Home | History | Annotate | Download | only in bionic
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <pthread.h>
     30 
     31 #include <errno.h>
     32 #include <limits.h>
     33 #include <stdatomic.h>
     34 #include <stdlib.h>
     35 #include <string.h>
     36 #include <sys/cdefs.h>
     37 #include <sys/mman.h>
     38 #include <unistd.h>
     39 
     40 #include "pthread_internal.h"
     41 
     42 #include "private/bionic_constants.h"
     43 #include "private/bionic_fortify.h"
     44 #include "private/bionic_futex.h"
     45 #include "private/bionic_sdk_version.h"
     46 #include "private/bionic_systrace.h"
     47 #include "private/bionic_time_conversions.h"
     48 #include "private/bionic_tls.h"
     49 
     50 /* a mutex attribute holds the following fields
     51  *
     52  * bits:     name       description
     53  * 0-3       type       type of mutex
     54  * 4         shared     process-shared flag
     55  * 5         protocol   whether it is a priority inherit mutex.
     56  */
     57 #define  MUTEXATTR_TYPE_MASK   0x000f
     58 #define  MUTEXATTR_SHARED_MASK 0x0010
     59 #define MUTEXATTR_PROTOCOL_MASK 0x0020
     60 
     61 #define MUTEXATTR_PROTOCOL_SHIFT 5
     62 
     63 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
     64 {
     65     *attr = PTHREAD_MUTEX_DEFAULT;
     66     return 0;
     67 }
     68 
     69 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
     70 {
     71     *attr = -1;
     72     return 0;
     73 }
     74 
     75 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
     76 {
     77     int type = (*attr & MUTEXATTR_TYPE_MASK);
     78 
     79     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
     80         return EINVAL;
     81     }
     82 
     83     *type_p = type;
     84     return 0;
     85 }
     86 
     87 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
     88 {
     89     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
     90         return EINVAL;
     91     }
     92 
     93     *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
     94     return 0;
     95 }
     96 
     97 /* process-shared mutexes are not supported at the moment */
     98 
     99 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
    100 {
    101     switch (pshared) {
    102     case PTHREAD_PROCESS_PRIVATE:
    103         *attr &= ~MUTEXATTR_SHARED_MASK;
    104         return 0;
    105 
    106     case PTHREAD_PROCESS_SHARED:
    107         /* our current implementation of pthread actually supports shared
    108          * mutexes but won't cleanup if a process dies with the mutex held.
    109          * Nevertheless, it's better than nothing. Shared mutexes are used
    110          * by surfaceflinger and audioflinger.
    111          */
    112         *attr |= MUTEXATTR_SHARED_MASK;
    113         return 0;
    114     }
    115     return EINVAL;
    116 }
    117 
    118 int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
    119     *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
    120     return 0;
    121 }
    122 
    123 int pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int protocol) {
    124     if (protocol != PTHREAD_PRIO_NONE && protocol != PTHREAD_PRIO_INHERIT) {
    125         return EINVAL;
    126     }
    127     *attr = (*attr & ~MUTEXATTR_PROTOCOL_MASK) | (protocol << MUTEXATTR_PROTOCOL_SHIFT);
    128     return 0;
    129 }
    130 
    131 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t* attr, int* protocol) {
    132     *protocol = (*attr & MUTEXATTR_PROTOCOL_MASK) >> MUTEXATTR_PROTOCOL_SHIFT;
    133     return 0;
    134 }
    135 
    136 // Priority Inheritance mutex implementation
    137 struct PIMutex {
    138   // mutex type, can be 0 (normal), 1 (recursive), 2 (errorcheck), constant during lifetime
    139   uint8_t type;
    140   // process-shared flag, constant during lifetime
    141   bool shared;
    142   // <number of times a thread holding a recursive PI mutex> - 1
    143   uint16_t counter;
    144   // owner_tid is read/written by both userspace code and kernel code. It includes three fields:
    145   // FUTEX_WAITERS, FUTEX_OWNER_DIED and FUTEX_TID_MASK.
    146   atomic_int owner_tid;
    147 };
    148 
    149 static inline __always_inline int PIMutexTryLock(PIMutex& mutex) {
    150     pid_t tid = __get_thread()->tid;
    151     // Handle common case first.
    152     int old_owner = 0;
    153     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
    154                                                                &old_owner, tid,
    155                                                                memory_order_acquire,
    156                                                                memory_order_relaxed))) {
    157         return 0;
    158     }
    159     if (tid == (old_owner & FUTEX_TID_MASK)) {
    160         // We already own this mutex.
    161         if (mutex.type == PTHREAD_MUTEX_NORMAL) {
    162             return EBUSY;
    163         }
    164         if (mutex.type == PTHREAD_MUTEX_ERRORCHECK) {
    165             return EDEADLK;
    166         }
    167         if (mutex.counter == 0xffff) {
    168             return EAGAIN;
    169         }
    170         mutex.counter++;
    171         return 0;
    172     }
    173     return EBUSY;
    174 }
    175 
    176 // Inlining this function in pthread_mutex_lock() adds the cost of stack frame instructions on
    177 // ARM/ARM64, which increases at most 20 percent overhead. So make it noinline.
    178 static int  __attribute__((noinline)) PIMutexTimedLock(PIMutex& mutex,
    179                                                        bool use_realtime_clock,
    180                                                        const timespec* abs_timeout) {
    181     int ret = PIMutexTryLock(mutex);
    182     if (__predict_true(ret == 0)) {
    183         return 0;
    184     }
    185     if (ret == EBUSY) {
    186         ScopedTrace trace("Contending for pthread mutex");
    187         ret = -__futex_pi_lock_ex(&mutex.owner_tid, mutex.shared, use_realtime_clock, abs_timeout);
    188     }
    189     return ret;
    190 }
    191 
    192 static int PIMutexUnlock(PIMutex& mutex) {
    193     pid_t tid = __get_thread()->tid;
    194     int old_owner = tid;
    195     // Handle common case first.
    196     if (__predict_true(mutex.type == PTHREAD_MUTEX_NORMAL)) {
    197         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
    198                                                                    &old_owner, 0,
    199                                                                    memory_order_release,
    200                                                                    memory_order_relaxed))) {
    201             return 0;
    202         }
    203     }
    204 
    205     if (tid != (old_owner & FUTEX_TID_MASK)) {
    206         // The mutex can only be unlocked by the thread who owns it.
    207         return EPERM;
    208     }
    209     if (mutex.type == PTHREAD_MUTEX_RECURSIVE) {
    210         if (mutex.counter != 0u) {
    211             --mutex.counter;
    212             return 0;
    213         }
    214     }
    215     if (old_owner == tid) {
    216         // No thread is waiting.
    217         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
    218                                                                    &old_owner, 0,
    219                                                                    memory_order_release,
    220                                                                    memory_order_relaxed))) {
    221             return 0;
    222         }
    223     }
    224     return -__futex_pi_unlock(&mutex.owner_tid, mutex.shared);
    225 }
    226 
    227 static int PIMutexDestroy(PIMutex& mutex) {
    228     // The mutex should be in unlocked state (owner_tid == 0) when destroyed.
    229     // Store 0xffffffff to make the mutex unusable.
    230     int old_owner = 0;
    231     if (atomic_compare_exchange_strong_explicit(&mutex.owner_tid, &old_owner, 0xffffffff,
    232                                                 memory_order_relaxed, memory_order_relaxed)) {
    233         return 0;
    234     }
    235     return EBUSY;
    236 }
    237 
    238 #if !defined(__LP64__)
    239 
    240 namespace PIMutexAllocator {
    241 // pthread_mutex_t has only 4 bytes in 32-bit programs, which are not enough to hold PIMutex.
    242 // So we use malloc to allocate PIMutexes and use 16-bit of pthread_mutex_t as indexes to find
    243 // the allocated PIMutexes. This allows at most 65536 PI mutexes.
    244 // When calling operations like pthread_mutex_lock/unlock, the 16-bit index is mapped to the
    245 // corresponding PIMutex. To make the map operation fast, we use a lockless mapping method:
    246 //   Once a PIMutex is allocated, all the data used to map index to the PIMutex isn't changed until
    247 //   it is destroyed.
    248 // Below are the data structures:
    249 //   // struct Node contains a PIMutex.
    250 //   typedef Node NodeArray[256];
    251 //   typedef NodeArray* NodeArrayP;
    252 //   NodeArrayP nodes[256];
    253 //
    254 // A 16-bit index is mapped to Node as below:
    255 //   (*nodes[index >> 8])[index & 0xff]
    256 //
    257 // Also use a free list to allow O(1) finding recycled PIMutexes.
    258 
    259 union Node {
    260     PIMutex mutex;
    261     int next_free_id;  // If not -1, refer to the next node in the free PIMutex list.
    262 };
    263 typedef Node NodeArray[256];
    264 typedef NodeArray* NodeArrayP;
    265 
    266 // lock_ protects below items.
    267 static Lock lock;
    268 static NodeArrayP* nodes;
    269 static int next_to_alloc_id;
    270 static int first_free_id = -1;  // If not -1, refer to the first node in the free PIMutex list.
    271 
    272 static inline __always_inline Node& IdToNode(int id) {
    273     return (*nodes[id >> 8])[id & 0xff];
    274 }
    275 
    276 static inline __always_inline PIMutex& IdToPIMutex(int id) {
    277     return IdToNode(id).mutex;
    278 }
    279 
    280 static int AllocIdLocked() {
    281     if (first_free_id != -1) {
    282         int result = first_free_id;
    283         first_free_id = IdToNode(result).next_free_id;
    284         return result;
    285     }
    286     if (next_to_alloc_id >= 0x10000) {
    287         return -1;
    288     }
    289     int array_pos = next_to_alloc_id >> 8;
    290     int node_pos = next_to_alloc_id & 0xff;
    291     if (node_pos == 0) {
    292         if (array_pos == 0) {
    293             nodes = static_cast<NodeArray**>(calloc(256, sizeof(NodeArray*)));
    294             if (nodes == nullptr) {
    295                 return -1;
    296             }
    297         }
    298         nodes[array_pos] = static_cast<NodeArray*>(malloc(sizeof(NodeArray)));
    299         if (nodes[array_pos] == nullptr) {
    300             return -1;
    301         }
    302     }
    303     return next_to_alloc_id++;
    304 }
    305 
    306 // If succeed, return an id referring to a PIMutex, otherwise return -1.
    307 // A valid id is in range [0, 0xffff].
    308 static int AllocId() {
    309     lock.lock();
    310     int result = AllocIdLocked();
    311     lock.unlock();
    312     if (result != -1) {
    313         memset(&IdToPIMutex(result), 0, sizeof(PIMutex));
    314     }
    315     return result;
    316 }
    317 
    318 static void FreeId(int id) {
    319     lock.lock();
    320     IdToNode(id).next_free_id = first_free_id;
    321     first_free_id = id;
    322     lock.unlock();
    323 }
    324 
    325 }  // namespace PIMutexAllocator
    326 
    327 #endif  // !defined(__LP64__)
    328 
    329 
    330 /* Convenience macro, creates a mask of 'bits' bits that starts from
    331  * the 'shift'-th least significant bit in a 32-bit word.
    332  *
    333  * Examples: FIELD_MASK(0,4)  -> 0xf
    334  *           FIELD_MASK(16,9) -> 0x1ff0000
    335  */
    336 #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
    337 
    338 /* This one is used to create a bit pattern from a given field value */
    339 #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
    340 
    341 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
    342 #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
    343 
    344 /* Convenience macros.
    345  *
    346  * These are used to form or modify the bit pattern of a given mutex value
    347  */
    348 
    349 /* Mutex state:
    350  *
    351  * 0 for unlocked
    352  * 1 for locked, no waiters
    353  * 2 for locked, maybe waiters
    354  */
    355 #define  MUTEX_STATE_SHIFT      0
    356 #define  MUTEX_STATE_LEN        2
    357 
    358 #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    359 #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    360 #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
    361 
    362 #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */
    363 #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
    364 #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
    365 
    366 #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
    367 #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
    368 #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
    369 
    370 // Return true iff the mutex is unlocked.
    371 #define MUTEX_STATE_BITS_IS_UNLOCKED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_UNLOCKED)
    372 
    373 // Return true iff the mutex is locked with no waiters.
    374 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
    375 
    376 // return true iff the mutex is locked with maybe waiters.
    377 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
    378 
    379 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
    380 #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
    381 
    382 /* Mutex counter:
    383  *
    384  * We need to check for overflow before incrementing, and we also need to
    385  * detect when the counter is 0
    386  */
    387 #define  MUTEX_COUNTER_SHIFT         2
    388 #define  MUTEX_COUNTER_LEN           11
    389 #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
    390 
    391 #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
    392 #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
    393 
    394 /* Used to increment the counter directly after overflow has been checked */
    395 #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
    396 
    397 /* Mutex shared bit flag
    398  *
    399  * This flag is set to indicate that the mutex is shared among processes.
    400  * This changes the futex opcode we use for futex wait/wake operations
    401  * (non-shared operations are much faster).
    402  */
    403 #define  MUTEX_SHARED_SHIFT    13
    404 #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
    405 
    406 /* Mutex type:
    407  * We support normal, recursive and errorcheck mutexes.
    408  */
    409 #define  MUTEX_TYPE_SHIFT      14
    410 #define  MUTEX_TYPE_LEN        2
    411 #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
    412 
    413 #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
    414 
    415 #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL)
    416 #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE)
    417 #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK)
    418 // Use a special mutex type to mark priority inheritance mutexes.
    419 #define  PI_MUTEX_STATE     MUTEX_TYPE_TO_BITS(3)
    420 
    421 // For a PI mutex, it includes below fields:
    422 //   Atomic(uint16_t) state;
    423 //   PIMutex pi_mutex;  // uint16_t pi_mutex_id in 32-bit programs
    424 //
    425 //   state holds the following fields:
    426 //
    427 //   bits:   name    description
    428 //   15-14   type    mutex type, should be 3
    429 //   13-0    padding should be 0
    430 //
    431 //   pi_mutex holds the state of a PI mutex.
    432 //   pi_mutex_id holds an integer to find the state of a PI mutex.
    433 //
    434 // For a Non-PI mutex, it includes below fields:
    435 //   Atomic(uint16_t) state;
    436 //   atomic_int owner_tid;  // Atomic(uint16_t) in 32-bit programs
    437 //
    438 //   state holds the following fields:
    439 //
    440 //   bits:     name     description
    441 //   15-14     type     mutex type, can be 0 (normal), 1 (recursive), 2 (errorcheck)
    442 //   13        shared   process-shared flag
    443 //   12-2      counter  <number of times a thread holding a recursive Non-PI mutex> - 1
    444 //   1-0       state    lock state (0, 1 or 2)
    445 //
    446 //   bits 15-13 are constant during the lifetime of the mutex.
    447 //
    448 //   owner_tid is used only in recursive and errorcheck Non-PI mutexes to hold the mutex owner
    449 //   thread id.
    450 //
    451 // PI mutexes and Non-PI mutexes are distinguished by checking type field in state.
    452 #if defined(__LP64__)
    453 struct pthread_mutex_internal_t {
    454     _Atomic(uint16_t) state;
    455     uint16_t __pad;
    456     union {
    457         atomic_int owner_tid;
    458         PIMutex pi_mutex;
    459     };
    460     char __reserved[28];
    461 
    462     PIMutex& ToPIMutex() {
    463         return pi_mutex;
    464     }
    465 
    466     void FreePIMutex() {
    467     }
    468 } __attribute__((aligned(4)));
    469 
    470 #else
    471 struct pthread_mutex_internal_t {
    472     _Atomic(uint16_t) state;
    473     union {
    474         _Atomic(uint16_t) owner_tid;
    475         uint16_t pi_mutex_id;
    476     };
    477 
    478     PIMutex& ToPIMutex() {
    479         return PIMutexAllocator::IdToPIMutex(pi_mutex_id);
    480     }
    481 
    482     void FreePIMutex() {
    483         PIMutexAllocator::FreeId(pi_mutex_id);
    484     }
    485 } __attribute__((aligned(4)));
    486 #endif
    487 
    488 static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t),
    489               "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation.");
    490 
    491 // For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment
    492 // than 4-byte alignment.
    493 static_assert(alignof(pthread_mutex_t) == 4,
    494               "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t.");
    495 
    496 static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) {
    497   return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface);
    498 }
    499 
    500 int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) {
    501     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
    502 
    503     memset(mutex, 0, sizeof(pthread_mutex_internal_t));
    504 
    505     if (__predict_true(attr == NULL)) {
    506         atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL);
    507         return 0;
    508     }
    509 
    510     uint16_t state = 0;
    511     if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
    512         state |= MUTEX_SHARED_MASK;
    513     }
    514 
    515     switch (*attr & MUTEXATTR_TYPE_MASK) {
    516     case PTHREAD_MUTEX_NORMAL:
    517       state |= MUTEX_TYPE_BITS_NORMAL;
    518       break;
    519     case PTHREAD_MUTEX_RECURSIVE:
    520       state |= MUTEX_TYPE_BITS_RECURSIVE;
    521       break;
    522     case PTHREAD_MUTEX_ERRORCHECK:
    523       state |= MUTEX_TYPE_BITS_ERRORCHECK;
    524       break;
    525     default:
    526         return EINVAL;
    527     }
    528 
    529     if (((*attr & MUTEXATTR_PROTOCOL_MASK) >> MUTEXATTR_PROTOCOL_SHIFT) == PTHREAD_PRIO_INHERIT) {
    530 #if !defined(__LP64__)
    531         if (state & MUTEX_SHARED_MASK) {
    532             return EINVAL;
    533         }
    534         int id = PIMutexAllocator::AllocId();
    535         if (id == -1) {
    536             return ENOMEM;
    537         }
    538         mutex->pi_mutex_id = id;
    539 #endif
    540         atomic_init(&mutex->state, PI_MUTEX_STATE);
    541         PIMutex& pi_mutex = mutex->ToPIMutex();
    542         pi_mutex.type = *attr & MUTEXATTR_TYPE_MASK;
    543         pi_mutex.shared = (*attr & MUTEXATTR_SHARED_MASK) != 0;
    544     } else {
    545         atomic_init(&mutex->state, state);
    546         atomic_init(&mutex->owner_tid, 0);
    547     }
    548     return 0;
    549 }
    550 
    551 // namespace for Non-PI mutex routines.
    552 namespace NonPI {
    553 
    554 static inline __always_inline int NormalMutexTryLock(pthread_mutex_internal_t* mutex,
    555                                                      uint16_t shared) {
    556     const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
    557     const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    558 
    559     uint16_t old_state = unlocked;
    560     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
    561                          locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
    562         return 0;
    563     }
    564     return EBUSY;
    565 }
    566 
    567 /*
    568  * Lock a normal Non-PI mutex.
    569  *
    570  * As noted above, there are three states:
    571  *   0 (unlocked, no contention)
    572  *   1 (locked, no contention)
    573  *   2 (locked, contention)
    574  *
    575  * Non-recursive mutexes don't use the thread-id or counter fields, and the
    576  * "type" value is zero, so the only bits that will be set are the ones in
    577  * the lock state field.
    578  */
    579 static inline __always_inline int NormalMutexLock(pthread_mutex_internal_t* mutex,
    580                                                   uint16_t shared,
    581                                                   bool use_realtime_clock,
    582                                                   const timespec* abs_timeout_or_null) {
    583     if (__predict_true(NormalMutexTryLock(mutex, shared) == 0)) {
    584         return 0;
    585     }
    586     int result = check_timespec(abs_timeout_or_null, true);
    587     if (result != 0) {
    588         return result;
    589     }
    590 
    591     ScopedTrace trace("Contending for pthread mutex");
    592 
    593     const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
    594     const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    595 
    596     // We want to go to sleep until the mutex is available, which requires
    597     // promoting it to locked_contended. We need to swap in the new state
    598     // and then wait until somebody wakes us up.
    599     // An atomic_exchange is used to compete with other threads for the lock.
    600     // If it returns unlocked, we have acquired the lock, otherwise another
    601     // thread still holds the lock and we should wait again.
    602     // If lock is acquired, an acquire fence is needed to make all memory accesses
    603     // made by other threads visible to the current CPU.
    604     while (atomic_exchange_explicit(&mutex->state, locked_contended,
    605                                     memory_order_acquire) != unlocked) {
    606         if (__futex_wait_ex(&mutex->state, shared, locked_contended, use_realtime_clock,
    607                             abs_timeout_or_null) == -ETIMEDOUT) {
    608             return ETIMEDOUT;
    609         }
    610     }
    611     return 0;
    612 }
    613 
    614 /*
    615  * Release a normal Non-PI mutex.  The caller is responsible for determining
    616  * that we are in fact the owner of this lock.
    617  */
    618 static inline __always_inline void NormalMutexUnlock(pthread_mutex_internal_t* mutex,
    619                                                      uint16_t shared) {
    620     const uint16_t unlocked         = shared | MUTEX_STATE_BITS_UNLOCKED;
    621     const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    622 
    623     // We use an atomic_exchange to release the lock. If locked_contended state
    624     // is returned, some threads is waiting for the lock and we need to wake up
    625     // one of them.
    626     // A release fence is required to make previous stores visible to next
    627     // lock owner threads.
    628     if (atomic_exchange_explicit(&mutex->state, unlocked,
    629                                  memory_order_release) == locked_contended) {
    630         // Wake up one waiting thread. We don't know which thread will be
    631         // woken or when it'll start executing -- futexes make no guarantees
    632         // here. There may not even be a thread waiting.
    633         //
    634         // The newly-woken thread will replace the unlocked state we just set above
    635         // with locked_contended state, which means that when it eventually releases
    636         // the mutex it will also call FUTEX_WAKE. This results in one extra wake
    637         // call whenever a lock is contended, but let us avoid forgetting anyone
    638         // without requiring us to track the number of sleepers.
    639         //
    640         // It's possible for another thread to sneak in and grab the lock between
    641         // the exchange above and the wake call below. If the new thread is "slow"
    642         // and holds the lock for a while, we'll wake up a sleeper, which will swap
    643         // in locked_uncontended state and then go back to sleep since the lock is
    644         // still held. If the new thread is "fast", running to completion before
    645         // we call wake, the thread we eventually wake will find an unlocked mutex
    646         // and will execute. Either way we have correct behavior and nobody is
    647         // orphaned on the wait queue.
    648         __futex_wake_ex(&mutex->state, shared, 1);
    649     }
    650 }
    651 
    652 /* This common inlined function is used to increment the counter of a recursive Non-PI mutex.
    653  *
    654  * If the counter overflows, it will return EAGAIN.
    655  * Otherwise, it atomically increments the counter and returns 0.
    656  *
    657  */
    658 static inline __always_inline int RecursiveIncrement(pthread_mutex_internal_t* mutex,
    659                                                      uint16_t old_state) {
    660     // Detect recursive lock overflow and return EAGAIN.
    661     // This is safe because only the owner thread can modify the
    662     // counter bits in the mutex value.
    663     if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) {
    664         return EAGAIN;
    665     }
    666 
    667     // Other threads are able to change the lower bits (e.g. promoting it to "contended"),
    668     // but the mutex counter will not overflow. So we use atomic_fetch_add operation here.
    669     // The mutex is already locked by current thread, so we don't need an acquire fence.
    670     atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
    671     return 0;
    672 }
    673 
    674 // Wait on a recursive or errorcheck Non-PI mutex.
    675 static inline __always_inline int RecursiveOrErrorcheckMutexWait(pthread_mutex_internal_t* mutex,
    676                                                                  uint16_t shared,
    677                                                                  uint16_t old_state,
    678                                                                  bool use_realtime_clock,
    679                                                                  const timespec* abs_timeout) {
    680 // __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid
    681 // field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used.
    682 // But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the
    683 // owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error.
    684 
    685 #if defined(__LP64__)
    686   return __futex_wait_ex(&mutex->state, shared, old_state, use_realtime_clock, abs_timeout);
    687 
    688 #else
    689   // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation.
    690   // And it is based on the assumption that Android is always in little-endian devices.
    691   static_assert(offsetof(pthread_mutex_internal_t, state) == 0, "");
    692   static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, "");
    693 
    694   uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed);
    695   return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state,
    696                          use_realtime_clock, abs_timeout);
    697 #endif
    698 }
    699 
    700 // Lock a Non-PI mutex.
    701 static int MutexLockWithTimeout(pthread_mutex_internal_t* mutex, bool use_realtime_clock,
    702                                 const timespec* abs_timeout_or_null) {
    703     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    704     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
    705     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
    706 
    707     // Handle common case first.
    708     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
    709         return NormalMutexLock(mutex, shared, use_realtime_clock, abs_timeout_or_null);
    710     }
    711 
    712     // Do we already own this recursive or error-check mutex?
    713     pid_t tid = __get_thread()->tid;
    714     if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
    715         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
    716             return EDEADLK;
    717         }
    718         return RecursiveIncrement(mutex, old_state);
    719     }
    720 
    721     const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
    722     const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    723     const uint16_t locked_contended   = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
    724 
    725     // First, if the mutex is unlocked, try to quickly acquire it.
    726     // In the optimistic case where this works, set the state to locked_uncontended.
    727     if (old_state == unlocked) {
    728         // If exchanged successfully, an acquire fence is required to make
    729         // all memory accesses made by other threads visible to the current CPU.
    730         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
    731                              locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
    732             atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
    733             return 0;
    734         }
    735     }
    736 
    737     ScopedTrace trace("Contending for pthread mutex");
    738 
    739     while (true) {
    740         if (old_state == unlocked) {
    741             // NOTE: We put the state to locked_contended since we _know_ there
    742             // is contention when we are in this loop. This ensures all waiters
    743             // will be unlocked.
    744 
    745             // If exchanged successfully, an acquire fence is required to make
    746             // all memory accesses made by other threads visible to the current CPU.
    747             if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state,
    748                                                                      &old_state, locked_contended,
    749                                                                      memory_order_acquire,
    750                                                                      memory_order_relaxed))) {
    751                 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
    752                 return 0;
    753             }
    754             continue;
    755         } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) {
    756             // We should set it to locked_contended beforing going to sleep. This can make
    757             // sure waiters will be woken up eventually.
    758 
    759             int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state);
    760             if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state,
    761                                                                        &old_state, new_state,
    762                                                                        memory_order_relaxed,
    763                                                                        memory_order_relaxed))) {
    764                 continue;
    765             }
    766             old_state = new_state;
    767         }
    768 
    769         int result = check_timespec(abs_timeout_or_null, true);
    770         if (result != 0) {
    771             return result;
    772         }
    773         // We are in locked_contended state, sleep until someone wakes us up.
    774         if (RecursiveOrErrorcheckMutexWait(mutex, shared, old_state, use_realtime_clock,
    775                                            abs_timeout_or_null) == -ETIMEDOUT) {
    776             return ETIMEDOUT;
    777         }
    778         old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    779     }
    780 }
    781 
    782 }  // namespace NonPI
    783 
    784 static inline __always_inline bool IsMutexDestroyed(uint16_t mutex_state) {
    785     return mutex_state == 0xffff;
    786 }
    787 
    788 // Inlining this function in pthread_mutex_lock() adds the cost of stack frame instructions on
    789 // ARM64. So make it noinline.
    790 static int __attribute__((noinline)) HandleUsingDestroyedMutex(pthread_mutex_t* mutex,
    791                                                                const char* function_name) {
    792     if (bionic_get_application_target_sdk_version() >= __ANDROID_API_P__) {
    793         __fortify_fatal("%s called on a destroyed mutex (%p)", function_name, mutex);
    794     }
    795     return EBUSY;
    796 }
    797 
    798 int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
    799 #if !defined(__LP64__)
    800     // Some apps depend on being able to pass NULL as a mutex and get EINVAL
    801     // back. Don't need to worry about it for LP64 since the ABI is brand new,
    802     // but keep compatibility for LP32. http://b/19995172.
    803     if (mutex_interface == NULL) {
    804         return EINVAL;
    805     }
    806 #endif
    807 
    808     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
    809     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    810     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
    811     // Avoid slowing down fast path of normal mutex lock operation.
    812     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
    813         uint16_t shared = (old_state & MUTEX_SHARED_MASK);
    814         if (__predict_true(NonPI::NormalMutexTryLock(mutex, shared) == 0)) {
    815             return 0;
    816         }
    817     }
    818     if (old_state == PI_MUTEX_STATE) {
    819         PIMutex& m = mutex->ToPIMutex();
    820         // Handle common case first.
    821         if (__predict_true(PIMutexTryLock(m) == 0)) {
    822             return 0;
    823         }
    824         return PIMutexTimedLock(mutex->ToPIMutex(), false, nullptr);
    825     }
    826     if (__predict_false(IsMutexDestroyed(old_state))) {
    827         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
    828     }
    829     return NonPI::MutexLockWithTimeout(mutex, false, nullptr);
    830 }
    831 
    832 int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
    833 #if !defined(__LP64__)
    834     // Some apps depend on being able to pass NULL as a mutex and get EINVAL
    835     // back. Don't need to worry about it for LP64 since the ABI is brand new,
    836     // but keep compatibility for LP32. http://b/19995172.
    837     if (mutex_interface == NULL) {
    838         return EINVAL;
    839     }
    840 #endif
    841 
    842     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
    843     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    844     uint16_t mtype  = (old_state & MUTEX_TYPE_MASK);
    845     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
    846 
    847     // Handle common case first.
    848     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
    849         NonPI::NormalMutexUnlock(mutex, shared);
    850         return 0;
    851     }
    852     if (old_state == PI_MUTEX_STATE) {
    853         return PIMutexUnlock(mutex->ToPIMutex());
    854     }
    855     if (__predict_false(IsMutexDestroyed(old_state))) {
    856         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
    857     }
    858 
    859     // Do we already own this recursive or error-check mutex?
    860     pid_t tid = __get_thread()->tid;
    861     if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) {
    862         return EPERM;
    863     }
    864 
    865     // If the counter is > 0, we can simply decrement it atomically.
    866     // Since other threads can mutate the lower state bits (and only the
    867     // lower state bits), use a compare_exchange loop to do it.
    868     if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) {
    869         // We still own the mutex, so a release fence is not needed.
    870         atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
    871         return 0;
    872     }
    873 
    874     // The counter is 0, so we'are going to unlock the mutex by resetting its
    875     // state to unlocked, we need to perform a atomic_exchange inorder to read
    876     // the current state, which will be locked_contended if there may have waiters
    877     // to awake.
    878     // A release fence is required to make previous stores visible to next
    879     // lock owner threads.
    880     atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed);
    881     const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
    882     old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release);
    883     if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) {
    884         __futex_wake_ex(&mutex->state, shared, 1);
    885     }
    886 
    887     return 0;
    888 }
    889 
    890 int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
    891     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
    892 
    893     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    894     uint16_t mtype  = (old_state & MUTEX_TYPE_MASK);
    895 
    896     // Handle common case first.
    897     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
    898         uint16_t shared = (old_state & MUTEX_SHARED_MASK);
    899         return NonPI::NormalMutexTryLock(mutex, shared);
    900     }
    901     if (old_state == PI_MUTEX_STATE) {
    902         return PIMutexTryLock(mutex->ToPIMutex());
    903     }
    904     if (__predict_false(IsMutexDestroyed(old_state))) {
    905         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
    906     }
    907 
    908     // Do we already own this recursive or error-check mutex?
    909     pid_t tid = __get_thread()->tid;
    910     if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
    911         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
    912             return EBUSY;
    913         }
    914         return NonPI::RecursiveIncrement(mutex, old_state);
    915     }
    916 
    917     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
    918     const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
    919     const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
    920 
    921     // Same as pthread_mutex_lock, except that we don't want to wait, and
    922     // the only operation that can succeed is a single compare_exchange to acquire the
    923     // lock if it is released / not owned by anyone. No need for a complex loop.
    924     // If exchanged successfully, an acquire fence is required to make
    925     // all memory accesses made by other threads visible to the current CPU.
    926     old_state = unlocked;
    927     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
    928                                                                locked_uncontended,
    929                                                                memory_order_acquire,
    930                                                                memory_order_relaxed))) {
    931         atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
    932         return 0;
    933     }
    934     return EBUSY;
    935 }
    936 
    937 #if !defined(__LP64__)
    938 extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) {
    939     timespec ts;
    940     timespec_from_ms(ts, ms);
    941     timespec abs_timeout;
    942     absolute_timespec_from_timespec(abs_timeout, ts, CLOCK_MONOTONIC);
    943     int error = NonPI::MutexLockWithTimeout(__get_internal_mutex(mutex_interface), false,
    944                                             &abs_timeout);
    945     if (error == ETIMEDOUT) {
    946         error = EBUSY;
    947     }
    948     return error;
    949 }
    950 #endif
    951 
    952 static int __pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, bool use_realtime_clock,
    953                                      const timespec* abs_timeout, const char* function) {
    954     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
    955     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    956     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
    957     // Handle common case first.
    958     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
    959         uint16_t shared = (old_state & MUTEX_SHARED_MASK);
    960         if (__predict_true(NonPI::NormalMutexTryLock(mutex, shared) == 0)) {
    961             return 0;
    962         }
    963     }
    964     if (old_state == PI_MUTEX_STATE) {
    965         return PIMutexTimedLock(mutex->ToPIMutex(), use_realtime_clock, abs_timeout);
    966     }
    967     if (__predict_false(IsMutexDestroyed(old_state))) {
    968         return HandleUsingDestroyedMutex(mutex_interface, function);
    969     }
    970     return NonPI::MutexLockWithTimeout(mutex, use_realtime_clock, abs_timeout);
    971 }
    972 
    973 int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const struct timespec* abs_timeout) {
    974     return __pthread_mutex_timedlock(mutex_interface, true, abs_timeout, __FUNCTION__);
    975 }
    976 
    977 int pthread_mutex_timedlock_monotonic_np(pthread_mutex_t* mutex_interface,
    978                                          const struct timespec* abs_timeout) {
    979     return __pthread_mutex_timedlock(mutex_interface, false, abs_timeout, __FUNCTION__);
    980 }
    981 
    982 int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) {
    983     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
    984     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
    985     if (__predict_false(IsMutexDestroyed(old_state))) {
    986         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
    987     }
    988     if (old_state == PI_MUTEX_STATE) {
    989         int result = PIMutexDestroy(mutex->ToPIMutex());
    990         if (result == 0) {
    991             mutex->FreePIMutex();
    992             atomic_store(&mutex->state, 0xffff);
    993         }
    994         return result;
    995     }
    996     // Store 0xffff to make the mutex unusable. Although POSIX standard says it is undefined
    997     // behavior to destroy a locked mutex, we prefer not to change mutex->state in that situation.
    998     if (MUTEX_STATE_BITS_IS_UNLOCKED(old_state) &&
    999         atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 0xffff,
   1000                                                 memory_order_relaxed, memory_order_relaxed)) {
   1001       return 0;
   1002     }
   1003     return EBUSY;
   1004 }
   1005