Home | History | Annotate | Download | only in nanohub
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <string.h>
     18 #include <nanohub/sha2.h>
     19 
     20 
     21 void sha2init(struct Sha2state *state)
     22 {
     23     state->h[0] = 0x6a09e667;
     24     state->h[1] = 0xbb67ae85;
     25     state->h[2] = 0x3c6ef372;
     26     state->h[3] = 0xa54ff53a;
     27     state->h[4] = 0x510e527f;
     28     state->h[5] = 0x9b05688c;
     29     state->h[6] = 0x1f83d9ab;
     30     state->h[7] = 0x5be0cd19;
     31     state->msgLen = 0;
     32     state->bufBytesUsed = 0;
     33 }
     34 
     35 #ifdef ARM
     36 
     37     #define STRINFIGY2(b) #b
     38     #define STRINGIFY(b) STRINFIGY2(b)
     39     #define ror(v, b) ({uint32_t ret; if (b) asm("ror %0, #" STRINGIFY(b) :"=r"(ret):"0"(v)); else ret = v; ret;})
     40 
     41 #else
     42 
     43     inline static uint32_t ror(uint32_t val, uint32_t by)
     44     {
     45         if (!by)
     46             return val;
     47 
     48         val = (val >> by) | (val << (32 - by));
     49 
     50         return val;
     51     }
     52 
     53 #endif
     54 
     55 
     56 static void sha2processBlock(struct Sha2state *state)
     57 {
     58     static const uint32_t k[] = {
     59         0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
     60         0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
     61         0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
     62         0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
     63         0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
     64         0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
     65         0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
     66         0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
     67     };
     68     uint32_t i, a, b, c, d, e, f, g, h;
     69 
     70     //byteswap the input (if we're on a little endian cpu, as we are)
     71     for (i = 0; i < SHA2_BLOCK_SIZE / sizeof(uint32_t); i++)
     72         state->w[i] = __builtin_bswap32(state->w[i]);
     73 
     74     //expand input
     75     for (;i < SHA2_WORDS_STATE_SIZE; i++) {
     76         uint32_t s0 = ror(state->w[i-15], 7) ^ ror(state->w[i-15], 18) ^ (state->w[i-15] >> 3);
     77         uint32_t s1 = ror(state->w[i-2], 17) ^ ror(state->w[i-2], 19) ^ (state->w[i-2] >> 10);
     78         state->w[i] = state->w[i - 16] + s0 + state->w[i - 7] + s1;
     79     }
     80 
     81     //init working variables
     82     a = state->h[0];
     83     b = state->h[1];
     84     c = state->h[2];
     85     d = state->h[3];
     86     e = state->h[4];
     87     f = state->h[5];
     88     g = state->h[6];
     89     h = state->h[7];
     90 
     91     //64 rounds
     92     for (i = 0; i < 64; i++) {
     93         uint32_t s1 = ror(e, 6) ^ ror(e, 11) ^ ror(e, 25);
     94         uint32_t ch = (e & f) ^ ((~e) & g);
     95         uint32_t temp1 = h + s1 + ch + k[i] + state->w[i];
     96         uint32_t s0 = ror(a, 2) ^ ror(a, 13) ^ ror(a, 22);
     97         uint32_t maj = (a & b) ^ (a & c) ^ (b & c);
     98         uint32_t temp2 = s0 + maj;
     99 
    100         h = g;
    101         g = f;
    102         f = e;
    103         e = d + temp1;
    104         d = c;
    105         c = b;
    106         b = a;
    107         a = temp1 + temp2;
    108     }
    109 
    110     //put result back into state
    111     state->h[0] += a;
    112     state->h[1] += b;
    113     state->h[2] += c;
    114     state->h[3] += d;
    115     state->h[4] += e;
    116     state->h[5] += f;
    117     state->h[6] += g;
    118     state->h[7] += h;
    119 }
    120 
    121 void sha2processBytes(struct Sha2state *state, const void *bytes, uint32_t numBytes)
    122 {
    123     const uint8_t *inBytes = (const uint8_t*)bytes;
    124 
    125     state->msgLen += numBytes;
    126     while (numBytes) {
    127         uint32_t bytesToCopy;
    128 
    129         //step 1: copy data into state if there is space & there is data
    130         bytesToCopy = numBytes;
    131         if (bytesToCopy > SHA2_BLOCK_SIZE - state->bufBytesUsed)
    132             bytesToCopy = SHA2_BLOCK_SIZE - state->bufBytesUsed;
    133         memcpy(state->b + state->bufBytesUsed, inBytes, bytesToCopy);
    134         inBytes += bytesToCopy;
    135         numBytes -= bytesToCopy;
    136         state->bufBytesUsed += bytesToCopy;
    137 
    138         //step 2: if there is a full block, process it
    139         if (state->bufBytesUsed == SHA2_BLOCK_SIZE) {
    140             sha2processBlock(state);
    141             state->bufBytesUsed = 0;
    142         }
    143     }
    144 }
    145 
    146 const uint32_t* sha2finish(struct Sha2state *state)
    147 {
    148     uint8_t appendend = 0x80;
    149     uint64_t dataLenInBits = state->msgLen * 8;
    150     uint32_t i;
    151 
    152     //append the one
    153     sha2processBytes(state, &appendend, 1);
    154 
    155     //append the zeroes
    156     appendend = 0;
    157     while (state->bufBytesUsed != 56)
    158         sha2processBytes(state, &appendend, 1);
    159 
    160     //append the length in bits (we can safely write into state since we're sure where to write to (we're definitely 56-bytes into a block)
    161     for (i = 0; i < 8; i++, dataLenInBits >>= 8)
    162         state->b[63 - i] = dataLenInBits;
    163 
    164     //process last block
    165     sha2processBlock(state);
    166 
    167     //return pointer to hash
    168     return state->h;
    169 }
    170 
    171 
    172 
    173 
    174 
    175 
    176