Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_MEMORY_REGION_H_
     18 #define ART_RUNTIME_MEMORY_REGION_H_
     19 
     20 #include <stdint.h>
     21 #include <type_traits>
     22 
     23 #include <android-base/logging.h>
     24 
     25 #include "arch/instruction_set.h"
     26 #include "base/bit_utils.h"
     27 #include "base/casts.h"
     28 #include "base/macros.h"
     29 #include "base/value_object.h"
     30 #include "globals.h"
     31 
     32 namespace art {
     33 
     34 // Memory regions are useful for accessing memory with bounds check in
     35 // debug mode. They can be safely passed by value and do not assume ownership
     36 // of the region.
     37 class MemoryRegion FINAL : public ValueObject {
     38  public:
     39   struct ContentEquals {
     40     constexpr bool operator()(const MemoryRegion& lhs, const MemoryRegion& rhs) const {
     41       return lhs.size() == rhs.size() && memcmp(lhs.begin(), rhs.begin(), lhs.size()) == 0;
     42     }
     43   };
     44 
     45   MemoryRegion() : pointer_(nullptr), size_(0) {}
     46   MemoryRegion(void* pointer_in, uintptr_t size_in) : pointer_(pointer_in), size_(size_in) {}
     47 
     48   void* pointer() const { return pointer_; }
     49   size_t size() const { return size_; }
     50   size_t size_in_bits() const { return size_ * kBitsPerByte; }
     51 
     52   static size_t pointer_offset() {
     53     return OFFSETOF_MEMBER(MemoryRegion, pointer_);
     54   }
     55 
     56   uint8_t* begin() const { return reinterpret_cast<uint8_t*>(pointer_); }
     57   uint8_t* end() const { return begin() + size_; }
     58 
     59   // Load value of type `T` at `offset`.  The memory address corresponding
     60   // to `offset` should be word-aligned (on ARM, this is a requirement).
     61   template<typename T>
     62   ALWAYS_INLINE T Load(uintptr_t offset) const {
     63     T* address = ComputeInternalPointer<T>(offset);
     64     DCHECK(IsWordAligned(address));
     65     return *address;
     66   }
     67 
     68   // Store `value` (of type `T`) at `offset`.  The memory address
     69   // corresponding to `offset` should be word-aligned (on ARM, this is
     70   // a requirement).
     71   template<typename T>
     72   ALWAYS_INLINE void Store(uintptr_t offset, T value) const {
     73     T* address = ComputeInternalPointer<T>(offset);
     74     DCHECK(IsWordAligned(address));
     75     *address = value;
     76   }
     77 
     78   // Load value of type `T` at `offset`.  The memory address corresponding
     79   // to `offset` does not need to be word-aligned.
     80   template<typename T>
     81   ALWAYS_INLINE T LoadUnaligned(uintptr_t offset) const {
     82     // Equivalent unsigned integer type corresponding to T.
     83     typedef typename std::make_unsigned<T>::type U;
     84     U equivalent_unsigned_integer_value = 0;
     85     // Read the value byte by byte in a little-endian fashion.
     86     for (size_t i = 0; i < sizeof(U); ++i) {
     87       equivalent_unsigned_integer_value +=
     88           *ComputeInternalPointer<uint8_t>(offset + i) << (i * kBitsPerByte);
     89     }
     90     return bit_cast<T, U>(equivalent_unsigned_integer_value);
     91   }
     92 
     93   // Store `value` (of type `T`) at `offset`.  The memory address
     94   // corresponding to `offset` does not need to be word-aligned.
     95   template<typename T>
     96   ALWAYS_INLINE void StoreUnaligned(uintptr_t offset, T value) const {
     97     // Equivalent unsigned integer type corresponding to T.
     98     typedef typename std::make_unsigned<T>::type U;
     99     U equivalent_unsigned_integer_value = bit_cast<U, T>(value);
    100     // Write the value byte by byte in a little-endian fashion.
    101     for (size_t i = 0; i < sizeof(U); ++i) {
    102       *ComputeInternalPointer<uint8_t>(offset + i) =
    103           (equivalent_unsigned_integer_value >> (i * kBitsPerByte)) & 0xFF;
    104     }
    105   }
    106 
    107   template<typename T>
    108   ALWAYS_INLINE T* PointerTo(uintptr_t offset) const {
    109     return ComputeInternalPointer<T>(offset);
    110   }
    111 
    112   // Load a single bit in the region. The bit at offset 0 is the least
    113   // significant bit in the first byte.
    114   ALWAYS_INLINE bool LoadBit(uintptr_t bit_offset) const {
    115     uint8_t bit_mask;
    116     uint8_t byte = *ComputeBitPointer(bit_offset, &bit_mask);
    117     return byte & bit_mask;
    118   }
    119 
    120   ALWAYS_INLINE void StoreBit(uintptr_t bit_offset, bool value) const {
    121     uint8_t bit_mask;
    122     uint8_t* byte = ComputeBitPointer(bit_offset, &bit_mask);
    123     if (value) {
    124       *byte |= bit_mask;
    125     } else {
    126       *byte &= ~bit_mask;
    127     }
    128   }
    129 
    130   // Load `length` bits from the region starting at bit offset `bit_offset`.
    131   // The bit at the smallest offset is the least significant bit in the
    132   // loaded value.  `length` must not be larger than the number of bits
    133   // contained in the return value (32).
    134   ALWAYS_INLINE uint32_t LoadBits(uintptr_t bit_offset, size_t length) const {
    135     DCHECK_LE(length, BitSizeOf<uint32_t>());
    136     DCHECK_LE(bit_offset + length, size_in_bits());
    137     if (UNLIKELY(length == 0)) {
    138       // Do not touch any memory if the range is empty.
    139       return 0;
    140     }
    141     const uint8_t* address = begin() + bit_offset / kBitsPerByte;
    142     const uint32_t shift = bit_offset & (kBitsPerByte - 1);
    143     // Load the value (reading only the strictly needed bytes).
    144     const uint32_t load_bit_count = shift + length;
    145     uint32_t value = address[0] >> shift;
    146     if (load_bit_count > 8) {
    147       value |= static_cast<uint32_t>(address[1]) << (8 - shift);
    148       if (load_bit_count > 16) {
    149         value |= static_cast<uint32_t>(address[2]) << (16 - shift);
    150         if (load_bit_count > 24) {
    151           value |= static_cast<uint32_t>(address[3]) << (24 - shift);
    152           if (load_bit_count > 32) {
    153             value |= static_cast<uint32_t>(address[4]) << (32 - shift);
    154           }
    155         }
    156       }
    157     }
    158     // Clear unwanted most significant bits.
    159     uint32_t clear_bit_count = BitSizeOf(value) - length;
    160     value = (value << clear_bit_count) >> clear_bit_count;
    161     for (size_t i = 0; i < length; ++i) {
    162       DCHECK_EQ((value >> i) & 1, LoadBit(bit_offset + i));
    163     }
    164     return value;
    165   }
    166 
    167   // Store `value` on `length` bits in the region starting at bit offset
    168   // `bit_offset`.  The bit at the smallest offset is the least significant
    169   // bit of the stored `value`.  `value` must not be larger than `length`
    170   // bits.
    171   void StoreBits(uintptr_t bit_offset, uint32_t value, size_t length);
    172 
    173   void CopyFrom(size_t offset, const MemoryRegion& from) const;
    174 
    175   template<class Vector>
    176   void CopyFromVector(size_t offset, Vector& vector) const {
    177     if (!vector.empty()) {
    178       CopyFrom(offset, MemoryRegion(vector.data(), vector.size()));
    179     }
    180   }
    181 
    182   // Compute a sub memory region based on an existing one.
    183   ALWAYS_INLINE MemoryRegion Subregion(uintptr_t offset, uintptr_t size_in) const {
    184     CHECK_GE(this->size(), size_in);
    185     CHECK_LE(offset,  this->size() - size_in);
    186     return MemoryRegion(reinterpret_cast<void*>(begin() + offset), size_in);
    187   }
    188 
    189   // Compute an extended memory region based on an existing one.
    190   ALWAYS_INLINE void Extend(const MemoryRegion& region, uintptr_t extra) {
    191     pointer_ = region.pointer();
    192     size_ = (region.size() + extra);
    193   }
    194 
    195  private:
    196   template<typename T>
    197   ALWAYS_INLINE T* ComputeInternalPointer(size_t offset) const {
    198     CHECK_GE(size(), sizeof(T));
    199     CHECK_LE(offset, size() - sizeof(T));
    200     return reinterpret_cast<T*>(begin() + offset);
    201   }
    202 
    203   // Locate the bit with the given offset. Returns a pointer to the byte
    204   // containing the bit, and sets bit_mask to the bit within that byte.
    205   ALWAYS_INLINE uint8_t* ComputeBitPointer(uintptr_t bit_offset, uint8_t* bit_mask) const {
    206     uintptr_t bit_remainder = (bit_offset & (kBitsPerByte - 1));
    207     *bit_mask = (1U << bit_remainder);
    208     uintptr_t byte_offset = (bit_offset >> kBitsPerByteLog2);
    209     return ComputeInternalPointer<uint8_t>(byte_offset);
    210   }
    211 
    212   // Is `address` aligned on a machine word?
    213   template<typename T> static constexpr bool IsWordAligned(const T* address) {
    214     // Word alignment in bytes.
    215     size_t kWordAlignment = static_cast<size_t>(GetInstructionSetPointerSize(kRuntimeISA));
    216     return IsAlignedParam(address, kWordAlignment);
    217   }
    218 
    219   void* pointer_;
    220   size_t size_;
    221 };
    222 
    223 }  // namespace art
    224 
    225 #endif  // ART_RUNTIME_MEMORY_REGION_H_
    226