
    232   }
    233   jit_unload_ = reinterpret_cast<void (*)(void*)>(
    234       dlsym(jit_library_handle_, "jit_unload"));
    235   if (jit_unload_ == nullptr) {
    236     dlclose(jit_library_handle_);
    237     *error_msg = "JIT couldn't find jit_unload entry point";
    238     return false;
    239   }
    240   jit_compile_method_ = reinterpret_cast<bool (*)(void*, ArtMethod*, Thread*, bool)>(
    241       dlsym(jit_library_handle_, "jit_compile_method"));
    242   if (jit_compile_method_ == nullptr) {
    243     dlclose(jit_library_handle_);
    244     *error_msg = "JIT couldn't find jit_compile_method entry point";
    245     return false;
    246   }
    247   jit_types_loaded_ = reinterpret_cast<void (*)(void*, mirror::Class**, size_t)>(
    248       dlsym(jit_library_handle_, "jit_types_loaded"));
    249   if (jit_types_loaded_ == nullptr) {
    250     dlclose(jit_library_handle_);
    251     *error_msg = "JIT couldn't find jit_types_loaded entry point";
    252     return false;
    253   }
    254   return true;
    255 }
    256 
    257 bool Jit::LoadCompiler(std::string* error_msg) {
    258   if (jit_library_handle_ == nullptr && !LoadCompilerLibrary(error_msg)) {
    259     return false;
    260   }
    261   bool will_generate_debug_symbols = false;
    262   VLOG(jit) << "Calling JitLoad interpreter_only="
    263       << Runtime::Current()->GetInstrumentation()->InterpretOnly();
    264   jit_compiler_handle_ = (jit_load_)(&will_generate_debug_symbols);
    265   if (jit_compiler_handle_ == nullptr) {
    266     dlclose(jit_library_handle_);
    267     *error_msg = "JIT couldn't load compiler";
    268     return false;
    269   }
    270   generate_debug_info_ = will_generate_debug_symbols;
    271   return true;
    272 }
    273 
    274 bool Jit::CompileMethod(ArtMethod* method, Thread* self, bool osr) {
    275   DCHECK(Runtime::Current()->UseJitCompilation());
    276   DCHECK(!method->IsRuntimeMethod());
    277 
    278   RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
    279   // Don't compile the method if it has breakpoints.
    280   if (cb->IsMethodBeingInspected(method) && !cb->IsMethodSafeToJit(method)) {
    281     VLOG(jit) << "JIT not compiling " << method->PrettyMethod()
    282               << " due to not being safe to jit according to runtime-callbacks. For example, there"
    283               << " could be breakpoints in this method.";
    284     return false;
    285   }
    286 
    287   // Don't compile the method if we are supposed to be deoptimized.
    288   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
    289   if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) {
    290     VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization";
    291     return false;
    292   }
    293 
    294   // If we get a request to compile a proxy method, we pass the actual Java method
    295   // of that proxy method, as the compiler does not expect a proxy method.
    296   ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
    297   if (!code_cache_->NotifyCompilationOf(method_to_compile, self, osr)) {
    298     return false;
    299   }
    300 
    301   VLOG(jit) << "Compiling method "
    302             << ArtMethod::PrettyMethod(method_to_compile)
    303             << " osr=" << std::boolalpha << osr;
    304   bool success = jit_compile_method_(jit_compiler_handle_, method_to_compile, self, osr);
    305   code_cache_->DoneCompiling(method_to_compile, self, osr);
    306   if (!success) {
    307     VLOG(jit) << "Failed to compile method "
    308               << ArtMethod::PrettyMethod(method_to_compile)
    309               << " osr=" << std::boolalpha << osr;
    310   }
    311   if (kIsDebugBuild) {
    312     if (self->IsExceptionPending()) {
    313       mirror::Throwable* exception = self->GetException();
    314       LOG(FATAL) << "No pending exception expected after compiling "
    315                  << ArtMethod::PrettyMethod(method)
    316                  << ": "
    317                  << exception->Dump();
    318     }
    319   }
    320   return success;
    321 }
    322 
    323 void Jit::CreateThreadPool() {
    324   // There is a DCHECK in the 'AddSamples' method to ensure the tread pool
    325   // is not null when we instrument.
    326 
    327   // We need peers as we may report the JIT thread, e.g., in the debugger.
    328   constexpr bool kJitPoolNeedsPeers = true;
    329   thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers));
    330 
    331   thread_pool_->SetPthreadPriority(kJitPoolThreadPthreadPriority);
    332   Start();
    333 }
    334 
    335 void Jit::DeleteThreadPool() {
    336   Thread* self = Thread::Current();
    337   DCHECK(Runtime::Current()->IsShuttingDown(self));
    338   if (thread_pool_ != nullptr) {
    339     std::unique_ptr<ThreadPool> pool;
    340     {
    341       ScopedSuspendAll ssa(__FUNCTION__);
    342       // Clear thread_pool_ field while the threads are suspended.
    343       // A mutator in the 'AddSamples' method will check against it.
    344       pool = std::move(thread_pool_);
    345     }
    346 
    347     // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue.
    348     if (!RUNNING_ON_MEMORY_TOOL) {
    349       pool->StopWorkers(self);
    350       pool->RemoveAllTasks(self);
    351     }
    352     // We could just suspend all threads, but we know those threads
    353     // will finish in a short period, so it's not worth adding a suspend logic
    354     // here. Besides, this is only done for shutdown.
    355     pool->Wait(self, false, false);
    356   }
    357 }
    358 
    359 void Jit::StartProfileSaver(const std::string& filename,
    360                             const std::vector<std::string>& code_paths) {
    361   if (profile_saver_options_.IsEnabled()) {
    362     ProfileSaver::Start(profile_saver_options_,
    363                         filename,
    364                         code_cache_.get(),
    365                         code_paths);
    366   }
    367 }
    368 
    369 void Jit::StopProfileSaver() {
    370   if (profile_saver_options_.IsEnabled() && ProfileSaver::IsStarted()) {
    371     ProfileSaver::Stop(dump_info_on_shutdown_);
    372   }
    373 }
    374 
    375 bool Jit::JitAtFirstUse() {
    376   return HotMethodThreshold() == 0;
    377 }
    378 
    379 bool Jit::CanInvokeCompiledCode(ArtMethod* method) {
    380   return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode());
    381 }
    382 
    383 Jit::~Jit() {
    384   DCHECK(!profile_saver_options_.IsEnabled() || !ProfileSaver::IsStarted());
    385   if (dump_info_on_shutdown_) {
    386     DumpInfo(LOG_STREAM(INFO));
    387     Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO));
    388   }
    389   DeleteThreadPool();
    390   if (jit_compiler_handle_ != nullptr) {
    391     jit_unload_(jit_compiler_handle_);
    392     jit_compiler_handle_ = nullptr;
    393   }
    394   if (jit_library_handle_ != nullptr) {
    395     dlclose(jit_library_handle_);
    396     jit_library_handle_ = nullptr;
    397   }
    398 }
    399 
    400 void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) {
    401   if (!Runtime::Current()->UseJitCompilation()) {
    402     // No need to notify if we only use the JIT to save profiles.
    403     return;
    404   }
    405   jit::Jit* jit = Runtime::Current()->GetJit();
    406   if (jit->generate_debug_info_) {
    407     DCHECK(jit->jit_types_loaded_ != nullptr);
    408     jit->jit_types_loaded_(jit->jit_compiler_handle_, &type, 1);
    409   }
    410 }
    411 
    412 void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) {
    413   struct CollectClasses : public ClassVisitor {
    414     bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
    415       classes_.push_back(klass.Ptr());
    416       return true;
    417     }
    418     std::vector<mirror::Class*> classes_;
    419   };
    420 
    421   if (generate_debug_info_) {
    422     ScopedObjectAccess so(Thread::Current());
    423 
    424     CollectClasses visitor;
    425     linker->VisitClasses(&visitor);
    426     jit_types_loaded_(jit_compiler_handle_, visitor.classes_.data(), visitor.classes_.size());
    427   }
    428 }
    429 
    430 extern "C" void art_quick_osr_stub(void** stack,
    431                                    uint32_t stack_size_in_bytes,
    432                                    const uint8_t* native_pc,
    433                                    JValue* result,
    434                                    const char* shorty,
    435                                    Thread* self);
    436 
    437 bool Jit::MaybeDoOnStackReplacement(Thread* thread,
    438                                     ArtMethod* method,
    439                                     uint32_t dex_pc,
    440                                     int32_t dex_pc_offset,
    441                                     JValue* result) {
    442   if (!kEnableOnStackReplacement) {
    443     return false;
    444   }
    445 
    446   Jit* jit = Runtime::Current()->GetJit();
    447   if (jit == nullptr) {
    448     return false;
    449   }
    450 
    451   if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) {
    452     // Don't attempt to do an OSR if we are close to the stack limit. Since
    453     // the interpreter frames are still on stack, OSR has the potential
    454     // to stack overflow even for a simple loop.
    455     // b/27094810.
    456     return false;
    457   }
    458 
    459   // Get the actual Java method if this method is from a proxy class. The compiler
    460   // and the JIT code cache do not expect methods from proxy classes.
    461   method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
    462 
    463   // Cheap check if the method has been compiled already. That's an indicator that we should
    464   // osr into it.
    465   if (!jit->GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
    466     return false;
    467   }
    468 
    469   // Fetch some data before looking up for an OSR method. We don't want thread
    470   // suspension once we hold an OSR method, as the JIT code cache could delete the OSR
    471   // method while we are being suspended.
    472   CodeItemDataAccessor accessor(method->DexInstructionData());
    473   const size_t number_of_vregs = accessor.RegistersSize();
    474   const char* shorty = method->GetShorty();
    475   std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : "");
    476   void** memory = nullptr;
    477   size_t frame_size = 0;
    478   ShadowFrame* shadow_frame = nullptr;
    479   const uint8_t* native_pc = nullptr;
    480 
    481   {
    482     ScopedAssertNoThreadSuspension sts("Holding OSR method");
    483     const OatQuickMethodHeader* osr_method = jit->GetCodeCache()->LookupOsrMethodHeader(method);
    484     if (osr_method == nullptr) {
    485       // No osr method yet, just return to the interpreter.
    486       return false;
    487     }
    488 
    489     CodeInfo code_info = osr_method->GetOptimizedCodeInfo();
    490     CodeInfoEncoding encoding = code_info.ExtractEncoding();
    491 
    492     // Find stack map starting at the target dex_pc.
    493     StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc + dex_pc_offset, encoding);
    494     if (!stack_map.IsValid()) {
    495       // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the
    496       // hope that the next branch has one.
    497       return false;
    498     }
    499 
    500     // Before allowing the jump, make sure no code is actively inspecting the method to avoid
    501     // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively
    502     // disable OSR when single stepping, but that's currently hard to know at this point.
    503     if (Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method)) {
    504       return false;
    505     }
    506 
    507     // We found a stack map, now fill the frame with dex register values from the interpreter's
    508     // shadow frame.
    509     DexRegisterMap vreg_map =
    510         code_info.GetDexRegisterMapOf(stack_map, encoding, number_of_vregs);
    511 
    512     frame_size = osr_method->GetFrameSizeInBytes();
    513 
    514     // Allocate memory to put shadow frame values. The osr stub will copy that memory to
    515     // stack.
    516     // Note that we could pass the shadow frame to the stub, and let it copy the values there,
    517     // but that is engineering complexity not worth the effort for something like OSR.
    518     memory = reinterpret_cast<void**>(malloc(frame_size));
    519     CHECK(memory != nullptr);
    520     memset(memory, 0, frame_size);
    521 
    522     // Art ABI: ArtMethod is at the bottom of the stack.
    523     memory[0] = method;
    524 
    525     shadow_frame = thread->PopShadowFrame();
    526     if (!vreg_map.IsValid()) {
    527       // If we don't have a dex register map, then there are no live dex registers at
    528       // this dex pc.
    529     } else {
    530       for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) {
    531         DexRegisterLocation::Kind location =
    532             vreg_map.GetLocationKind(vreg, number_of_vregs, code_info, encoding);
    533         if (location == DexRegisterLocation::Kind::kNone) {
    534           // Dex register is dead or uninitialized.
    535           continue;
    536         }
    537 
    538         if (location == DexRegisterLocation::Kind::kConstant) {
    539           // We skip constants because the compiled code knows how to handle them.
    540           continue;
    541         }
    542 
    543         DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack);
    544 
    545         int32_t vreg_value = shadow_frame->GetVReg(vreg);
    546         int32_t slot_offset = vreg_map.GetStackOffsetInBytes(vreg,
    547                                                              number_of_vregs,
    548                                                              code_info,
    549                                                              encoding);
    550         DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size));
    551         DCHECK_GT(slot_offset, 0);
    552         (reinterpret_cast<int32_t*>(memory))[slot_offset / sizeof(int32_t)] = vreg_value;
    553       }
    554     }
    555 
    556     native_pc = stack_map.GetNativePcOffset(encoding.stack_map.encoding, kRuntimeISA) +
    557         osr_method->GetEntryPoint();
    558     VLOG(jit) << "Jumping to "
    559               << method_name
    560               << "@"
    561               << std::hex << reinterpret_cast<uintptr_t>(native_pc);
    562   }
    563 
    564   {
    565     ManagedStack fragment;
    566     thread->PushManagedStackFragment(&fragment);
    567     (*art_quick_osr_stub)(memory,
    568                           frame_size,
    569                           native_pc,
    570                           result,
    571                           shorty,
    572                           thread);
    573 
    574     if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) {
    575       thread->DeoptimizeWithDeoptimizationException(result);
    576     }
    577     thread->PopManagedStackFragment(fragment);
    578   }
    579   free(memory);
    580   thread->PushShadowFrame(shadow_frame);
    581   VLOG(jit) << "Done running OSR code for " << method_name;
    582   return true;
    583 }
    584 
    585 void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) {
    586   if (bytes > 4 * MB) {
    587     LOG(INFO) << "Compiler allocated "
    588               << PrettySize(bytes)
    589               << " to compile "
    590               << ArtMethod::PrettyMethod(method);
    591   }
    592   MutexLock mu(Thread::Current(), lock_);
    593   memory_use_.AddValue(bytes);
    594 }
    595 
    596 class JitCompileTask FINAL : public Task {
    597  public:
    598   enum TaskKind {
    599     kAllocateProfile,
    600     kCompile,
    601     kCompileOsr
    602   };
    603 
    604   JitCompileTask(ArtMethod* method, TaskKind kind) : method_(method), kind_(kind) {
    605     ScopedObjectAccess soa(Thread::Current());
    606     // Add a global ref to the class to prevent class unloading until compilation is done.
    607     klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass());
    608     CHECK(klass_ != nullptr);
    609   }
    610 
    611   ~JitCompileTask() {
    612     ScopedObjectAccess soa(Thread::Current());
    613     soa.Vm()->DeleteGlobalRef(soa.Self(), klass_);
    614   }
    615 
    616   void Run(Thread* self) OVERRIDE {
    617     ScopedObjectAccess soa(self);
    618     if (kind_ == kCompile) {
    619       Runtime::Current()->GetJit()->CompileMethod(method_, self, /* osr */ false);
    620     } else if (kind_ == kCompileOsr) {
    621       Runtime::Current()->GetJit()->CompileMethod(method_, self, /* osr */ true);
    622     } else {
    623       DCHECK(kind_ == kAllocateProfile);
    624       if (ProfilingInfo::Create(self, method_, /* retry_allocation */ true)) {
    625         VLOG(jit) << "Start profiling " << ArtMethod::PrettyMethod(method_);
    626       }
    627     }
    628     ProfileSaver::NotifyJitActivity();
    629   }
    630 
    631   void Finalize() OVERRIDE {
    632     delete this;
    633   }
    634 
    635  private:
    636   ArtMethod* const method_;
    637   const TaskKind kind_;
    638   jobject klass_;
    639 
    640   DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask);
    641 };
    642 
    643 void Jit::AddSamples(Thread* self, ArtMethod* method, uint16_t count, bool with_backedges) {
    644   if (thread_pool_ == nullptr) {
    645     // Should only see this when shutting down.
    646     DCHECK(Runtime::Current()->IsShuttingDown(self));
    647     return;
    648   }
    649 
    650   if (method->IsClassInitializer() || !method->IsCompilable()) {
    651     // We do not want to compile such methods.
    652     return;
    653   }
    654   if (hot_method_threshold_ == 0) {
    655     // Tests might request JIT on first use (compiled synchronously in the interpreter).
    656     return;
    657   }
    658   DCHECK(thread_pool_ != nullptr);
    659   DCHECK_GT(warm_method_threshold_, 0);
    660   DCHECK_GT(hot_method_threshold_, warm_method_threshold_);
    661   DCHECK_GT(osr_method_threshold_, hot_method_threshold_);
    662   DCHECK_GE(priority_thread_weight_, 1);
    663   DCHECK_LE(priority_thread_weight_, hot_method_threshold_);
    664 
    665   int32_t starting_count = method->GetCounter();
    666   if (Jit::ShouldUsePriorityThreadWeight(self)) {
    667     count *= priority_thread_weight_;
    668   }
    669   int32_t new_count = starting_count + count;   // int32 here to avoid wrap-around;
    670   // Note: Native method have no "warm" state or profiling info.
    671   if (LIKELY(!method->IsNative()) && starting_count < warm_method_threshold_) {
    672     if ((new_count >= warm_method_threshold_) &&
    673         (method->GetProfilingInfo(kRuntimePointerSize) == nullptr)) {
    674       bool success = ProfilingInfo::Create(self, method, /* retry_allocation */ false);
    675       if (success) {
    676         VLOG(jit) << "Start profiling " << method->PrettyMethod();
    677       }
    678 
    679       if (thread_pool_ == nullptr) {
    680         // Calling ProfilingInfo::Create might put us in a suspended state, which could
    681         // lead to the thread pool being deleted when we are shutting down.
    682         DCHECK(Runtime::Current()->IsShuttingDown(self));
    683         return;
    684       }
    685 
    686       if (!success) {
    687         // We failed allocating. Instead of doing the collection on the Java thread, we push
    688         // an allocation to a compiler thread, that will do the collection.
    689         thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kAllocateProfile));
    690       }
    691     }
    692     // Avoid jumping more than one state at a time.
    693     new_count = std::min(new_count, hot_method_threshold_ - 1);
    694   } else if (use_jit_compilation_) {
    695     if (starting_count < hot_method_threshold_) {
    696       if ((new_count >= hot_method_threshold_) &&
    697           !code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
    698         DCHECK(thread_pool_ != nullptr);
    699         thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kCompile));
    700       }
    701       // Avoid jumping more than one state at a time.
    702       new_count = std::min(new_count, osr_method_threshold_ - 1);
    703     } else if (starting_count < osr_method_threshold_) {
    704       if (!with_backedges) {
    705         // If the samples don't contain any back edge, we don't increment the hotness.
    706         return;
    707       }
    708       DCHECK(!method->IsNative());  // No back edges reported for native methods.
    709       if ((new_count >= osr_method_threshold_) &&  !code_cache_->IsOsrCompiled(method)) {
    710         DCHECK(thread_pool_ != nullptr);
    711         thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kCompileOsr));
    712       }
    713     }
    714   }
    715   // Update hotness counter
    716   method->SetCounter(new_count);
    717 }
    718 
    719 void Jit::MethodEntered(Thread* thread, ArtMethod* method) {
    720   Runtime* runtime = Runtime::Current();
    721   if (UNLIKELY(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse())) {
    722     // The compiler requires a ProfilingInfo object.
    723     ProfilingInfo::Create(thread,
    724                           method->GetInterfaceMethodIfProxy(kRuntimePointerSize),
    725                           /* retry_allocation */ true);
    726     JitCompileTask compile_task(method, JitCompileTask::kCompile);
    727     compile_task.Run(thread);
    728     return;
    729   }
    730 
    731   ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
    732   // Update the entrypoint if the ProfilingInfo has one. The interpreter will call it
    733   // instead of interpreting the method.
    734   if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() != nullptr)) {
    735     Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
    736         method, profiling_info->GetSavedEntryPoint());
    737   } else {
    738     AddSamples(thread, method, 1, /* with_backedges */false);
    739   }
    740 }
    741 
    742 void Jit::InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object,
    743                                    ArtMethod* caller,
    744                                    uint32_t dex_pc,
    745                                    ArtMethod* callee ATTRIBUTE_UNUSED) {
    746   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
    747   DCHECK(this_object != nullptr);
    748   ProfilingInfo* info = caller->GetProfilingInfo(kRuntimePointerSize);
    749   if (info != nullptr) {
    750     info->AddInvokeInfo(dex_pc, this_object->GetClass());
    751   }
    752 }
    753 
    754 void Jit::WaitForCompilationToFinish(Thread* self) {
    755   if (thread_pool_ != nullptr) {
    756     thread_pool_->Wait(self, false, false);
    757   }
    758 }
    759 
    760 void Jit::Stop() {
    761   Thread* self = Thread::Current();
    762   // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice.
    763   WaitForCompilationToFinish(self);
    764   GetThreadPool()->StopWorkers(self);
    765   WaitForCompilationToFinish(self);
    766 }
    767 
    768 void Jit::Start() {
    769   GetThreadPool()->StartWorkers(Thread::Current());
    770 }
    771 
    772 ScopedJitSuspend::ScopedJitSuspend() {
    773   jit::Jit* jit = Runtime::Current()->GetJit();
    774   was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr);
    775   if (was_on_) {
    776     jit->Stop();
    777   }
    778 }
    779 
    780 ScopedJitSuspend::~ScopedJitSuspend() {
    781   if (was_on_) {
    782     DCHECK(Runtime::Current()->GetJit() != nullptr);
    783     DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr);
    784     Runtime::Current()->GetJit()->Start();
    785   }
    786 }
    787 
    788 }  // namespace jit
    789 }  // namespace art
    790