Home | History | Annotate | Download | only in Modules
      1 /* Math module -- standard C math library functions, pi and e */
      2 
      3 /* Here are some comments from Tim Peters, extracted from the
      4    discussion attached to http://bugs.python.org/issue1640.  They
      5    describe the general aims of the math module with respect to
      6    special values, IEEE-754 floating-point exceptions, and Python
      7    exceptions.
      8 
      9 These are the "spirit of 754" rules:
     10 
     11 1. If the mathematical result is a real number, but of magnitude too
     12 large to approximate by a machine float, overflow is signaled and the
     13 result is an infinity (with the appropriate sign).
     14 
     15 2. If the mathematical result is a real number, but of magnitude too
     16 small to approximate by a machine float, underflow is signaled and the
     17 result is a zero (with the appropriate sign).
     18 
     19 3. At a singularity (a value x such that the limit of f(y) as y
     20 approaches x exists and is an infinity), "divide by zero" is signaled
     21 and the result is an infinity (with the appropriate sign).  This is
     22 complicated a little by that the left-side and right-side limits may
     23 not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
     24 from the positive or negative directions.  In that specific case, the
     25 sign of the zero determines the result of 1/0.
     26 
     27 4. At a point where a function has no defined result in the extended
     28 reals (i.e., the reals plus an infinity or two), invalid operation is
     29 signaled and a NaN is returned.
     30 
     31 And these are what Python has historically /tried/ to do (but not
     32 always successfully, as platform libm behavior varies a lot):
     33 
     34 For #1, raise OverflowError.
     35 
     36 For #2, return a zero (with the appropriate sign if that happens by
     37 accident ;-)).
     38 
     39 For #3 and #4, raise ValueError.  It may have made sense to raise
     40 Python's ZeroDivisionError in #3, but historically that's only been
     41 raised for division by zero and mod by zero.
     42 
     43 */
     44 
     45 /*
     46    In general, on an IEEE-754 platform the aim is to follow the C99
     47    standard, including Annex 'F', whenever possible.  Where the
     48    standard recommends raising the 'divide-by-zero' or 'invalid'
     49    floating-point exceptions, Python should raise a ValueError.  Where
     50    the standard recommends raising 'overflow', Python should raise an
     51    OverflowError.  In all other circumstances a value should be
     52    returned.
     53  */
     54 
     55 #include "Python.h"
     56 #include "_math.h"
     57 
     58 #ifdef _OSF_SOURCE
     59 /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
     60 extern double copysign(double, double);
     61 #endif
     62 
     63 /*
     64    sin(pi*x), giving accurate results for all finite x (especially x
     65    integral or close to an integer).  This is here for use in the
     66    reflection formula for the gamma function.  It conforms to IEEE
     67    754-2008 for finite arguments, but not for infinities or nans.
     68 */
     69 
     70 static const double pi = 3.141592653589793238462643383279502884197;
     71 static const double sqrtpi = 1.772453850905516027298167483341145182798;
     72 
     73 static double
     74 sinpi(double x)
     75 {
     76     double y, r;
     77     int n;
     78     /* this function should only ever be called for finite arguments */
     79     assert(Py_IS_FINITE(x));
     80     y = fmod(fabs(x), 2.0);
     81     n = (int)round(2.0*y);
     82     assert(0 <= n && n <= 4);
     83     switch (n) {
     84     case 0:
     85         r = sin(pi*y);
     86         break;
     87     case 1:
     88         r = cos(pi*(y-0.5));
     89         break;
     90     case 2:
     91         /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
     92            -0.0 instead of 0.0 when y == 1.0. */
     93         r = sin(pi*(1.0-y));
     94         break;
     95     case 3:
     96         r = -cos(pi*(y-1.5));
     97         break;
     98     case 4:
     99         r = sin(pi*(y-2.0));
    100         break;
    101     default:
    102         assert(0);  /* should never get here */
    103         r = -1.23e200; /* silence gcc warning */
    104     }
    105     return copysign(1.0, x)*r;
    106 }
    107 
    108 /* Implementation of the real gamma function.  In extensive but non-exhaustive
    109    random tests, this function proved accurate to within <= 10 ulps across the
    110    entire float domain.  Note that accuracy may depend on the quality of the
    111    system math functions, the pow function in particular.  Special cases
    112    follow C99 annex F.  The parameters and method are tailored to platforms
    113    whose double format is the IEEE 754 binary64 format.
    114 
    115    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
    116    and g=6.024680040776729583740234375; these parameters are amongst those
    117    used by the Boost library.  Following Boost (again), we re-express the
    118    Lanczos sum as a rational function, and compute it that way.  The
    119    coefficients below were computed independently using MPFR, and have been
    120    double-checked against the coefficients in the Boost source code.
    121 
    122    For x < 0.0 we use the reflection formula.
    123 
    124    There's one minor tweak that deserves explanation: Lanczos' formula for
    125    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x
    126    values, x+g-0.5 can be represented exactly.  However, in cases where it
    127    can't be represented exactly the small error in x+g-0.5 can be magnified
    128    significantly by the pow and exp calls, especially for large x.  A cheap
    129    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
    130    involved in the computation of x+g-0.5 (that is, e = computed value of
    131    x+g-0.5 - exact value of x+g-0.5).  Here's the proof:
    132 
    133    Correction factor
    134    -----------------
    135    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
    136    double, and e is tiny.  Then:
    137 
    138      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
    139      = pow(y, x-0.5)/exp(y) * C,
    140 
    141    where the correction_factor C is given by
    142 
    143      C = pow(1-e/y, x-0.5) * exp(e)
    144 
    145    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
    146 
    147      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
    148 
    149    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and
    150 
    151      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
    152 
    153    Note that for accuracy, when computing r*C it's better to do
    154 
    155      r + e*g/y*r;
    156 
    157    than
    158 
    159      r * (1 + e*g/y);
    160 
    161    since the addition in the latter throws away most of the bits of
    162    information in e*g/y.
    163 */
    164 
    165 #define LANCZOS_N 13
    166 static const double lanczos_g = 6.024680040776729583740234375;
    167 static const double lanczos_g_minus_half = 5.524680040776729583740234375;
    168 static const double lanczos_num_coeffs[LANCZOS_N] = {
    169     23531376880.410759688572007674451636754734846804940,
    170     42919803642.649098768957899047001988850926355848959,
    171     35711959237.355668049440185451547166705960488635843,
    172     17921034426.037209699919755754458931112671403265390,
    173     6039542586.3520280050642916443072979210699388420708,
    174     1439720407.3117216736632230727949123939715485786772,
    175     248874557.86205415651146038641322942321632125127801,
    176     31426415.585400194380614231628318205362874684987640,
    177     2876370.6289353724412254090516208496135991145378768,
    178     186056.26539522349504029498971604569928220784236328,
    179     8071.6720023658162106380029022722506138218516325024,
    180     210.82427775157934587250973392071336271166969580291,
    181     2.5066282746310002701649081771338373386264310793408
    182 };
    183 
    184 /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
    185 static const double lanczos_den_coeffs[LANCZOS_N] = {
    186     0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
    187     13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
    188 
    189 /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
    190 #define NGAMMA_INTEGRAL 23
    191 static const double gamma_integral[NGAMMA_INTEGRAL] = {
    192     1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
    193     3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
    194     1307674368000.0, 20922789888000.0, 355687428096000.0,
    195     6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
    196     51090942171709440000.0, 1124000727777607680000.0,
    197 };
    198 
    199 /* Lanczos' sum L_g(x), for positive x */
    200 
    201 static double
    202 lanczos_sum(double x)
    203 {
    204     double num = 0.0, den = 0.0;
    205     int i;
    206     assert(x > 0.0);
    207     /* evaluate the rational function lanczos_sum(x).  For large
    208        x, the obvious algorithm risks overflow, so we instead
    209        rescale the denominator and numerator of the rational
    210        function by x**(1-LANCZOS_N) and treat this as a
    211        rational function in 1/x.  This also reduces the error for
    212        larger x values.  The choice of cutoff point (5.0 below) is
    213        somewhat arbitrary; in tests, smaller cutoff values than
    214        this resulted in lower accuracy. */
    215     if (x < 5.0) {
    216         for (i = LANCZOS_N; --i >= 0; ) {
    217             num = num * x + lanczos_num_coeffs[i];
    218             den = den * x + lanczos_den_coeffs[i];
    219         }
    220     }
    221     else {
    222         for (i = 0; i < LANCZOS_N; i++) {
    223             num = num / x + lanczos_num_coeffs[i];
    224             den = den / x + lanczos_den_coeffs[i];
    225         }
    226     }
    227     return num/den;
    228 }
    229 
    230 static double
    231 m_tgamma(double x)
    232 {
    233     double absx, r, y, z, sqrtpow;
    234 
    235     /* special cases */
    236     if (!Py_IS_FINITE(x)) {
    237         if (Py_IS_NAN(x) || x > 0.0)
    238             return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */
    239         else {
    240             errno = EDOM;
    241             return Py_NAN;  /* tgamma(-inf) = nan, invalid */
    242         }
    243     }
    244     if (x == 0.0) {
    245         errno = EDOM;
    246         return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
    247     }
    248 
    249     /* integer arguments */
    250     if (x == floor(x)) {
    251         if (x < 0.0) {
    252             errno = EDOM;  /* tgamma(n) = nan, invalid for */
    253             return Py_NAN; /* negative integers n */
    254         }
    255         if (x <= NGAMMA_INTEGRAL)
    256             return gamma_integral[(int)x - 1];
    257     }
    258     absx = fabs(x);
    259 
    260     /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */
    261     if (absx < 1e-20) {
    262         r = 1.0/x;
    263         if (Py_IS_INFINITY(r))
    264             errno = ERANGE;
    265         return r;
    266     }
    267 
    268     /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
    269        x > 200, and underflows to +-0.0 for x < -200, not a negative
    270        integer. */
    271     if (absx > 200.0) {
    272         if (x < 0.0) {
    273             return 0.0/sinpi(x);
    274         }
    275         else {
    276             errno = ERANGE;
    277             return Py_HUGE_VAL;
    278         }
    279     }
    280 
    281     y = absx + lanczos_g_minus_half;
    282     /* compute error in sum */
    283     if (absx > lanczos_g_minus_half) {
    284         /* note: the correction can be foiled by an optimizing
    285            compiler that (incorrectly) thinks that an expression like
    286            a + b - a - b can be optimized to 0.0.  This shouldn't
    287            happen in a standards-conforming compiler. */
    288         double q = y - absx;
    289         z = q - lanczos_g_minus_half;
    290     }
    291     else {
    292         double q = y - lanczos_g_minus_half;
    293         z = q - absx;
    294     }
    295     z = z * lanczos_g / y;
    296     if (x < 0.0) {
    297         r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
    298         r -= z * r;
    299         if (absx < 140.0) {
    300             r /= pow(y, absx - 0.5);
    301         }
    302         else {
    303             sqrtpow = pow(y, absx / 2.0 - 0.25);
    304             r /= sqrtpow;
    305             r /= sqrtpow;
    306         }
    307     }
    308     else {
    309         r = lanczos_sum(absx) / exp(y);
    310         r += z * r;
    311         if (absx < 140.0) {
    312             r *= pow(y, absx - 0.5);
    313         }
    314         else {
    315             sqrtpow = pow(y, absx / 2.0 - 0.25);
    316             r *= sqrtpow;
    317             r *= sqrtpow;
    318         }
    319     }
    320     if (Py_IS_INFINITY(r))
    321         errno = ERANGE;
    322     return r;
    323 }
    324 
    325 /*
    326    lgamma:  natural log of the absolute value of the Gamma function.
    327    For large arguments, Lanczos' formula works extremely well here.
    328 */
    329 
    330 static double
    331 m_lgamma(double x)
    332 {
    333     double r, absx;
    334 
    335     /* special cases */
    336     if (!Py_IS_FINITE(x)) {
    337         if (Py_IS_NAN(x))
    338             return x;  /* lgamma(nan) = nan */
    339         else
    340             return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
    341     }
    342 
    343     /* integer arguments */
    344     if (x == floor(x) && x <= 2.0) {
    345         if (x <= 0.0) {
    346             errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */
    347             return Py_HUGE_VAL; /* integers n <= 0 */
    348         }
    349         else {
    350             return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
    351         }
    352     }
    353 
    354     absx = fabs(x);
    355     /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
    356     if (absx < 1e-20)
    357         return -log(absx);
    358 
    359     /* Lanczos' formula */
    360     if (x > 0.0) {
    361         /* we could save a fraction of a ulp in accuracy by having a
    362            second set of numerator coefficients for lanczos_sum that
    363            absorbed the exp(-lanczos_g) term, and throwing out the
    364            lanczos_g subtraction below; it's probably not worth it. */
    365         r = log(lanczos_sum(x)) - lanczos_g +
    366             (x-0.5)*(log(x+lanczos_g-0.5)-1);
    367     }
    368     else {
    369         r = log(pi) - log(fabs(sinpi(absx))) - log(absx) -
    370             (log(lanczos_sum(absx)) - lanczos_g +
    371              (absx-0.5)*(log(absx+lanczos_g-0.5)-1));
    372     }
    373     if (Py_IS_INFINITY(r))
    374         errno = ERANGE;
    375     return r;
    376 }
    377 
    378 /*
    379    Implementations of the error function erf(x) and the complementary error
    380    function erfc(x).
    381 
    382    Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
    383    Cambridge University Press), we use a series approximation for erf for
    384    small x, and a continued fraction approximation for erfc(x) for larger x;
    385    combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
    386    this gives us erf(x) and erfc(x) for all x.
    387 
    388    The series expansion used is:
    389 
    390       erf(x) = x*exp(-x*x)/sqrt(pi) * [
    391                      2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
    392 
    393    The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
    394    This series converges well for smallish x, but slowly for larger x.
    395 
    396    The continued fraction expansion used is:
    397 
    398       erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
    399                               3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
    400 
    401    after the first term, the general term has the form:
    402 
    403       k*(k-0.5)/(2*k+0.5 + x**2 - ...).
    404 
    405    This expansion converges fast for larger x, but convergence becomes
    406    infinitely slow as x approaches 0.0.  The (somewhat naive) continued
    407    fraction evaluation algorithm used below also risks overflow for large x;
    408    but for large x, erfc(x) == 0.0 to within machine precision.  (For
    409    example, erfc(30.0) is approximately 2.56e-393).
    410 
    411    Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
    412    continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
    413    ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
    414    numbers of terms to use for the relevant expansions.  */
    415 
    416 #define ERF_SERIES_CUTOFF 1.5
    417 #define ERF_SERIES_TERMS 25
    418 #define ERFC_CONTFRAC_CUTOFF 30.0
    419 #define ERFC_CONTFRAC_TERMS 50
    420 
    421 /*
    422    Error function, via power series.
    423 
    424    Given a finite float x, return an approximation to erf(x).
    425    Converges reasonably fast for small x.
    426 */
    427 
    428 static double
    429 m_erf_series(double x)
    430 {
    431     double x2, acc, fk, result;
    432     int i, saved_errno;
    433 
    434     x2 = x * x;
    435     acc = 0.0;
    436     fk = (double)ERF_SERIES_TERMS + 0.5;
    437     for (i = 0; i < ERF_SERIES_TERMS; i++) {
    438         acc = 2.0 + x2 * acc / fk;
    439         fk -= 1.0;
    440     }
    441     /* Make sure the exp call doesn't affect errno;
    442        see m_erfc_contfrac for more. */
    443     saved_errno = errno;
    444     result = acc * x * exp(-x2) / sqrtpi;
    445     errno = saved_errno;
    446     return result;
    447 }
    448 
    449 /*
    450    Complementary error function, via continued fraction expansion.
    451 
    452    Given a positive float x, return an approximation to erfc(x).  Converges
    453    reasonably fast for x large (say, x > 2.0), and should be safe from
    454    overflow if x and nterms are not too large.  On an IEEE 754 machine, with x
    455    <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller
    456    than the smallest representable nonzero float.  */
    457 
    458 static double
    459 m_erfc_contfrac(double x)
    460 {
    461     double x2, a, da, p, p_last, q, q_last, b, result;
    462     int i, saved_errno;
    463 
    464     if (x >= ERFC_CONTFRAC_CUTOFF)
    465         return 0.0;
    466 
    467     x2 = x*x;
    468     a = 0.0;
    469     da = 0.5;
    470     p = 1.0; p_last = 0.0;
    471     q = da + x2; q_last = 1.0;
    472     for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
    473         double temp;
    474         a += da;
    475         da += 2.0;
    476         b = da + x2;
    477         temp = p; p = b*p - a*p_last; p_last = temp;
    478         temp = q; q = b*q - a*q_last; q_last = temp;
    479     }
    480     /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
    481        save the current errno value so that we can restore it later. */
    482     saved_errno = errno;
    483     result = p / q * x * exp(-x2) / sqrtpi;
    484     errno = saved_errno;
    485     return result;
    486 }
    487 
    488 /* Error function erf(x), for general x */
    489 
    490 static double
    491 m_erf(double x)
    492 {
    493     double absx, cf;
    494 
    495     if (Py_IS_NAN(x))
    496         return x;
    497     absx = fabs(x);
    498     if (absx < ERF_SERIES_CUTOFF)
    499         return m_erf_series(x);
    500     else {
    501         cf = m_erfc_contfrac(absx);
    502         return x > 0.0 ? 1.0 - cf : cf - 1.0;
    503     }
    504 }
    505 
    506 /* Complementary error function erfc(x), for general x. */
    507 
    508 static double
    509 m_erfc(double x)
    510 {
    511     double absx, cf;
    512 
    513     if (Py_IS_NAN(x))
    514         return x;
    515     absx = fabs(x);
    516     if (absx < ERF_SERIES_CUTOFF)
    517         return 1.0 - m_erf_series(x);
    518     else {
    519         cf = m_erfc_contfrac(absx);
    520         return x > 0.0 ? cf : 2.0 - cf;
    521     }
    522 }
    523 
    524 /*
    525    wrapper for atan2 that deals directly with special cases before
    526    delegating to the platform libm for the remaining cases.  This
    527    is necessary to get consistent behaviour across platforms.
    528    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
    529    always follow C99.
    530 */
    531 
    532 static double
    533 m_atan2(double y, double x)
    534 {
    535     if (Py_IS_NAN(x) || Py_IS_NAN(y))
    536         return Py_NAN;
    537     if (Py_IS_INFINITY(y)) {
    538         if (Py_IS_INFINITY(x)) {
    539             if (copysign(1., x) == 1.)
    540                 /* atan2(+-inf, +inf) == +-pi/4 */
    541                 return copysign(0.25*Py_MATH_PI, y);
    542             else
    543                 /* atan2(+-inf, -inf) == +-pi*3/4 */
    544                 return copysign(0.75*Py_MATH_PI, y);
    545         }
    546         /* atan2(+-inf, x) == +-pi/2 for finite x */
    547         return copysign(0.5*Py_MATH_PI, y);
    548     }
    549     if (Py_IS_INFINITY(x) || y == 0.) {
    550         if (copysign(1., x) == 1.)
    551             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
    552             return copysign(0., y);
    553         else
    554             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
    555             return copysign(Py_MATH_PI, y);
    556     }
    557     return atan2(y, x);
    558 }
    559 
    560 /*
    561     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
    562     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
    563     special values directly, passing positive non-special values through to
    564     the system log/log10.
    565  */
    566 
    567 static double
    568 m_log(double x)
    569 {
    570     if (Py_IS_FINITE(x)) {
    571         if (x > 0.0)
    572             return log(x);
    573         errno = EDOM;
    574         if (x == 0.0)
    575             return -Py_HUGE_VAL; /* log(0) = -inf */
    576         else
    577             return Py_NAN; /* log(-ve) = nan */
    578     }
    579     else if (Py_IS_NAN(x))
    580         return x; /* log(nan) = nan */
    581     else if (x > 0.0)
    582         return x; /* log(inf) = inf */
    583     else {
    584         errno = EDOM;
    585         return Py_NAN; /* log(-inf) = nan */
    586     }
    587 }
    588 
    589 static double
    590 m_log10(double x)
    591 {
    592     if (Py_IS_FINITE(x)) {
    593         if (x > 0.0)
    594             return log10(x);
    595         errno = EDOM;
    596         if (x == 0.0)
    597             return -Py_HUGE_VAL; /* log10(0) = -inf */
    598         else
    599             return Py_NAN; /* log10(-ve) = nan */
    600     }
    601     else if (Py_IS_NAN(x))
    602         return x; /* log10(nan) = nan */
    603     else if (x > 0.0)
    604         return x; /* log10(inf) = inf */
    605     else {
    606         errno = EDOM;
    607         return Py_NAN; /* log10(-inf) = nan */
    608     }
    609 }
    610 
    611 
    612 /* Call is_error when errno != 0, and where x is the result libm
    613  * returned.  is_error will usually set up an exception and return
    614  * true (1), but may return false (0) without setting up an exception.
    615  */
    616 static int
    617 is_error(double x)
    618 {
    619     int result = 1;     /* presumption of guilt */
    620     assert(errno);      /* non-zero errno is a precondition for calling */
    621     if (errno == EDOM)
    622         PyErr_SetString(PyExc_ValueError, "math domain error");
    623 
    624     else if (errno == ERANGE) {
    625         /* ANSI C generally requires libm functions to set ERANGE
    626          * on overflow, but also generally *allows* them to set
    627          * ERANGE on underflow too.  There's no consistency about
    628          * the latter across platforms.
    629          * Alas, C99 never requires that errno be set.
    630          * Here we suppress the underflow errors (libm functions
    631          * should return a zero on underflow, and +- HUGE_VAL on
    632          * overflow, so testing the result for zero suffices to
    633          * distinguish the cases).
    634          *
    635          * On some platforms (Ubuntu/ia64) it seems that errno can be
    636          * set to ERANGE for subnormal results that do *not* underflow
    637          * to zero.  So to be safe, we'll ignore ERANGE whenever the
    638          * function result is less than one in absolute value.
    639          */
    640         if (fabs(x) < 1.0)
    641             result = 0;
    642         else
    643             PyErr_SetString(PyExc_OverflowError,
    644                             "math range error");
    645     }
    646     else
    647         /* Unexpected math error */
    648         PyErr_SetFromErrno(PyExc_ValueError);
    649     return result;
    650 }
    651 
    652 /*
    653    math_1 is used to wrap a libm function f that takes a double
    654    arguments and returns a double.
    655 
    656    The error reporting follows these rules, which are designed to do
    657    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
    658    platforms.
    659 
    660    - a NaN result from non-NaN inputs causes ValueError to be raised
    661    - an infinite result from finite inputs causes OverflowError to be
    662      raised if can_overflow is 1, or raises ValueError if can_overflow
    663      is 0.
    664    - if the result is finite and errno == EDOM then ValueError is
    665      raised
    666    - if the result is finite and nonzero and errno == ERANGE then
    667      OverflowError is raised
    668 
    669    The last rule is used to catch overflow on platforms which follow
    670    C89 but for which HUGE_VAL is not an infinity.
    671 
    672    For the majority of one-argument functions these rules are enough
    673    to ensure that Python's functions behave as specified in 'Annex F'
    674    of the C99 standard, with the 'invalid' and 'divide-by-zero'
    675    floating-point exceptions mapping to Python's ValueError and the
    676    'overflow' floating-point exception mapping to OverflowError.
    677    math_1 only works for functions that don't have singularities *and*
    678    the possibility of overflow; fortunately, that covers everything we
    679    care about right now.
    680 */
    681 
    682 static PyObject *
    683 math_1(PyObject *arg, double (*func) (double), int can_overflow)
    684 {
    685     double x, r;
    686     x = PyFloat_AsDouble(arg);
    687     if (x == -1.0 && PyErr_Occurred())
    688         return NULL;
    689     errno = 0;
    690     PyFPE_START_PROTECT("in math_1", return 0);
    691     r = (*func)(x);
    692     PyFPE_END_PROTECT(r);
    693     if (Py_IS_NAN(r)) {
    694         if (!Py_IS_NAN(x))
    695             errno = EDOM;
    696         else
    697             errno = 0;
    698     }
    699     else if (Py_IS_INFINITY(r)) {
    700         if (Py_IS_FINITE(x))
    701             errno = can_overflow ? ERANGE : EDOM;
    702         else
    703             errno = 0;
    704     }
    705     if (errno && is_error(r))
    706         return NULL;
    707     else
    708         return PyFloat_FromDouble(r);
    709 }
    710 
    711 /* variant of math_1, to be used when the function being wrapped is known to
    712    set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
    713    errno = ERANGE for overflow). */
    714 
    715 static PyObject *
    716 math_1a(PyObject *arg, double (*func) (double))
    717 {
    718     double x, r;
    719     x = PyFloat_AsDouble(arg);
    720     if (x == -1.0 && PyErr_Occurred())
    721         return NULL;
    722     errno = 0;
    723     PyFPE_START_PROTECT("in math_1a", return 0);
    724     r = (*func)(x);
    725     PyFPE_END_PROTECT(r);
    726     if (errno && is_error(r))
    727         return NULL;
    728     return PyFloat_FromDouble(r);
    729 }
    730 
    731 /*
    732    math_2 is used to wrap a libm function f that takes two double
    733    arguments and returns a double.
    734 
    735    The error reporting follows these rules, which are designed to do
    736    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
    737    platforms.
    738 
    739    - a NaN result from non-NaN inputs causes ValueError to be raised
    740    - an infinite result from finite inputs causes OverflowError to be
    741      raised.
    742    - if the result is finite and errno == EDOM then ValueError is
    743      raised
    744    - if the result is finite and nonzero and errno == ERANGE then
    745      OverflowError is raised
    746 
    747    The last rule is used to catch overflow on platforms which follow
    748    C89 but for which HUGE_VAL is not an infinity.
    749 
    750    For most two-argument functions (copysign, fmod, hypot, atan2)
    751    these rules are enough to ensure that Python's functions behave as
    752    specified in 'Annex F' of the C99 standard, with the 'invalid' and
    753    'divide-by-zero' floating-point exceptions mapping to Python's
    754    ValueError and the 'overflow' floating-point exception mapping to
    755    OverflowError.
    756 */
    757 
    758 static PyObject *
    759 math_2(PyObject *args, double (*func) (double, double), char *funcname)
    760 {
    761     PyObject *ox, *oy;
    762     double x, y, r;
    763     if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
    764         return NULL;
    765     x = PyFloat_AsDouble(ox);
    766     y = PyFloat_AsDouble(oy);
    767     if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
    768         return NULL;
    769     errno = 0;
    770     PyFPE_START_PROTECT("in math_2", return 0);
    771     r = (*func)(x, y);
    772     PyFPE_END_PROTECT(r);
    773     if (Py_IS_NAN(r)) {
    774         if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
    775             errno = EDOM;
    776         else
    777             errno = 0;
    778     }
    779     else if (Py_IS_INFINITY(r)) {
    780         if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
    781             errno = ERANGE;
    782         else
    783             errno = 0;
    784     }
    785     if (errno && is_error(r))
    786         return NULL;
    787     else
    788         return PyFloat_FromDouble(r);
    789 }
    790 
    791 #define FUNC1(funcname, func, can_overflow, docstring)                  \
    792     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
    793         return math_1(args, func, can_overflow);                            \
    794     }\
    795     PyDoc_STRVAR(math_##funcname##_doc, docstring);
    796 
    797 #define FUNC1A(funcname, func, docstring)                               \
    798     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
    799         return math_1a(args, func);                                     \
    800     }\
    801     PyDoc_STRVAR(math_##funcname##_doc, docstring);
    802 
    803 #define FUNC2(funcname, func, docstring) \
    804     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
    805         return math_2(args, func, #funcname); \
    806     }\
    807     PyDoc_STRVAR(math_##funcname##_doc, docstring);
    808 
    809 FUNC1(acos, acos, 0,
    810       "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
    811 FUNC1(acosh, m_acosh, 0,
    812       "acosh(x)\n\nReturn the inverse hyperbolic cosine of x.")
    813 FUNC1(asin, asin, 0,
    814       "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
    815 FUNC1(asinh, m_asinh, 0,
    816       "asinh(x)\n\nReturn the inverse hyperbolic sine of x.")
    817 FUNC1(atan, atan, 0,
    818       "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
    819 FUNC2(atan2, m_atan2,
    820       "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
    821       "Unlike atan(y/x), the signs of both x and y are considered.")
    822 FUNC1(atanh, m_atanh, 0,
    823       "atanh(x)\n\nReturn the inverse hyperbolic tangent of x.")
    824 FUNC1(ceil, ceil, 0,
    825       "ceil(x)\n\nReturn the ceiling of x as a float.\n"
    826       "This is the smallest integral value >= x.")
    827 FUNC2(copysign, copysign,
    828       "copysign(x, y)\n\nReturn x with the sign of y.")
    829 FUNC1(cos, cos, 0,
    830       "cos(x)\n\nReturn the cosine of x (measured in radians).")
    831 FUNC1(cosh, cosh, 1,
    832       "cosh(x)\n\nReturn the hyperbolic cosine of x.")
    833 FUNC1A(erf, m_erf,
    834        "erf(x)\n\nError function at x.")
    835 FUNC1A(erfc, m_erfc,
    836        "erfc(x)\n\nComplementary error function at x.")
    837 FUNC1(exp, exp, 1,
    838       "exp(x)\n\nReturn e raised to the power of x.")
    839 FUNC1(expm1, m_expm1, 1,
    840       "expm1(x)\n\nReturn exp(x)-1.\n"
    841       "This function avoids the loss of precision involved in the direct "
    842       "evaluation of exp(x)-1 for small x.")
    843 FUNC1(fabs, fabs, 0,
    844       "fabs(x)\n\nReturn the absolute value of the float x.")
    845 FUNC1(floor, floor, 0,
    846       "floor(x)\n\nReturn the floor of x as a float.\n"
    847       "This is the largest integral value <= x.")
    848 FUNC1A(gamma, m_tgamma,
    849       "gamma(x)\n\nGamma function at x.")
    850 FUNC1A(lgamma, m_lgamma,
    851       "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
    852 FUNC1(log1p, m_log1p, 1,
    853       "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
    854       "The result is computed in a way which is accurate for x near zero.")
    855 FUNC1(sin, sin, 0,
    856       "sin(x)\n\nReturn the sine of x (measured in radians).")
    857 FUNC1(sinh, sinh, 1,
    858       "sinh(x)\n\nReturn the hyperbolic sine of x.")
    859 FUNC1(sqrt, sqrt, 0,
    860       "sqrt(x)\n\nReturn the square root of x.")
    861 FUNC1(tan, tan, 0,
    862       "tan(x)\n\nReturn the tangent of x (measured in radians).")
    863 FUNC1(tanh, tanh, 0,
    864       "tanh(x)\n\nReturn the hyperbolic tangent of x.")
    865 
    866 /* Precision summation function as msum() by Raymond Hettinger in
    867    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
    868    enhanced with the exact partials sum and roundoff from Mark
    869    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
    870    See those links for more details, proofs and other references.
    871 
    872    Note 1: IEEE 754R floating point semantics are assumed,
    873    but the current implementation does not re-establish special
    874    value semantics across iterations (i.e. handling -Inf + Inf).
    875 
    876    Note 2:  No provision is made for intermediate overflow handling;
    877    therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
    878    sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
    879    overflow of the first partial sum.
    880 
    881    Note 3: The intermediate values lo, yr, and hi are declared volatile so
    882    aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
    883    Also, the volatile declaration forces the values to be stored in memory as
    884    regular doubles instead of extended long precision (80-bit) values.  This
    885    prevents double rounding because any addition or subtraction of two doubles
    886    can be resolved exactly into double-sized hi and lo values.  As long as the
    887    hi value gets forced into a double before yr and lo are computed, the extra
    888    bits in downstream extended precision operations (x87 for example) will be
    889    exactly zero and therefore can be losslessly stored back into a double,
    890    thereby preventing double rounding.
    891 
    892    Note 4: A similar implementation is in Modules/cmathmodule.c.
    893    Be sure to update both when making changes.
    894 
    895    Note 5: The signature of math.fsum() differs from __builtin__.sum()
    896    because the start argument doesn't make sense in the context of
    897    accurate summation.  Since the partials table is collapsed before
    898    returning a result, sum(seq2, start=sum(seq1)) may not equal the
    899    accurate result returned by sum(itertools.chain(seq1, seq2)).
    900 */
    901 
    902 #define NUM_PARTIALS  32  /* initial partials array size, on stack */
    903 
    904 /* Extend the partials array p[] by doubling its size. */
    905 static int                          /* non-zero on error */
    906 _fsum_realloc(double **p_ptr, Py_ssize_t  n,
    907              double  *ps,    Py_ssize_t *m_ptr)
    908 {
    909     void *v = NULL;
    910     Py_ssize_t m = *m_ptr;
    911 
    912     m += m;  /* double */
    913     if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
    914         double *p = *p_ptr;
    915         if (p == ps) {
    916             v = PyMem_Malloc(sizeof(double) * m);
    917             if (v != NULL)
    918                 memcpy(v, ps, sizeof(double) * n);
    919         }
    920         else
    921             v = PyMem_Realloc(p, sizeof(double) * m);
    922     }
    923     if (v == NULL) {        /* size overflow or no memory */
    924         PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
    925         return 1;
    926     }
    927     *p_ptr = (double*) v;
    928     *m_ptr = m;
    929     return 0;
    930 }
    931 
    932 /* Full precision summation of a sequence of floats.
    933 
    934    def msum(iterable):
    935        partials = []  # sorted, non-overlapping partial sums
    936        for x in iterable:
    937            i = 0
    938            for y in partials:
    939                if abs(x) < abs(y):
    940                    x, y = y, x
    941                hi = x + y
    942                lo = y - (hi - x)
    943                if lo:
    944                    partials[i] = lo
    945                    i += 1
    946                x = hi
    947            partials[i:] = [x]
    948        return sum_exact(partials)
    949 
    950    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
    951    are exactly equal to x+y.  The inner loop applies hi/lo summation to each
    952    partial so that the list of partial sums remains exact.
    953 
    954    Sum_exact() adds the partial sums exactly and correctly rounds the final
    955    result (using the round-half-to-even rule).  The items in partials remain
    956    non-zero, non-special, non-overlapping and strictly increasing in
    957    magnitude, but possibly not all having the same sign.
    958 
    959    Depends on IEEE 754 arithmetic guarantees and half-even rounding.
    960 */
    961 
    962 static PyObject*
    963 math_fsum(PyObject *self, PyObject *seq)
    964 {
    965     PyObject *item, *iter, *sum = NULL;
    966     Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
    967     double x, y, t, ps[NUM_PARTIALS], *p = ps;
    968     double xsave, special_sum = 0.0, inf_sum = 0.0;
    969     volatile double hi, yr, lo;
    970 
    971     iter = PyObject_GetIter(seq);
    972     if (iter == NULL)
    973         return NULL;
    974 
    975     PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
    976 
    977     for(;;) {           /* for x in iterable */
    978         assert(0 <= n && n <= m);
    979         assert((m == NUM_PARTIALS && p == ps) ||
    980                (m >  NUM_PARTIALS && p != NULL));
    981 
    982         item = PyIter_Next(iter);
    983         if (item == NULL) {
    984             if (PyErr_Occurred())
    985                 goto _fsum_error;
    986             break;
    987         }
    988         x = PyFloat_AsDouble(item);
    989         Py_DECREF(item);
    990         if (PyErr_Occurred())
    991             goto _fsum_error;
    992 
    993         xsave = x;
    994         for (i = j = 0; j < n; j++) {       /* for y in partials */
    995             y = p[j];
    996             if (fabs(x) < fabs(y)) {
    997                 t = x; x = y; y = t;
    998             }
    999             hi = x + y;
   1000             yr = hi - x;
   1001             lo = y - yr;
   1002             if (lo != 0.0)
   1003                 p[i++] = lo;
   1004             x = hi;
   1005         }
   1006 
   1007         n = i;                              /* ps[i:] = [x] */
   1008         if (x != 0.0) {
   1009             if (! Py_IS_FINITE(x)) {
   1010                 /* a nonfinite x could arise either as
   1011                    a result of intermediate overflow, or
   1012                    as a result of a nan or inf in the
   1013                    summands */
   1014                 if (Py_IS_FINITE(xsave)) {
   1015                     PyErr_SetString(PyExc_OverflowError,
   1016                           "intermediate overflow in fsum");
   1017                     goto _fsum_error;
   1018                 }
   1019                 if (Py_IS_INFINITY(xsave))
   1020                     inf_sum += xsave;
   1021                 special_sum += xsave;
   1022                 /* reset partials */
   1023                 n = 0;
   1024             }
   1025             else if (n >= m && _fsum_realloc(&p, n, ps, &m))
   1026                 goto _fsum_error;
   1027             else
   1028                 p[n++] = x;
   1029         }
   1030     }
   1031 
   1032     if (special_sum != 0.0) {
   1033         if (Py_IS_NAN(inf_sum))
   1034             PyErr_SetString(PyExc_ValueError,
   1035                             "-inf + inf in fsum");
   1036         else
   1037             sum = PyFloat_FromDouble(special_sum);
   1038         goto _fsum_error;
   1039     }
   1040 
   1041     hi = 0.0;
   1042     if (n > 0) {
   1043         hi = p[--n];
   1044         /* sum_exact(ps, hi) from the top, stop when the sum becomes
   1045            inexact. */
   1046         while (n > 0) {
   1047             x = hi;
   1048             y = p[--n];
   1049             assert(fabs(y) < fabs(x));
   1050             hi = x + y;
   1051             yr = hi - x;
   1052             lo = y - yr;
   1053             if (lo != 0.0)
   1054                 break;
   1055         }
   1056         /* Make half-even rounding work across multiple partials.
   1057            Needed so that sum([1e-16, 1, 1e16]) will round-up the last
   1058            digit to two instead of down to zero (the 1e-16 makes the 1
   1059            slightly closer to two).  With a potential 1 ULP rounding
   1060            error fixed-up, math.fsum() can guarantee commutativity. */
   1061         if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
   1062                       (lo > 0.0 && p[n-1] > 0.0))) {
   1063             y = lo * 2.0;
   1064             x = hi + y;
   1065             yr = x - hi;
   1066             if (y == yr)
   1067                 hi = x;
   1068         }
   1069     }
   1070     sum = PyFloat_FromDouble(hi);
   1071 
   1072 _fsum_error:
   1073     PyFPE_END_PROTECT(hi)
   1074     Py_DECREF(iter);
   1075     if (p != ps)
   1076         PyMem_Free(p);
   1077     return sum;
   1078 }
   1079 
   1080 #undef NUM_PARTIALS
   1081 
   1082 PyDoc_STRVAR(math_fsum_doc,
   1083 "fsum(iterable)\n\n\
   1084 Return an accurate floating point sum of values in the iterable.\n\
   1085 Assumes IEEE-754 floating point arithmetic.");
   1086 
   1087 static PyObject *
   1088 math_factorial(PyObject *self, PyObject *arg)
   1089 {
   1090     long i, x;
   1091     PyObject *result, *iobj, *newresult;
   1092 
   1093     if (PyFloat_Check(arg)) {
   1094         PyObject *lx;
   1095         double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
   1096         if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
   1097             PyErr_SetString(PyExc_ValueError,
   1098                 "factorial() only accepts integral values");
   1099             return NULL;
   1100         }
   1101         lx = PyLong_FromDouble(dx);
   1102         if (lx == NULL)
   1103             return NULL;
   1104         x = PyLong_AsLong(lx);
   1105         Py_DECREF(lx);
   1106     }
   1107     else
   1108         x = PyInt_AsLong(arg);
   1109 
   1110     if (x == -1 && PyErr_Occurred())
   1111         return NULL;
   1112     if (x < 0) {
   1113         PyErr_SetString(PyExc_ValueError,
   1114             "factorial() not defined for negative values");
   1115         return NULL;
   1116     }
   1117 
   1118     result = (PyObject *)PyInt_FromLong(1);
   1119     if (result == NULL)
   1120         return NULL;
   1121     for (i=1 ; i<=x ; i++) {
   1122         iobj = (PyObject *)PyInt_FromLong(i);
   1123         if (iobj == NULL)
   1124             goto error;
   1125         newresult = PyNumber_Multiply(result, iobj);
   1126         Py_DECREF(iobj);
   1127         if (newresult == NULL)
   1128             goto error;
   1129         Py_DECREF(result);
   1130         result = newresult;
   1131     }
   1132     return result;
   1133 
   1134 error:
   1135     Py_DECREF(result);
   1136     return NULL;
   1137 }
   1138 
   1139 PyDoc_STRVAR(math_factorial_doc,
   1140 "factorial(x) -> Integral\n"
   1141 "\n"
   1142 "Find x!. Raise a ValueError if x is negative or non-integral.");
   1143 
   1144 static PyObject *
   1145 math_trunc(PyObject *self, PyObject *number)
   1146 {
   1147     return PyObject_CallMethod(number, "__trunc__", NULL);
   1148 }
   1149 
   1150 PyDoc_STRVAR(math_trunc_doc,
   1151 "trunc(x:Real) -> Integral\n"
   1152 "\n"
   1153 "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
   1154 
   1155 static PyObject *
   1156 math_frexp(PyObject *self, PyObject *arg)
   1157 {
   1158     int i;
   1159     double x = PyFloat_AsDouble(arg);
   1160     if (x == -1.0 && PyErr_Occurred())
   1161         return NULL;
   1162     /* deal with special cases directly, to sidestep platform
   1163        differences */
   1164     if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
   1165         i = 0;
   1166     }
   1167     else {
   1168         PyFPE_START_PROTECT("in math_frexp", return 0);
   1169         x = frexp(x, &i);
   1170         PyFPE_END_PROTECT(x);
   1171     }
   1172     return Py_BuildValue("(di)", x, i);
   1173 }
   1174 
   1175 PyDoc_STRVAR(math_frexp_doc,
   1176 "frexp(x)\n"
   1177 "\n"
   1178 "Return the mantissa and exponent of x, as pair (m, e).\n"
   1179 "m is a float and e is an int, such that x = m * 2.**e.\n"
   1180 "If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
   1181 
   1182 static PyObject *
   1183 math_ldexp(PyObject *self, PyObject *args)
   1184 {
   1185     double x, r;
   1186     PyObject *oexp;
   1187     long exp;
   1188     int overflow;
   1189     if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
   1190         return NULL;
   1191 
   1192     if (PyLong_Check(oexp) || PyInt_Check(oexp)) {
   1193         /* on overflow, replace exponent with either LONG_MAX
   1194            or LONG_MIN, depending on the sign. */
   1195         exp = PyLong_AsLongAndOverflow(oexp, &overflow);
   1196         if (exp == -1 && PyErr_Occurred())
   1197             return NULL;
   1198         if (overflow)
   1199             exp = overflow < 0 ? LONG_MIN : LONG_MAX;
   1200     }
   1201     else {
   1202         PyErr_SetString(PyExc_TypeError,
   1203                         "Expected an int or long as second argument "
   1204                         "to ldexp.");
   1205         return NULL;
   1206     }
   1207 
   1208     if (x == 0. || !Py_IS_FINITE(x)) {
   1209         /* NaNs, zeros and infinities are returned unchanged */
   1210         r = x;
   1211         errno = 0;
   1212     } else if (exp > INT_MAX) {
   1213         /* overflow */
   1214         r = copysign(Py_HUGE_VAL, x);
   1215         errno = ERANGE;
   1216     } else if (exp < INT_MIN) {
   1217         /* underflow to +-0 */
   1218         r = copysign(0., x);
   1219         errno = 0;
   1220     } else {
   1221         errno = 0;
   1222         PyFPE_START_PROTECT("in math_ldexp", return 0);
   1223         r = ldexp(x, (int)exp);
   1224         PyFPE_END_PROTECT(r);
   1225         if (Py_IS_INFINITY(r))
   1226             errno = ERANGE;
   1227     }
   1228 
   1229     if (errno && is_error(r))
   1230         return NULL;
   1231     return PyFloat_FromDouble(r);
   1232 }
   1233 
   1234 PyDoc_STRVAR(math_ldexp_doc,
   1235 "ldexp(x, i)\n\n\
   1236 Return x * (2**i).");
   1237 
   1238 static PyObject *
   1239 math_modf(PyObject *self, PyObject *arg)
   1240 {
   1241     double y, x = PyFloat_AsDouble(arg);
   1242     if (x == -1.0 && PyErr_Occurred())
   1243         return NULL;
   1244     /* some platforms don't do the right thing for NaNs and
   1245        infinities, so we take care of special cases directly. */
   1246     if (!Py_IS_FINITE(x)) {
   1247         if (Py_IS_INFINITY(x))
   1248             return Py_BuildValue("(dd)", copysign(0., x), x);
   1249         else if (Py_IS_NAN(x))
   1250             return Py_BuildValue("(dd)", x, x);
   1251     }
   1252 
   1253     errno = 0;
   1254     PyFPE_START_PROTECT("in math_modf", return 0);
   1255     x = modf(x, &y);
   1256     PyFPE_END_PROTECT(x);
   1257     return Py_BuildValue("(dd)", x, y);
   1258 }
   1259 
   1260 PyDoc_STRVAR(math_modf_doc,
   1261 "modf(x)\n"
   1262 "\n"
   1263 "Return the fractional and integer parts of x.  Both results carry the sign\n"
   1264 "of x and are floats.");
   1265 
   1266 /* A decent logarithm is easy to compute even for huge longs, but libm can't
   1267    do that by itself -- loghelper can.  func is log or log10, and name is
   1268    "log" or "log10".  Note that overflow of the result isn't possible: a long
   1269    can contain no more than INT_MAX * SHIFT bits, so has value certainly less
   1270    than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
   1271    small enough to fit in an IEEE single.  log and log10 are even smaller.
   1272    However, intermediate overflow is possible for a long if the number of bits
   1273    in that long is larger than PY_SSIZE_T_MAX. */
   1274 
   1275 static PyObject*
   1276 loghelper(PyObject* arg, double (*func)(double), char *funcname)
   1277 {
   1278     /* If it is long, do it ourselves. */
   1279     if (PyLong_Check(arg)) {
   1280         double x, result;
   1281         Py_ssize_t e;
   1282 
   1283         /* Negative or zero inputs give a ValueError. */
   1284         if (Py_SIZE(arg) <= 0) {
   1285             PyErr_SetString(PyExc_ValueError,
   1286                             "math domain error");
   1287             return NULL;
   1288         }
   1289 
   1290         x = PyLong_AsDouble(arg);
   1291         if (x == -1.0 && PyErr_Occurred()) {
   1292             if (!PyErr_ExceptionMatches(PyExc_OverflowError))
   1293                 return NULL;
   1294             /* Here the conversion to double overflowed, but it's possible
   1295                to compute the log anyway.  Clear the exception and continue. */
   1296             PyErr_Clear();
   1297             x = _PyLong_Frexp((PyLongObject *)arg, &e);
   1298             if (x == -1.0 && PyErr_Occurred())
   1299                 return NULL;
   1300             /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
   1301             result = func(x) + func(2.0) * e;
   1302         }
   1303         else
   1304             /* Successfully converted x to a double. */
   1305             result = func(x);
   1306         return PyFloat_FromDouble(result);
   1307     }
   1308 
   1309     /* Else let libm handle it by itself. */
   1310     return math_1(arg, func, 0);
   1311 }
   1312 
   1313 static PyObject *
   1314 math_log(PyObject *self, PyObject *args)
   1315 {
   1316     PyObject *arg;
   1317     PyObject *base = NULL;
   1318     PyObject *num, *den;
   1319     PyObject *ans;
   1320 
   1321     if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
   1322         return NULL;
   1323 
   1324     num = loghelper(arg, m_log, "log");
   1325     if (num == NULL || base == NULL)
   1326         return num;
   1327 
   1328     den = loghelper(base, m_log, "log");
   1329     if (den == NULL) {
   1330         Py_DECREF(num);
   1331         return NULL;
   1332     }
   1333 
   1334     ans = PyNumber_Divide(num, den);
   1335     Py_DECREF(num);
   1336     Py_DECREF(den);
   1337     return ans;
   1338 }
   1339 
   1340 PyDoc_STRVAR(math_log_doc,
   1341 "log(x[, base])\n\n\
   1342 Return the logarithm of x to the given base.\n\
   1343 If the base not specified, returns the natural logarithm (base e) of x.");
   1344 
   1345 static PyObject *
   1346 math_log10(PyObject *self, PyObject *arg)
   1347 {
   1348     return loghelper(arg, m_log10, "log10");
   1349 }
   1350 
   1351 PyDoc_STRVAR(math_log10_doc,
   1352 "log10(x)\n\nReturn the base 10 logarithm of x.");
   1353 
   1354 static PyObject *
   1355 math_fmod(PyObject *self, PyObject *args)
   1356 {
   1357     PyObject *ox, *oy;
   1358     double r, x, y;
   1359     if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
   1360         return NULL;
   1361     x = PyFloat_AsDouble(ox);
   1362     y = PyFloat_AsDouble(oy);
   1363     if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
   1364         return NULL;
   1365     /* fmod(x, +/-Inf) returns x for finite x. */
   1366     if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
   1367         return PyFloat_FromDouble(x);
   1368     errno = 0;
   1369     PyFPE_START_PROTECT("in math_fmod", return 0);
   1370     r = fmod(x, y);
   1371     PyFPE_END_PROTECT(r);
   1372     if (Py_IS_NAN(r)) {
   1373         if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
   1374             errno = EDOM;
   1375         else
   1376             errno = 0;
   1377     }
   1378     if (errno && is_error(r))
   1379         return NULL;
   1380     else
   1381         return PyFloat_FromDouble(r);
   1382 }
   1383 
   1384 PyDoc_STRVAR(math_fmod_doc,
   1385 "fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
   1386 "  x % y may differ.");
   1387 
   1388 static PyObject *
   1389 math_hypot(PyObject *self, PyObject *args)
   1390 {
   1391     PyObject *ox, *oy;
   1392     double r, x, y;
   1393     if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
   1394         return NULL;
   1395     x = PyFloat_AsDouble(ox);
   1396     y = PyFloat_AsDouble(oy);
   1397     if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
   1398         return NULL;
   1399     /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
   1400     if (Py_IS_INFINITY(x))
   1401         return PyFloat_FromDouble(fabs(x));
   1402     if (Py_IS_INFINITY(y))
   1403         return PyFloat_FromDouble(fabs(y));
   1404     errno = 0;
   1405     PyFPE_START_PROTECT("in math_hypot", return 0);
   1406     r = hypot(x, y);
   1407     PyFPE_END_PROTECT(r);
   1408     if (Py_IS_NAN(r)) {
   1409         if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
   1410             errno = EDOM;
   1411         else
   1412             errno = 0;
   1413     }
   1414     else if (Py_IS_INFINITY(r)) {
   1415         if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
   1416             errno = ERANGE;
   1417         else
   1418             errno = 0;
   1419     }
   1420     if (errno && is_error(r))
   1421         return NULL;
   1422     else
   1423         return PyFloat_FromDouble(r);
   1424 }
   1425 
   1426 PyDoc_STRVAR(math_hypot_doc,
   1427 "hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
   1428 
   1429 /* pow can't use math_2, but needs its own wrapper: the problem is
   1430    that an infinite result can arise either as a result of overflow
   1431    (in which case OverflowError should be raised) or as a result of
   1432    e.g. 0.**-5. (for which ValueError needs to be raised.)
   1433 */
   1434 
   1435 static PyObject *
   1436 math_pow(PyObject *self, PyObject *args)
   1437 {
   1438     PyObject *ox, *oy;
   1439     double r, x, y;
   1440     int odd_y;
   1441 
   1442     if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
   1443         return NULL;
   1444     x = PyFloat_AsDouble(ox);
   1445     y = PyFloat_AsDouble(oy);
   1446     if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
   1447         return NULL;
   1448 
   1449     /* deal directly with IEEE specials, to cope with problems on various
   1450        platforms whose semantics don't exactly match C99 */
   1451     r = 0.; /* silence compiler warning */
   1452     if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
   1453         errno = 0;
   1454         if (Py_IS_NAN(x))
   1455             r = y == 0. ? 1. : x; /* NaN**0 = 1 */
   1456         else if (Py_IS_NAN(y))
   1457             r = x == 1. ? 1. : y; /* 1**NaN = 1 */
   1458         else if (Py_IS_INFINITY(x)) {
   1459             odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
   1460             if (y > 0.)
   1461                 r = odd_y ? x : fabs(x);
   1462             else if (y == 0.)
   1463                 r = 1.;
   1464             else /* y < 0. */
   1465                 r = odd_y ? copysign(0., x) : 0.;
   1466         }
   1467         else if (Py_IS_INFINITY(y)) {
   1468             if (fabs(x) == 1.0)
   1469                 r = 1.;
   1470             else if (y > 0. && fabs(x) > 1.0)
   1471                 r = y;
   1472             else if (y < 0. && fabs(x) < 1.0) {
   1473                 r = -y; /* result is +inf */
   1474                 if (x == 0.) /* 0**-inf: divide-by-zero */
   1475                     errno = EDOM;
   1476             }
   1477             else
   1478                 r = 0.;
   1479         }
   1480     }
   1481     else {
   1482         /* let libm handle finite**finite */
   1483         errno = 0;
   1484         PyFPE_START_PROTECT("in math_pow", return 0);
   1485         r = pow(x, y);
   1486         PyFPE_END_PROTECT(r);
   1487         /* a NaN result should arise only from (-ve)**(finite
   1488            non-integer); in this case we want to raise ValueError. */
   1489         if (!Py_IS_FINITE(r)) {
   1490             if (Py_IS_NAN(r)) {
   1491                 errno = EDOM;
   1492             }
   1493             /*
   1494                an infinite result here arises either from:
   1495                (A) (+/-0.)**negative (-> divide-by-zero)
   1496                (B) overflow of x**y with x and y finite
   1497             */
   1498             else if (Py_IS_INFINITY(r)) {
   1499                 if (x == 0.)
   1500                     errno = EDOM;
   1501                 else
   1502                     errno = ERANGE;
   1503             }
   1504         }
   1505     }
   1506 
   1507     if (errno && is_error(r))
   1508         return NULL;
   1509     else
   1510         return PyFloat_FromDouble(r);
   1511 }
   1512 
   1513 PyDoc_STRVAR(math_pow_doc,
   1514 "pow(x, y)\n\nReturn x**y (x to the power of y).");
   1515 
   1516 static const double degToRad = Py_MATH_PI / 180.0;
   1517 static const double radToDeg = 180.0 / Py_MATH_PI;
   1518 
   1519 static PyObject *
   1520 math_degrees(PyObject *self, PyObject *arg)
   1521 {
   1522     double x = PyFloat_AsDouble(arg);
   1523     if (x == -1.0 && PyErr_Occurred())
   1524         return NULL;
   1525     return PyFloat_FromDouble(x * radToDeg);
   1526 }
   1527 
   1528 PyDoc_STRVAR(math_degrees_doc,
   1529 "degrees(x)\n\n\
   1530 Convert angle x from radians to degrees.");
   1531 
   1532 static PyObject *
   1533 math_radians(PyObject *self, PyObject *arg)
   1534 {
   1535     double x = PyFloat_AsDouble(arg);
   1536     if (x == -1.0 && PyErr_Occurred())
   1537         return NULL;
   1538     return PyFloat_FromDouble(x * degToRad);
   1539 }
   1540 
   1541 PyDoc_STRVAR(math_radians_doc,
   1542 "radians(x)\n\n\
   1543 Convert angle x from degrees to radians.");
   1544 
   1545 static PyObject *
   1546 math_isnan(PyObject *self, PyObject *arg)
   1547 {
   1548     double x = PyFloat_AsDouble(arg);
   1549     if (x == -1.0 && PyErr_Occurred())
   1550         return NULL;
   1551     return PyBool_FromLong((long)Py_IS_NAN(x));
   1552 }
   1553 
   1554 PyDoc_STRVAR(math_isnan_doc,
   1555 "isnan(x) -> bool\n\n\
   1556 Check if float x is not a number (NaN).");
   1557 
   1558 static PyObject *
   1559 math_isinf(PyObject *self, PyObject *arg)
   1560 {
   1561     double x = PyFloat_AsDouble(arg);
   1562     if (x == -1.0 && PyErr_Occurred())
   1563         return NULL;
   1564     return PyBool_FromLong((long)Py_IS_INFINITY(x));
   1565 }
   1566 
   1567 PyDoc_STRVAR(math_isinf_doc,
   1568 "isinf(x) -> bool\n\n\
   1569 Check if float x is infinite (positive or negative).");
   1570 
   1571 static PyMethodDef math_methods[] = {
   1572     {"acos",            math_acos,      METH_O,         math_acos_doc},
   1573     {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
   1574     {"asin",            math_asin,      METH_O,         math_asin_doc},
   1575     {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
   1576     {"atan",            math_atan,      METH_O,         math_atan_doc},
   1577     {"atan2",           math_atan2,     METH_VARARGS,   math_atan2_doc},
   1578     {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
   1579     {"ceil",            math_ceil,      METH_O,         math_ceil_doc},
   1580     {"copysign",        math_copysign,  METH_VARARGS,   math_copysign_doc},
   1581     {"cos",             math_cos,       METH_O,         math_cos_doc},
   1582     {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
   1583     {"degrees",         math_degrees,   METH_O,         math_degrees_doc},
   1584     {"erf",             math_erf,       METH_O,         math_erf_doc},
   1585     {"erfc",            math_erfc,      METH_O,         math_erfc_doc},
   1586     {"exp",             math_exp,       METH_O,         math_exp_doc},
   1587     {"expm1",           math_expm1,     METH_O,         math_expm1_doc},
   1588     {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
   1589     {"factorial",       math_factorial, METH_O,         math_factorial_doc},
   1590     {"floor",           math_floor,     METH_O,         math_floor_doc},
   1591     {"fmod",            math_fmod,      METH_VARARGS,   math_fmod_doc},
   1592     {"frexp",           math_frexp,     METH_O,         math_frexp_doc},
   1593     {"fsum",            math_fsum,      METH_O,         math_fsum_doc},
   1594     {"gamma",           math_gamma,     METH_O,         math_gamma_doc},
   1595     {"hypot",           math_hypot,     METH_VARARGS,   math_hypot_doc},
   1596     {"isinf",           math_isinf,     METH_O,         math_isinf_doc},
   1597     {"isnan",           math_isnan,     METH_O,         math_isnan_doc},
   1598     {"ldexp",           math_ldexp,     METH_VARARGS,   math_ldexp_doc},
   1599     {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc},
   1600     {"log",             math_log,       METH_VARARGS,   math_log_doc},
   1601     {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
   1602     {"log10",           math_log10,     METH_O,         math_log10_doc},
   1603     {"modf",            math_modf,      METH_O,         math_modf_doc},
   1604     {"pow",             math_pow,       METH_VARARGS,   math_pow_doc},
   1605     {"radians",         math_radians,   METH_O,         math_radians_doc},
   1606     {"sin",             math_sin,       METH_O,         math_sin_doc},
   1607     {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
   1608     {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
   1609     {"tan",             math_tan,       METH_O,         math_tan_doc},
   1610     {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
   1611     {"trunc",           math_trunc,     METH_O,         math_trunc_doc},
   1612     {NULL,              NULL}           /* sentinel */
   1613 };
   1614 
   1615 
   1616 PyDoc_STRVAR(module_doc,
   1617 "This module is always available.  It provides access to the\n"
   1618 "mathematical functions defined by the C standard.");
   1619 
   1620 PyMODINIT_FUNC
   1621 initmath(void)
   1622 {
   1623     PyObject *m;
   1624 
   1625     m = Py_InitModule3("math", math_methods, module_doc);
   1626     if (m == NULL)
   1627         goto finally;
   1628 
   1629     PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
   1630     PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
   1631 
   1632     finally:
   1633     return;
   1634 }
   1635