Home | History | Annotate | Download | only in bionic
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <errno.h>
     30 #include <pthread.h>
     31 #include <stdatomic.h>
     32 
     33 #include "private/bionic_defs.h"
     34 #include "private/bionic_tls.h"
     35 #include "pthread_internal.h"
     36 
     37 typedef void (*key_destructor_t)(void*);
     38 
     39 #define SEQ_KEY_IN_USE_BIT     0
     40 
     41 #define SEQ_INCREMENT_STEP  (1 << SEQ_KEY_IN_USE_BIT)
     42 
     43 // pthread_key_internal_t records the use of each pthread key slot:
     44 //   seq records the state of the slot.
     45 //      bit 0 is 1 when the key is in use, 0 when it is unused. Each time we create or delete the
     46 //      pthread key in the slot, we increse the seq by 1 (which inverts bit 0). The reason to use
     47 //      a sequence number instead of a boolean value here is that when the key slot is deleted and
     48 //      reused for a new key, pthread_getspecific will not return stale data.
     49 //   key_destructor records the destructor called at thread exit.
     50 struct pthread_key_internal_t {
     51   atomic_uintptr_t seq;
     52   atomic_uintptr_t key_destructor;
     53 };
     54 
     55 static pthread_key_internal_t key_map[BIONIC_PTHREAD_KEY_COUNT];
     56 
     57 static inline bool SeqOfKeyInUse(uintptr_t seq) {
     58   return seq & (1 << SEQ_KEY_IN_USE_BIT);
     59 }
     60 
     61 #define KEY_VALID_FLAG (1 << 31)
     62 
     63 static_assert(sizeof(pthread_key_t) == sizeof(int) && static_cast<pthread_key_t>(-1) < 0,
     64               "pthread_key_t should be typedef to int");
     65 
     66 static inline bool KeyInValidRange(pthread_key_t key) {
     67   // key < 0 means bit 31 is set.
     68   // Then key < (2^31 | BIONIC_PTHREAD_KEY_COUNT) means the index part of key < BIONIC_PTHREAD_KEY_COUNT.
     69   return (key < (KEY_VALID_FLAG | BIONIC_PTHREAD_KEY_COUNT));
     70 }
     71 
     72 // Called from pthread_exit() to remove all pthread keys. This must call the destructor of
     73 // all keys that have a non-NULL data value and a non-NULL destructor.
     74 __LIBC_HIDDEN__ void pthread_key_clean_all() {
     75   // Because destructors can do funky things like deleting/creating other keys,
     76   // we need to implement this in a loop.
     77   pthread_key_data_t* key_data = __get_thread()->key_data;
     78   for (size_t rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
     79     size_t called_destructor_count = 0;
     80     for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
     81       uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
     82       if (SeqOfKeyInUse(seq) && seq == key_data[i].seq && key_data[i].data != NULL) {
     83         // Other threads may be calling pthread_key_delete/pthread_key_create while current thread
     84         // is exiting. So we need to ensure we read the right key_destructor.
     85         // We can rely on a user-established happens-before relationship between the creation and
     86         // use of pthread key to ensure that we're not getting an earlier key_destructor.
     87         // To avoid using the key_destructor of the newly created key in the same slot, we need to
     88         // recheck the sequence number after reading key_destructor. As a result, we either see the
     89         // right key_destructor, or the sequence number must have changed when we reread it below.
     90         key_destructor_t key_destructor = reinterpret_cast<key_destructor_t>(
     91           atomic_load_explicit(&key_map[i].key_destructor, memory_order_relaxed));
     92         if (key_destructor == NULL) {
     93           continue;
     94         }
     95         atomic_thread_fence(memory_order_acquire);
     96         if (atomic_load_explicit(&key_map[i].seq, memory_order_relaxed) != seq) {
     97            continue;
     98         }
     99 
    100         // We need to clear the key data now, this will prevent the destructor (or a later one)
    101         // from seeing the old value if it calls pthread_getspecific().
    102         // We don't do this if 'key_destructor == NULL' just in case another destructor
    103         // function is responsible for manually releasing the corresponding data.
    104         void* data = key_data[i].data;
    105         key_data[i].data = NULL;
    106 
    107         (*key_destructor)(data);
    108         ++called_destructor_count;
    109       }
    110     }
    111 
    112     // If we didn't call any destructors, there is no need to check the pthread keys again.
    113     if (called_destructor_count == 0) {
    114       break;
    115     }
    116   }
    117 }
    118 
    119 __BIONIC_WEAK_FOR_NATIVE_BRIDGE
    120 int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
    121   for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
    122     uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
    123     while (!SeqOfKeyInUse(seq)) {
    124       if (atomic_compare_exchange_weak(&key_map[i].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
    125         atomic_store(&key_map[i].key_destructor, reinterpret_cast<uintptr_t>(key_destructor));
    126         *key = i | KEY_VALID_FLAG;
    127         return 0;
    128       }
    129     }
    130   }
    131   return EAGAIN;
    132 }
    133 
    134 // Deletes a pthread_key_t. note that the standard mandates that this does
    135 // not call the destructors for non-NULL key values. Instead, it is the
    136 // responsibility of the caller to properly dispose of the corresponding data
    137 // and resources, using any means it finds suitable.
    138 __BIONIC_WEAK_FOR_NATIVE_BRIDGE
    139 int pthread_key_delete(pthread_key_t key) {
    140   if (__predict_false(!KeyInValidRange(key))) {
    141     return EINVAL;
    142   }
    143   key &= ~KEY_VALID_FLAG;
    144   // Increase seq to invalidate values in all threads.
    145   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
    146   if (SeqOfKeyInUse(seq)) {
    147     if (atomic_compare_exchange_strong(&key_map[key].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
    148       return 0;
    149     }
    150   }
    151   return EINVAL;
    152 }
    153 
    154 __BIONIC_WEAK_FOR_NATIVE_BRIDGE
    155 void* pthread_getspecific(pthread_key_t key) {
    156   if (__predict_false(!KeyInValidRange(key))) {
    157     return NULL;
    158   }
    159   key &= ~KEY_VALID_FLAG;
    160   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
    161   pthread_key_data_t* data = &(__get_thread()->key_data[key]);
    162   // It is user's responsibility to synchornize between the creation and use of pthread keys,
    163   // so we use memory_order_relaxed when checking the sequence number.
    164   if (__predict_true(SeqOfKeyInUse(seq) && data->seq == seq)) {
    165     return data->data;
    166   }
    167   // We arrive here when current thread holds the seq of an deleted pthread key. So the
    168   // data is for the deleted pthread key, and should be cleared.
    169   data->data = NULL;
    170   return NULL;
    171 }
    172 
    173 __BIONIC_WEAK_FOR_NATIVE_BRIDGE
    174 int pthread_setspecific(pthread_key_t key, const void* ptr) {
    175   if (__predict_false(!KeyInValidRange(key))) {
    176     return EINVAL;
    177   }
    178   key &= ~KEY_VALID_FLAG;
    179   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
    180   if (__predict_true(SeqOfKeyInUse(seq))) {
    181     pthread_key_data_t* data = &(__get_thread()->key_data[key]);
    182     data->seq = seq;
    183     data->data = const_cast<void*>(ptr);
    184     return 0;
    185   }
    186   return EINVAL;
    187 }
    188