Home | History | Annotate | Download | only in verifier
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "reg_type_cache-inl.h"
     18 
     19 #include <type_traits>
     20 
     21 #include "base/aborting.h"
     22 #include "base/arena_bit_vector.h"
     23 #include "base/bit_vector-inl.h"
     24 #include "base/casts.h"
     25 #include "base/scoped_arena_allocator.h"
     26 #include "base/stl_util.h"
     27 #include "class_linker-inl.h"
     28 #include "dex/descriptors_names.h"
     29 #include "dex/dex_file-inl.h"
     30 #include "mirror/class-inl.h"
     31 #include "mirror/object-inl.h"
     32 #include "reg_type-inl.h"
     33 
     34 namespace art {
     35 namespace verifier {
     36 
     37 bool RegTypeCache::primitive_initialized_ = false;
     38 uint16_t RegTypeCache::primitive_count_ = 0;
     39 const PreciseConstType* RegTypeCache::small_precise_constants_[kMaxSmallConstant -
     40                                                                kMinSmallConstant + 1];
     41 
     42 ALWAYS_INLINE static inline bool MatchingPrecisionForClass(const RegType* entry, bool precise)
     43     REQUIRES_SHARED(Locks::mutator_lock_) {
     44   if (entry->IsPreciseReference() == precise) {
     45     // We were or weren't looking for a precise reference and we found what we need.
     46     return true;
     47   } else {
     48     if (!precise && entry->GetClass()->CannotBeAssignedFromOtherTypes()) {
     49       // We weren't looking for a precise reference, as we're looking up based on a descriptor, but
     50       // we found a matching entry based on the descriptor. Return the precise entry in that case.
     51       return true;
     52     }
     53     return false;
     54   }
     55 }
     56 
     57 void RegTypeCache::FillPrimitiveAndSmallConstantTypes() {
     58   // Note: this must have the same order as CreatePrimitiveAndSmallConstantTypes.
     59   entries_.push_back(UndefinedType::GetInstance());
     60   entries_.push_back(ConflictType::GetInstance());
     61   entries_.push_back(NullType::GetInstance());
     62   entries_.push_back(BooleanType::GetInstance());
     63   entries_.push_back(ByteType::GetInstance());
     64   entries_.push_back(ShortType::GetInstance());
     65   entries_.push_back(CharType::GetInstance());
     66   entries_.push_back(IntegerType::GetInstance());
     67   entries_.push_back(LongLoType::GetInstance());
     68   entries_.push_back(LongHiType::GetInstance());
     69   entries_.push_back(FloatType::GetInstance());
     70   entries_.push_back(DoubleLoType::GetInstance());
     71   entries_.push_back(DoubleHiType::GetInstance());
     72   for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
     73     int32_t i = value - kMinSmallConstant;
     74     DCHECK_EQ(entries_.size(), small_precise_constants_[i]->GetId());
     75     entries_.push_back(small_precise_constants_[i]);
     76   }
     77   DCHECK_EQ(entries_.size(), primitive_count_);
     78 }
     79 
     80 const RegType& RegTypeCache::FromDescriptor(mirror::ClassLoader* loader,
     81                                             const char* descriptor,
     82                                             bool precise) {
     83   DCHECK(RegTypeCache::primitive_initialized_);
     84   if (descriptor[1] == '\0') {
     85     switch (descriptor[0]) {
     86       case 'Z':
     87         return Boolean();
     88       case 'B':
     89         return Byte();
     90       case 'S':
     91         return Short();
     92       case 'C':
     93         return Char();
     94       case 'I':
     95         return Integer();
     96       case 'J':
     97         return LongLo();
     98       case 'F':
     99         return Float();
    100       case 'D':
    101         return DoubleLo();
    102       case 'V':  // For void types, conflict types.
    103       default:
    104         return Conflict();
    105     }
    106   } else if (descriptor[0] == 'L' || descriptor[0] == '[') {
    107     return From(loader, descriptor, precise);
    108   } else {
    109     return Conflict();
    110   }
    111 }
    112 
    113 const RegType& RegTypeCache::RegTypeFromPrimitiveType(Primitive::Type prim_type) const {
    114   DCHECK(RegTypeCache::primitive_initialized_);
    115   switch (prim_type) {
    116     case Primitive::kPrimBoolean:
    117       return *BooleanType::GetInstance();
    118     case Primitive::kPrimByte:
    119       return *ByteType::GetInstance();
    120     case Primitive::kPrimShort:
    121       return *ShortType::GetInstance();
    122     case Primitive::kPrimChar:
    123       return *CharType::GetInstance();
    124     case Primitive::kPrimInt:
    125       return *IntegerType::GetInstance();
    126     case Primitive::kPrimLong:
    127       return *LongLoType::GetInstance();
    128     case Primitive::kPrimFloat:
    129       return *FloatType::GetInstance();
    130     case Primitive::kPrimDouble:
    131       return *DoubleLoType::GetInstance();
    132     case Primitive::kPrimVoid:
    133     default:
    134       return *ConflictType::GetInstance();
    135   }
    136 }
    137 
    138 bool RegTypeCache::MatchDescriptor(size_t idx, const StringPiece& descriptor, bool precise) {
    139   const RegType* entry = entries_[idx];
    140   if (descriptor != entry->descriptor_) {
    141     return false;
    142   }
    143   if (entry->HasClass()) {
    144     return MatchingPrecisionForClass(entry, precise);
    145   }
    146   // There is no notion of precise unresolved references, the precise information is just dropped
    147   // on the floor.
    148   DCHECK(entry->IsUnresolvedReference());
    149   return true;
    150 }
    151 
    152 mirror::Class* RegTypeCache::ResolveClass(const char* descriptor, mirror::ClassLoader* loader) {
    153   // Class was not found, must create new type.
    154   // Try resolving class
    155   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    156   Thread* self = Thread::Current();
    157   StackHandleScope<1> hs(self);
    158   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(loader));
    159   mirror::Class* klass = nullptr;
    160   if (can_load_classes_) {
    161     klass = class_linker->FindClass(self, descriptor, class_loader);
    162   } else {
    163     klass = class_linker->LookupClass(self, descriptor, loader);
    164     if (klass != nullptr && !klass->IsResolved()) {
    165       // We found the class but without it being loaded its not safe for use.
    166       klass = nullptr;
    167     }
    168   }
    169   return klass;
    170 }
    171 
    172 StringPiece RegTypeCache::AddString(const StringPiece& string_piece) {
    173   char* ptr = allocator_.AllocArray<char>(string_piece.length());
    174   memcpy(ptr, string_piece.data(), string_piece.length());
    175   return StringPiece(ptr, string_piece.length());
    176 }
    177 
    178 const RegType& RegTypeCache::From(mirror::ClassLoader* loader,
    179                                   const char* descriptor,
    180                                   bool precise) {
    181   StringPiece sp_descriptor(descriptor);
    182   // Try looking up the class in the cache first. We use a StringPiece to avoid continual strlen
    183   // operations on the descriptor.
    184   for (size_t i = primitive_count_; i < entries_.size(); i++) {
    185     if (MatchDescriptor(i, sp_descriptor, precise)) {
    186       return *(entries_[i]);
    187     }
    188   }
    189   // Class not found in the cache, will create a new type for that.
    190   // Try resolving class.
    191   mirror::Class* klass = ResolveClass(descriptor, loader);
    192   if (klass != nullptr) {
    193     // Class resolved, first look for the class in the list of entries
    194     // Class was not found, must create new type.
    195     // To pass the verification, the type should be imprecise,
    196     // instantiable or an interface with the precise type set to false.
    197     DCHECK(!precise || klass->IsInstantiable());
    198     // Create a precise type if:
    199     // 1- Class is final and NOT an interface. a precise interface is meaningless !!
    200     // 2- Precise Flag passed as true.
    201     RegType* entry;
    202     // Create an imprecise type if we can't tell for a fact that it is precise.
    203     if (klass->CannotBeAssignedFromOtherTypes() || precise) {
    204       DCHECK(!(klass->IsAbstract()) || klass->IsArrayClass());
    205       DCHECK(!klass->IsInterface());
    206       entry =
    207           new (&allocator_) PreciseReferenceType(klass, AddString(sp_descriptor), entries_.size());
    208     } else {
    209       entry = new (&allocator_) ReferenceType(klass, AddString(sp_descriptor), entries_.size());
    210     }
    211     return AddEntry(entry);
    212   } else {  // Class not resolved.
    213     // We tried loading the class and failed, this might get an exception raised
    214     // so we want to clear it before we go on.
    215     if (can_load_classes_) {
    216       DCHECK(Thread::Current()->IsExceptionPending());
    217       Thread::Current()->ClearException();
    218     } else {
    219       DCHECK(!Thread::Current()->IsExceptionPending());
    220     }
    221     if (IsValidDescriptor(descriptor)) {
    222       return AddEntry(
    223           new (&allocator_) UnresolvedReferenceType(AddString(sp_descriptor), entries_.size()));
    224     } else {
    225       // The descriptor is broken return the unknown type as there's nothing sensible that
    226       // could be done at runtime
    227       return Conflict();
    228     }
    229   }
    230 }
    231 
    232 const RegType& RegTypeCache::MakeUnresolvedReference() {
    233   // The descriptor is intentionally invalid so nothing else will match this type.
    234   return AddEntry(new (&allocator_) UnresolvedReferenceType(AddString("a"), entries_.size()));
    235 }
    236 
    237 const RegType* RegTypeCache::FindClass(mirror::Class* klass, bool precise) const {
    238   DCHECK(klass != nullptr);
    239   if (klass->IsPrimitive()) {
    240     // Note: precise isn't used for primitive classes. A char is assignable to an int. All
    241     // primitive classes are final.
    242     return &RegTypeFromPrimitiveType(klass->GetPrimitiveType());
    243   }
    244   for (auto& pair : klass_entries_) {
    245     mirror::Class* const reg_klass = pair.first.Read();
    246     if (reg_klass == klass) {
    247       const RegType* reg_type = pair.second;
    248       if (MatchingPrecisionForClass(reg_type, precise)) {
    249         return reg_type;
    250       }
    251     }
    252   }
    253   return nullptr;
    254 }
    255 
    256 const RegType* RegTypeCache::InsertClass(const StringPiece& descriptor,
    257                                          mirror::Class* klass,
    258                                          bool precise) {
    259   // No reference to the class was found, create new reference.
    260   DCHECK(FindClass(klass, precise) == nullptr);
    261   RegType* const reg_type = precise
    262       ? static_cast<RegType*>(
    263           new (&allocator_) PreciseReferenceType(klass, descriptor, entries_.size()))
    264       : new (&allocator_) ReferenceType(klass, descriptor, entries_.size());
    265   return &AddEntry(reg_type);
    266 }
    267 
    268 const RegType& RegTypeCache::FromClass(const char* descriptor, mirror::Class* klass, bool precise) {
    269   DCHECK(klass != nullptr);
    270   const RegType* reg_type = FindClass(klass, precise);
    271   if (reg_type == nullptr) {
    272     reg_type = InsertClass(AddString(StringPiece(descriptor)), klass, precise);
    273   }
    274   return *reg_type;
    275 }
    276 
    277 RegTypeCache::RegTypeCache(bool can_load_classes, ScopedArenaAllocator& allocator, bool can_suspend)
    278     : entries_(allocator.Adapter(kArenaAllocVerifier)),
    279       klass_entries_(allocator.Adapter(kArenaAllocVerifier)),
    280       can_load_classes_(can_load_classes),
    281       allocator_(allocator) {
    282   DCHECK(can_suspend || !can_load_classes) << "Cannot load classes if suspension is disabled!";
    283   if (kIsDebugBuild && can_suspend) {
    284     Thread::Current()->AssertThreadSuspensionIsAllowable(gAborting == 0);
    285   }
    286   // The klass_entries_ array does not have primitives or small constants.
    287   static constexpr size_t kNumReserveEntries = 32;
    288   klass_entries_.reserve(kNumReserveEntries);
    289   // We want to have room for additional entries after inserting primitives and small
    290   // constants.
    291   entries_.reserve(kNumReserveEntries + kNumPrimitivesAndSmallConstants);
    292   FillPrimitiveAndSmallConstantTypes();
    293 }
    294 
    295 RegTypeCache::~RegTypeCache() {
    296   DCHECK_LE(primitive_count_, entries_.size());
    297 }
    298 
    299 void RegTypeCache::ShutDown() {
    300   if (RegTypeCache::primitive_initialized_) {
    301     UndefinedType::Destroy();
    302     ConflictType::Destroy();
    303     BooleanType::Destroy();
    304     ByteType::Destroy();
    305     ShortType::Destroy();
    306     CharType::Destroy();
    307     IntegerType::Destroy();
    308     LongLoType::Destroy();
    309     LongHiType::Destroy();
    310     FloatType::Destroy();
    311     DoubleLoType::Destroy();
    312     DoubleHiType::Destroy();
    313     NullType::Destroy();
    314     for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
    315       const PreciseConstType* type = small_precise_constants_[value - kMinSmallConstant];
    316       delete type;
    317       small_precise_constants_[value - kMinSmallConstant] = nullptr;
    318     }
    319     RegTypeCache::primitive_initialized_ = false;
    320     RegTypeCache::primitive_count_ = 0;
    321   }
    322 }
    323 
    324 // Helper for create_primitive_type_instance lambda.
    325 namespace {
    326 template <typename T>
    327 struct TypeHelper {
    328   using type = T;
    329   static_assert(std::is_convertible<T*, RegType*>::value, "T must be a RegType");
    330 
    331   const char* descriptor;
    332 
    333   explicit TypeHelper(const char* d) : descriptor(d) {}
    334 };
    335 }  // namespace
    336 
    337 void RegTypeCache::CreatePrimitiveAndSmallConstantTypes() {
    338   // Note: this must have the same order as FillPrimitiveAndSmallConstantTypes.
    339 
    340   // It is acceptable to pass on the const char* in type to CreateInstance, as all calls below are
    341   // with compile-time constants that will have global lifetime. Use of the lambda ensures this
    342   // code cannot leak to other users.
    343   auto create_primitive_type_instance = [&](auto type) REQUIRES_SHARED(Locks::mutator_lock_) {
    344     using Type = typename decltype(type)::type;
    345     mirror::Class* klass = nullptr;
    346     // Try loading the class from linker.
    347     DCHECK(type.descriptor != nullptr);
    348     if (strlen(type.descriptor) > 0) {
    349       klass = art::Runtime::Current()->GetClassLinker()->FindSystemClass(Thread::Current(),
    350                                                                          type.descriptor);
    351       DCHECK(klass != nullptr);
    352     }
    353     const Type* entry = Type::CreateInstance(klass,
    354                                              type.descriptor,
    355                                              RegTypeCache::primitive_count_);
    356     RegTypeCache::primitive_count_++;
    357     return entry;
    358   };
    359   create_primitive_type_instance(TypeHelper<UndefinedType>(""));
    360   create_primitive_type_instance(TypeHelper<ConflictType>(""));
    361   create_primitive_type_instance(TypeHelper<NullType>(""));
    362   create_primitive_type_instance(TypeHelper<BooleanType>("Z"));
    363   create_primitive_type_instance(TypeHelper<ByteType>("B"));
    364   create_primitive_type_instance(TypeHelper<ShortType>("S"));
    365   create_primitive_type_instance(TypeHelper<CharType>("C"));
    366   create_primitive_type_instance(TypeHelper<IntegerType>("I"));
    367   create_primitive_type_instance(TypeHelper<LongLoType>("J"));
    368   create_primitive_type_instance(TypeHelper<LongHiType>("J"));
    369   create_primitive_type_instance(TypeHelper<FloatType>("F"));
    370   create_primitive_type_instance(TypeHelper<DoubleLoType>("D"));
    371   create_primitive_type_instance(TypeHelper<DoubleHiType>("D"));
    372 
    373   for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
    374     PreciseConstType* type = new PreciseConstType(value, primitive_count_);
    375     small_precise_constants_[value - kMinSmallConstant] = type;
    376     primitive_count_++;
    377   }
    378 }
    379 
    380 const RegType& RegTypeCache::FromUnresolvedMerge(const RegType& left,
    381                                                  const RegType& right,
    382                                                  MethodVerifier* verifier) {
    383   ArenaBitVector types(&allocator_,
    384                        kDefaultArenaBitVectorBytes * kBitsPerByte,  // Allocate at least 8 bytes.
    385                        true);                                       // Is expandable.
    386   const RegType* left_resolved;
    387   bool left_unresolved_is_array;
    388   if (left.IsUnresolvedMergedReference()) {
    389     const UnresolvedMergedType& left_merge = *down_cast<const UnresolvedMergedType*>(&left);
    390 
    391     types.Copy(&left_merge.GetUnresolvedTypes());
    392     left_resolved = &left_merge.GetResolvedPart();
    393     left_unresolved_is_array = left.IsArrayTypes();
    394   } else if (left.IsUnresolvedTypes()) {
    395     types.ClearAllBits();
    396     types.SetBit(left.GetId());
    397     left_resolved = &Zero();
    398     left_unresolved_is_array = left.IsArrayTypes();
    399   } else {
    400     types.ClearAllBits();
    401     left_resolved = &left;
    402     left_unresolved_is_array = false;
    403   }
    404 
    405   const RegType* right_resolved;
    406   bool right_unresolved_is_array;
    407   if (right.IsUnresolvedMergedReference()) {
    408     const UnresolvedMergedType& right_merge = *down_cast<const UnresolvedMergedType*>(&right);
    409 
    410     types.Union(&right_merge.GetUnresolvedTypes());
    411     right_resolved = &right_merge.GetResolvedPart();
    412     right_unresolved_is_array = right.IsArrayTypes();
    413   } else if (right.IsUnresolvedTypes()) {
    414     types.SetBit(right.GetId());
    415     right_resolved = &Zero();
    416     right_unresolved_is_array = right.IsArrayTypes();
    417   } else {
    418     right_resolved = &right;
    419     right_unresolved_is_array = false;
    420   }
    421 
    422   // Merge the resolved parts. Left and right might be equal, so use SafeMerge.
    423   const RegType& resolved_parts_merged = left_resolved->SafeMerge(*right_resolved, this, verifier);
    424   // If we get a conflict here, the merge result is a conflict, not an unresolved merge type.
    425   if (resolved_parts_merged.IsConflict()) {
    426     return Conflict();
    427   }
    428   if (resolved_parts_merged.IsJavaLangObject()) {
    429     return resolved_parts_merged;
    430   }
    431 
    432   bool resolved_merged_is_array = resolved_parts_merged.IsArrayTypes();
    433   if (left_unresolved_is_array || right_unresolved_is_array || resolved_merged_is_array) {
    434     // Arrays involved, see if we need to merge to Object.
    435 
    436     // Is the resolved part a primitive array?
    437     if (resolved_merged_is_array && !resolved_parts_merged.IsObjectArrayTypes()) {
    438       return JavaLangObject(false /* precise */);
    439     }
    440 
    441     // Is any part not an array (but exists)?
    442     if ((!left_unresolved_is_array && left_resolved != &left) ||
    443         (!right_unresolved_is_array && right_resolved != &right) ||
    444         !resolved_merged_is_array) {
    445       return JavaLangObject(false /* precise */);
    446     }
    447   }
    448 
    449   // Check if entry already exists.
    450   for (size_t i = primitive_count_; i < entries_.size(); i++) {
    451     const RegType* cur_entry = entries_[i];
    452     if (cur_entry->IsUnresolvedMergedReference()) {
    453       const UnresolvedMergedType* cmp_type = down_cast<const UnresolvedMergedType*>(cur_entry);
    454       const RegType& resolved_part = cmp_type->GetResolvedPart();
    455       const BitVector& unresolved_part = cmp_type->GetUnresolvedTypes();
    456       // Use SameBitsSet. "types" is expandable to allow merging in the components, but the
    457       // BitVector in the final RegType will be made non-expandable.
    458       if (&resolved_part == &resolved_parts_merged && types.SameBitsSet(&unresolved_part)) {
    459         return *cur_entry;
    460       }
    461     }
    462   }
    463   return AddEntry(new (&allocator_) UnresolvedMergedType(resolved_parts_merged,
    464                                                          types,
    465                                                          this,
    466                                                          entries_.size()));
    467 }
    468 
    469 const RegType& RegTypeCache::FromUnresolvedSuperClass(const RegType& child) {
    470   // Check if entry already exists.
    471   for (size_t i = primitive_count_; i < entries_.size(); i++) {
    472     const RegType* cur_entry = entries_[i];
    473     if (cur_entry->IsUnresolvedSuperClass()) {
    474       const UnresolvedSuperClass* tmp_entry =
    475           down_cast<const UnresolvedSuperClass*>(cur_entry);
    476       uint16_t unresolved_super_child_id =
    477           tmp_entry->GetUnresolvedSuperClassChildId();
    478       if (unresolved_super_child_id == child.GetId()) {
    479         return *cur_entry;
    480       }
    481     }
    482   }
    483   return AddEntry(new (&allocator_) UnresolvedSuperClass(child.GetId(), this, entries_.size()));
    484 }
    485 
    486 const UninitializedType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) {
    487   UninitializedType* entry = nullptr;
    488   const StringPiece& descriptor(type.GetDescriptor());
    489   if (type.IsUnresolvedTypes()) {
    490     for (size_t i = primitive_count_; i < entries_.size(); i++) {
    491       const RegType* cur_entry = entries_[i];
    492       if (cur_entry->IsUnresolvedAndUninitializedReference() &&
    493           down_cast<const UnresolvedUninitializedRefType*>(cur_entry)->GetAllocationPc()
    494               == allocation_pc &&
    495           (cur_entry->GetDescriptor() == descriptor)) {
    496         return *down_cast<const UnresolvedUninitializedRefType*>(cur_entry);
    497       }
    498     }
    499     entry = new (&allocator_) UnresolvedUninitializedRefType(descriptor,
    500                                                              allocation_pc,
    501                                                              entries_.size());
    502   } else {
    503     mirror::Class* klass = type.GetClass();
    504     for (size_t i = primitive_count_; i < entries_.size(); i++) {
    505       const RegType* cur_entry = entries_[i];
    506       if (cur_entry->IsUninitializedReference() &&
    507           down_cast<const UninitializedReferenceType*>(cur_entry)
    508               ->GetAllocationPc() == allocation_pc &&
    509           cur_entry->GetClass() == klass) {
    510         return *down_cast<const UninitializedReferenceType*>(cur_entry);
    511       }
    512     }
    513     entry = new (&allocator_) UninitializedReferenceType(klass,
    514                                                          descriptor,
    515                                                          allocation_pc,
    516                                                          entries_.size());
    517   }
    518   return AddEntry(entry);
    519 }
    520 
    521 const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) {
    522   RegType* entry;
    523 
    524   if (uninit_type.IsUnresolvedTypes()) {
    525     const StringPiece& descriptor(uninit_type.GetDescriptor());
    526     for (size_t i = primitive_count_; i < entries_.size(); i++) {
    527       const RegType* cur_entry = entries_[i];
    528       if (cur_entry->IsUnresolvedReference() &&
    529           cur_entry->GetDescriptor() == descriptor) {
    530         return *cur_entry;
    531       }
    532     }
    533     entry = new (&allocator_) UnresolvedReferenceType(descriptor, entries_.size());
    534   } else {
    535     mirror::Class* klass = uninit_type.GetClass();
    536     if (uninit_type.IsUninitializedThisReference() && !klass->IsFinal()) {
    537       // For uninitialized "this reference" look for reference types that are not precise.
    538       for (size_t i = primitive_count_; i < entries_.size(); i++) {
    539         const RegType* cur_entry = entries_[i];
    540         if (cur_entry->IsReference() && cur_entry->GetClass() == klass) {
    541           return *cur_entry;
    542         }
    543       }
    544       entry = new (&allocator_) ReferenceType(klass, "", entries_.size());
    545     } else if (!klass->IsPrimitive()) {
    546       // We're uninitialized because of allocation, look or create a precise type as allocations
    547       // may only create objects of that type.
    548       // Note: we do not check whether the given klass is actually instantiable (besides being
    549       //       primitive), that is, we allow interfaces and abstract classes here. The reasoning is
    550       //       twofold:
    551       //       1) The "new-instance" instruction to generate the uninitialized type will already
    552       //          queue an instantiation error. This is a soft error that must be thrown at runtime,
    553       //          and could potentially change if the class is resolved differently at runtime.
    554       //       2) Checking whether the klass is instantiable and using conflict may produce a hard
    555       //          error when the value is used, which leads to a VerifyError, which is not the
    556       //          correct semantics.
    557       for (size_t i = primitive_count_; i < entries_.size(); i++) {
    558         const RegType* cur_entry = entries_[i];
    559         if (cur_entry->IsPreciseReference() && cur_entry->GetClass() == klass) {
    560           return *cur_entry;
    561         }
    562       }
    563       entry = new (&allocator_) PreciseReferenceType(klass,
    564                                                      uninit_type.GetDescriptor(),
    565                                                      entries_.size());
    566     } else {
    567       return Conflict();
    568     }
    569   }
    570   return AddEntry(entry);
    571 }
    572 
    573 const UninitializedType& RegTypeCache::UninitializedThisArgument(const RegType& type) {
    574   UninitializedType* entry;
    575   const StringPiece& descriptor(type.GetDescriptor());
    576   if (type.IsUnresolvedTypes()) {
    577     for (size_t i = primitive_count_; i < entries_.size(); i++) {
    578       const RegType* cur_entry = entries_[i];
    579       if (cur_entry->IsUnresolvedAndUninitializedThisReference() &&
    580           cur_entry->GetDescriptor() == descriptor) {
    581         return *down_cast<const UninitializedType*>(cur_entry);
    582       }
    583     }
    584     entry = new (&allocator_) UnresolvedUninitializedThisRefType(descriptor, entries_.size());
    585   } else {
    586     mirror::Class* klass = type.GetClass();
    587     for (size_t i = primitive_count_; i < entries_.size(); i++) {
    588       const RegType* cur_entry = entries_[i];
    589       if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) {
    590         return *down_cast<const UninitializedType*>(cur_entry);
    591       }
    592     }
    593     entry = new (&allocator_) UninitializedThisReferenceType(klass, descriptor, entries_.size());
    594   }
    595   return AddEntry(entry);
    596 }
    597 
    598 const ConstantType& RegTypeCache::FromCat1NonSmallConstant(int32_t value, bool precise) {
    599   for (size_t i = primitive_count_; i < entries_.size(); i++) {
    600     const RegType* cur_entry = entries_[i];
    601     if (cur_entry->klass_.IsNull() && cur_entry->IsConstant() &&
    602         cur_entry->IsPreciseConstant() == precise &&
    603         (down_cast<const ConstantType*>(cur_entry))->ConstantValue() == value) {
    604       return *down_cast<const ConstantType*>(cur_entry);
    605     }
    606   }
    607   ConstantType* entry;
    608   if (precise) {
    609     entry = new (&allocator_) PreciseConstType(value, entries_.size());
    610   } else {
    611     entry = new (&allocator_) ImpreciseConstType(value, entries_.size());
    612   }
    613   return AddEntry(entry);
    614 }
    615 
    616 const ConstantType& RegTypeCache::FromCat2ConstLo(int32_t value, bool precise) {
    617   for (size_t i = primitive_count_; i < entries_.size(); i++) {
    618     const RegType* cur_entry = entries_[i];
    619     if (cur_entry->IsConstantLo() && (cur_entry->IsPrecise() == precise) &&
    620         (down_cast<const ConstantType*>(cur_entry))->ConstantValueLo() == value) {
    621       return *down_cast<const ConstantType*>(cur_entry);
    622     }
    623   }
    624   ConstantType* entry;
    625   if (precise) {
    626     entry = new (&allocator_) PreciseConstLoType(value, entries_.size());
    627   } else {
    628     entry = new (&allocator_) ImpreciseConstLoType(value, entries_.size());
    629   }
    630   return AddEntry(entry);
    631 }
    632 
    633 const ConstantType& RegTypeCache::FromCat2ConstHi(int32_t value, bool precise) {
    634   for (size_t i = primitive_count_; i < entries_.size(); i++) {
    635     const RegType* cur_entry = entries_[i];
    636     if (cur_entry->IsConstantHi() && (cur_entry->IsPrecise() == precise) &&
    637         (down_cast<const ConstantType*>(cur_entry))->ConstantValueHi() == value) {
    638       return *down_cast<const ConstantType*>(cur_entry);
    639     }
    640   }
    641   ConstantType* entry;
    642   if (precise) {
    643     entry = new (&allocator_) PreciseConstHiType(value, entries_.size());
    644   } else {
    645     entry = new (&allocator_) ImpreciseConstHiType(value, entries_.size());
    646   }
    647   return AddEntry(entry);
    648 }
    649 
    650 const RegType& RegTypeCache::GetComponentType(const RegType& array, mirror::ClassLoader* loader) {
    651   if (!array.IsArrayTypes()) {
    652     return Conflict();
    653   } else if (array.IsUnresolvedTypes()) {
    654     DCHECK(!array.IsUnresolvedMergedReference());  // Caller must make sure not to ask for this.
    655     const std::string descriptor(array.GetDescriptor().as_string());
    656     return FromDescriptor(loader, descriptor.c_str() + 1, false);
    657   } else {
    658     mirror::Class* klass = array.GetClass()->GetComponentType();
    659     std::string temp;
    660     const char* descriptor = klass->GetDescriptor(&temp);
    661     if (klass->IsErroneous()) {
    662       // Arrays may have erroneous component types, use unresolved in that case.
    663       // We assume that the primitive classes are not erroneous, so we know it is a
    664       // reference type.
    665       return FromDescriptor(loader, descriptor, false);
    666     } else {
    667       return FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
    668     }
    669   }
    670 }
    671 
    672 void RegTypeCache::Dump(std::ostream& os) {
    673   for (size_t i = 0; i < entries_.size(); i++) {
    674     const RegType* cur_entry = entries_[i];
    675     if (cur_entry != nullptr) {
    676       os << i << ": " << cur_entry->Dump() << "\n";
    677     }
    678   }
    679 }
    680 
    681 void RegTypeCache::VisitStaticRoots(RootVisitor* visitor) {
    682   // Visit the primitive types, this is required since if there are no active verifiers they wont
    683   // be in the entries array, and therefore not visited as roots.
    684   if (primitive_initialized_) {
    685     RootInfo ri(kRootUnknown);
    686     UndefinedType::GetInstance()->VisitRoots(visitor, ri);
    687     ConflictType::GetInstance()->VisitRoots(visitor, ri);
    688     BooleanType::GetInstance()->VisitRoots(visitor, ri);
    689     ByteType::GetInstance()->VisitRoots(visitor, ri);
    690     ShortType::GetInstance()->VisitRoots(visitor, ri);
    691     CharType::GetInstance()->VisitRoots(visitor, ri);
    692     IntegerType::GetInstance()->VisitRoots(visitor, ri);
    693     LongLoType::GetInstance()->VisitRoots(visitor, ri);
    694     LongHiType::GetInstance()->VisitRoots(visitor, ri);
    695     FloatType::GetInstance()->VisitRoots(visitor, ri);
    696     DoubleLoType::GetInstance()->VisitRoots(visitor, ri);
    697     DoubleHiType::GetInstance()->VisitRoots(visitor, ri);
    698     for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
    699       small_precise_constants_[value - kMinSmallConstant]->VisitRoots(visitor, ri);
    700     }
    701   }
    702 }
    703 
    704 void RegTypeCache::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
    705   // Exclude the static roots that are visited by VisitStaticRoots().
    706   for (size_t i = primitive_count_; i < entries_.size(); ++i) {
    707     entries_[i]->VisitRoots(visitor, root_info);
    708   }
    709   for (auto& pair : klass_entries_) {
    710     GcRoot<mirror::Class>& root = pair.first;
    711     root.VisitRoot(visitor, root_info);
    712   }
    713 }
    714 
    715 }  // namespace verifier
    716 }  // namespace art
    717