Home | History | Annotate | Download | only in GenFw
      1 /** @file
      2 Elf64 convert solution
      3 
      4 Copyright (c) 2010 - 2016, Intel Corporation. All rights reserved.<BR>
      5 Portions copyright (c) 2013-2014, ARM Ltd. All rights reserved.<BR>
      6 
      7 This program and the accompanying materials are licensed and made available
      8 under the terms and conditions of the BSD License which accompanies this
      9 distribution.  The full text of the license may be found at
     10 http://opensource.org/licenses/bsd-license.php
     11 
     12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     14 
     15 **/
     16 
     17 #include "WinNtInclude.h"
     18 
     19 #ifndef __GNUC__
     20 #include <windows.h>
     21 #include <io.h>
     22 #endif
     23 #include <assert.h>
     24 #include <stdbool.h>
     25 #include <stdio.h>
     26 #include <stdlib.h>
     27 #include <string.h>
     28 #include <time.h>
     29 #include <ctype.h>
     30 
     31 #include <Common/UefiBaseTypes.h>
     32 #include <IndustryStandard/PeImage.h>
     33 
     34 #include "PeCoffLib.h"
     35 #include "EfiUtilityMsgs.h"
     36 
     37 #include "GenFw.h"
     38 #include "ElfConvert.h"
     39 #include "Elf64Convert.h"
     40 
     41 STATIC
     42 VOID
     43 ScanSections64 (
     44   VOID
     45   );
     46 
     47 STATIC
     48 BOOLEAN
     49 WriteSections64 (
     50   SECTION_FILTER_TYPES  FilterType
     51   );
     52 
     53 STATIC
     54 VOID
     55 WriteRelocations64 (
     56   VOID
     57   );
     58 
     59 STATIC
     60 VOID
     61 WriteDebug64 (
     62   VOID
     63   );
     64 
     65 STATIC
     66 VOID
     67 SetImageSize64 (
     68   VOID
     69   );
     70 
     71 STATIC
     72 VOID
     73 CleanUp64 (
     74   VOID
     75   );
     76 
     77 //
     78 // Rename ELF32 strucutres to common names to help when porting to ELF64.
     79 //
     80 typedef Elf64_Shdr Elf_Shdr;
     81 typedef Elf64_Ehdr Elf_Ehdr;
     82 typedef Elf64_Rel Elf_Rel;
     83 typedef Elf64_Rela Elf_Rela;
     84 typedef Elf64_Sym Elf_Sym;
     85 typedef Elf64_Phdr Elf_Phdr;
     86 typedef Elf64_Dyn Elf_Dyn;
     87 #define ELFCLASS ELFCLASS64
     88 #define ELF_R_TYPE(r) ELF64_R_TYPE(r)
     89 #define ELF_R_SYM(r) ELF64_R_SYM(r)
     90 
     91 //
     92 // Well known ELF structures.
     93 //
     94 STATIC Elf_Ehdr *mEhdr;
     95 STATIC Elf_Shdr *mShdrBase;
     96 STATIC Elf_Phdr *mPhdrBase;
     97 
     98 //
     99 // Coff information
    100 //
    101 STATIC UINT32 mCoffAlignment = 0x20;
    102 
    103 //
    104 // PE section alignment.
    105 //
    106 STATIC const UINT16 mCoffNbrSections = 4;
    107 
    108 //
    109 // ELF sections to offset in Coff file.
    110 //
    111 STATIC UINT32 *mCoffSectionsOffset = NULL;
    112 
    113 //
    114 // Offsets in COFF file
    115 //
    116 STATIC UINT32 mNtHdrOffset;
    117 STATIC UINT32 mTextOffset;
    118 STATIC UINT32 mDataOffset;
    119 STATIC UINT32 mHiiRsrcOffset;
    120 STATIC UINT32 mRelocOffset;
    121 STATIC UINT32 mDebugOffset;
    122 
    123 //
    124 // Initialization Function
    125 //
    126 BOOLEAN
    127 InitializeElf64 (
    128   UINT8               *FileBuffer,
    129   ELF_FUNCTION_TABLE  *ElfFunctions
    130   )
    131 {
    132   //
    133   // Initialize data pointer and structures.
    134   //
    135   VerboseMsg ("Set EHDR");
    136   mEhdr = (Elf_Ehdr*) FileBuffer;
    137 
    138   //
    139   // Check the ELF64 specific header information.
    140   //
    141   VerboseMsg ("Check ELF64 Header Information");
    142   if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) {
    143     Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64");
    144     return FALSE;
    145   }
    146   if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
    147     Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
    148     return FALSE;
    149   }
    150   if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
    151     Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
    152     return FALSE;
    153   }
    154   if (!((mEhdr->e_machine == EM_X86_64) || (mEhdr->e_machine == EM_AARCH64))) {
    155     Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_X86_64 or EM_AARCH64");
    156     return FALSE;
    157   }
    158   if (mEhdr->e_version != EV_CURRENT) {
    159     Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
    160     return FALSE;
    161   }
    162 
    163   //
    164   // Update section header pointers
    165   //
    166   VerboseMsg ("Update Header Pointers");
    167   mShdrBase  = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
    168   mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);
    169 
    170   //
    171   // Create COFF Section offset buffer and zero.
    172   //
    173   VerboseMsg ("Create COFF Section Offset Buffer");
    174   mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
    175   if (mCoffSectionsOffset == NULL) {
    176     Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
    177     return FALSE;
    178   }
    179   memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));
    180 
    181   //
    182   // Fill in function pointers.
    183   //
    184   VerboseMsg ("Fill in Function Pointers");
    185   ElfFunctions->ScanSections = ScanSections64;
    186   ElfFunctions->WriteSections = WriteSections64;
    187   ElfFunctions->WriteRelocations = WriteRelocations64;
    188   ElfFunctions->WriteDebug = WriteDebug64;
    189   ElfFunctions->SetImageSize = SetImageSize64;
    190   ElfFunctions->CleanUp = CleanUp64;
    191 
    192   return TRUE;
    193 }
    194 
    195 
    196 //
    197 // Header by Index functions
    198 //
    199 STATIC
    200 Elf_Shdr*
    201 GetShdrByIndex (
    202   UINT32 Num
    203   )
    204 {
    205   if (Num >= mEhdr->e_shnum) {
    206     Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
    207     exit(EXIT_FAILURE);
    208   }
    209 
    210   return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
    211 }
    212 
    213 STATIC
    214 UINT32
    215 CoffAlign (
    216   UINT32 Offset
    217   )
    218 {
    219   return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
    220 }
    221 
    222 STATIC
    223 UINT32
    224 DebugRvaAlign (
    225   UINT32 Offset
    226   )
    227 {
    228   return (Offset + 3) & ~3;
    229 }
    230 
    231 //
    232 // filter functions
    233 //
    234 STATIC
    235 BOOLEAN
    236 IsTextShdr (
    237   Elf_Shdr *Shdr
    238   )
    239 {
    240   return (BOOLEAN) ((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC);
    241 }
    242 
    243 STATIC
    244 BOOLEAN
    245 IsHiiRsrcShdr (
    246   Elf_Shdr *Shdr
    247   )
    248 {
    249   Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
    250 
    251   return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
    252 }
    253 
    254 STATIC
    255 BOOLEAN
    256 IsDataShdr (
    257   Elf_Shdr *Shdr
    258   )
    259 {
    260   if (IsHiiRsrcShdr(Shdr)) {
    261     return FALSE;
    262   }
    263   return (BOOLEAN) (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
    264 }
    265 
    266 STATIC
    267 BOOLEAN
    268 IsStrtabShdr (
    269   Elf_Shdr *Shdr
    270   )
    271 {
    272   Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
    273 
    274   return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
    275 }
    276 
    277 STATIC
    278 Elf_Shdr *
    279 FindStrtabShdr (
    280   VOID
    281   )
    282 {
    283   UINT32 i;
    284   for (i = 0; i < mEhdr->e_shnum; i++) {
    285     Elf_Shdr *shdr = GetShdrByIndex(i);
    286     if (IsStrtabShdr(shdr)) {
    287       return shdr;
    288     }
    289   }
    290   return NULL;
    291 }
    292 
    293 STATIC
    294 const UINT8 *
    295 GetSymName (
    296   Elf_Sym *Sym
    297   )
    298 {
    299   if (Sym->st_name == 0) {
    300     return NULL;
    301   }
    302 
    303   Elf_Shdr *StrtabShdr = FindStrtabShdr();
    304   if (StrtabShdr == NULL) {
    305     return NULL;
    306   }
    307 
    308   assert(Sym->st_name < StrtabShdr->sh_size);
    309 
    310   UINT8* StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;
    311 
    312   bool foundEnd = false;
    313   UINT32 i;
    314   for (i= Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
    315     foundEnd = StrtabContents[i] == 0;
    316   }
    317   assert(foundEnd);
    318 
    319   return StrtabContents + Sym->st_name;
    320 }
    321 
    322 //
    323 // Elf functions interface implementation
    324 //
    325 
    326 STATIC
    327 VOID
    328 ScanSections64 (
    329   VOID
    330   )
    331 {
    332   UINT32                          i;
    333   EFI_IMAGE_DOS_HEADER            *DosHdr;
    334   EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
    335   UINT32                          CoffEntry;
    336   UINT32                          SectionCount;
    337   BOOLEAN                         FoundSection;
    338 
    339   CoffEntry = 0;
    340   mCoffOffset = 0;
    341 
    342   //
    343   // Coff file start with a DOS header.
    344   //
    345   mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
    346   mNtHdrOffset = mCoffOffset;
    347   switch (mEhdr->e_machine) {
    348   case EM_X86_64:
    349   case EM_IA_64:
    350   case EM_AARCH64:
    351     mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
    352   break;
    353   default:
    354     VerboseMsg ("%s unknown e_machine type %hu. Assume X64", mInImageName, mEhdr->e_machine);
    355     mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
    356   break;
    357   }
    358 
    359   mTableOffset = mCoffOffset;
    360   mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
    361 
    362   //
    363   // Set mCoffAlignment to the maximum alignment of the input sections
    364   // we care about
    365   //
    366   for (i = 0; i < mEhdr->e_shnum; i++) {
    367     Elf_Shdr *shdr = GetShdrByIndex(i);
    368     if (shdr->sh_addralign <= mCoffAlignment) {
    369       continue;
    370     }
    371     if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
    372       mCoffAlignment = (UINT32)shdr->sh_addralign;
    373     }
    374   }
    375 
    376   //
    377   // Move the PE/COFF header right before the first section. This will help us
    378   // save space when converting to TE.
    379   //
    380   if (mCoffAlignment > mCoffOffset) {
    381     mNtHdrOffset += mCoffAlignment - mCoffOffset;
    382     mTableOffset += mCoffAlignment - mCoffOffset;
    383     mCoffOffset = mCoffAlignment;
    384   }
    385 
    386   //
    387   // First text sections.
    388   //
    389   mCoffOffset = CoffAlign(mCoffOffset);
    390   mTextOffset = mCoffOffset;
    391   FoundSection = FALSE;
    392   SectionCount = 0;
    393   for (i = 0; i < mEhdr->e_shnum; i++) {
    394     Elf_Shdr *shdr = GetShdrByIndex(i);
    395     if (IsTextShdr(shdr)) {
    396       if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
    397         // the alignment field is valid
    398         if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
    399           // if the section address is aligned we must align PE/COFF
    400           mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
    401         } else {
    402           Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
    403         }
    404       }
    405 
    406       /* Relocate entry.  */
    407       if ((mEhdr->e_entry >= shdr->sh_addr) &&
    408           (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
    409         CoffEntry = (UINT32) (mCoffOffset + mEhdr->e_entry - shdr->sh_addr);
    410       }
    411 
    412       //
    413       // Set mTextOffset with the offset of the first '.text' section
    414       //
    415       if (!FoundSection) {
    416         mTextOffset = mCoffOffset;
    417         FoundSection = TRUE;
    418       }
    419 
    420       mCoffSectionsOffset[i] = mCoffOffset;
    421       mCoffOffset += (UINT32) shdr->sh_size;
    422       SectionCount ++;
    423     }
    424   }
    425 
    426   if (!FoundSection) {
    427     Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
    428     assert (FALSE);
    429   }
    430 
    431   mDebugOffset = DebugRvaAlign(mCoffOffset);
    432   mCoffOffset = CoffAlign(mCoffOffset);
    433 
    434   if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    435     Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
    436   }
    437 
    438   //
    439   //  Then data sections.
    440   //
    441   mDataOffset = mCoffOffset;
    442   FoundSection = FALSE;
    443   SectionCount = 0;
    444   for (i = 0; i < mEhdr->e_shnum; i++) {
    445     Elf_Shdr *shdr = GetShdrByIndex(i);
    446     if (IsDataShdr(shdr)) {
    447       if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
    448         // the alignment field is valid
    449         if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
    450           // if the section address is aligned we must align PE/COFF
    451           mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
    452         } else {
    453           Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
    454         }
    455       }
    456 
    457       //
    458       // Set mDataOffset with the offset of the first '.data' section
    459       //
    460       if (!FoundSection) {
    461         mDataOffset = mCoffOffset;
    462         FoundSection = TRUE;
    463       }
    464       mCoffSectionsOffset[i] = mCoffOffset;
    465       mCoffOffset += (UINT32) shdr->sh_size;
    466       SectionCount ++;
    467     }
    468   }
    469 
    470   //
    471   // Make room for .debug data in .data (or .text if .data is empty) instead of
    472   // putting it in a section of its own. This is explicitly allowed by the
    473   // PE/COFF spec, and prevents bloat in the binary when using large values for
    474   // section alignment.
    475   //
    476   if (SectionCount > 0) {
    477     mDebugOffset = DebugRvaAlign(mCoffOffset);
    478   }
    479   mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
    480                 sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
    481                 strlen(mInImageName) + 1;
    482 
    483   mCoffOffset = CoffAlign(mCoffOffset);
    484   if (SectionCount == 0) {
    485     mDataOffset = mCoffOffset;
    486   }
    487 
    488   if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    489     Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
    490   }
    491 
    492   //
    493   //  The HII resource sections.
    494   //
    495   mHiiRsrcOffset = mCoffOffset;
    496   for (i = 0; i < mEhdr->e_shnum; i++) {
    497     Elf_Shdr *shdr = GetShdrByIndex(i);
    498     if (IsHiiRsrcShdr(shdr)) {
    499       if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
    500         // the alignment field is valid
    501         if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
    502           // if the section address is aligned we must align PE/COFF
    503           mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
    504         } else {
    505           Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
    506         }
    507       }
    508       if (shdr->sh_size != 0) {
    509         mHiiRsrcOffset = mCoffOffset;
    510         mCoffSectionsOffset[i] = mCoffOffset;
    511         mCoffOffset += (UINT32) shdr->sh_size;
    512         mCoffOffset = CoffAlign(mCoffOffset);
    513         SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
    514       }
    515       break;
    516     }
    517   }
    518 
    519   mRelocOffset = mCoffOffset;
    520 
    521   //
    522   // Allocate base Coff file.  Will be expanded later for relocations.
    523   //
    524   mCoffFile = (UINT8 *)malloc(mCoffOffset);
    525   if (mCoffFile == NULL) {
    526     Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
    527   }
    528   assert (mCoffFile != NULL);
    529   memset(mCoffFile, 0, mCoffOffset);
    530 
    531   //
    532   // Fill headers.
    533   //
    534   DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
    535   DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
    536   DosHdr->e_lfanew = mNtHdrOffset;
    537 
    538   NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);
    539 
    540   NtHdr->Pe32Plus.Signature = EFI_IMAGE_NT_SIGNATURE;
    541 
    542   switch (mEhdr->e_machine) {
    543   case EM_X86_64:
    544     NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
    545     NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    546     break;
    547   case EM_IA_64:
    548     NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_IPF;
    549     NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    550     break;
    551   case EM_AARCH64:
    552     NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_AARCH64;
    553     NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    554     break;
    555   default:
    556     VerboseMsg ("%s unknown e_machine type. Assume X64", (UINTN)mEhdr->e_machine);
    557     NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
    558     NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    559   }
    560 
    561   NtHdr->Pe32Plus.FileHeader.NumberOfSections = mCoffNbrSections;
    562   NtHdr->Pe32Plus.FileHeader.TimeDateStamp = (UINT32) time(NULL);
    563   mImageTimeStamp = NtHdr->Pe32Plus.FileHeader.TimeDateStamp;
    564   NtHdr->Pe32Plus.FileHeader.PointerToSymbolTable = 0;
    565   NtHdr->Pe32Plus.FileHeader.NumberOfSymbols = 0;
    566   NtHdr->Pe32Plus.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32Plus.OptionalHeader);
    567   NtHdr->Pe32Plus.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
    568     | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
    569     | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
    570     | EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE;
    571 
    572   NtHdr->Pe32Plus.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
    573   NtHdr->Pe32Plus.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
    574   NtHdr->Pe32Plus.OptionalHeader.SizeOfUninitializedData = 0;
    575   NtHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint = CoffEntry;
    576 
    577   NtHdr->Pe32Plus.OptionalHeader.BaseOfCode = mTextOffset;
    578 
    579   NtHdr->Pe32Plus.OptionalHeader.ImageBase = 0;
    580   NtHdr->Pe32Plus.OptionalHeader.SectionAlignment = mCoffAlignment;
    581   NtHdr->Pe32Plus.OptionalHeader.FileAlignment = mCoffAlignment;
    582   NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = 0;
    583 
    584   NtHdr->Pe32Plus.OptionalHeader.SizeOfHeaders = mTextOffset;
    585   NtHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
    586 
    587   //
    588   // Section headers.
    589   //
    590   if ((mDataOffset - mTextOffset) > 0) {
    591     CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
    592             EFI_IMAGE_SCN_CNT_CODE
    593             | EFI_IMAGE_SCN_MEM_EXECUTE
    594             | EFI_IMAGE_SCN_MEM_READ);
    595   } else {
    596     // Don't make a section of size 0.
    597     NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
    598   }
    599 
    600   if ((mHiiRsrcOffset - mDataOffset) > 0) {
    601     CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
    602             EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
    603             | EFI_IMAGE_SCN_MEM_WRITE
    604             | EFI_IMAGE_SCN_MEM_READ);
    605   } else {
    606     // Don't make a section of size 0.
    607     NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
    608   }
    609 
    610   if ((mRelocOffset - mHiiRsrcOffset) > 0) {
    611     CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
    612             EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
    613             | EFI_IMAGE_SCN_MEM_READ);
    614 
    615     NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
    616     NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
    617   } else {
    618     // Don't make a section of size 0.
    619     NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
    620   }
    621 
    622 }
    623 
    624 STATIC
    625 BOOLEAN
    626 WriteSections64 (
    627   SECTION_FILTER_TYPES  FilterType
    628   )
    629 {
    630   UINT32      Idx;
    631   Elf_Shdr    *SecShdr;
    632   UINT32      SecOffset;
    633   BOOLEAN     (*Filter)(Elf_Shdr *);
    634 
    635   //
    636   // Initialize filter pointer
    637   //
    638   switch (FilterType) {
    639     case SECTION_TEXT:
    640       Filter = IsTextShdr;
    641       break;
    642     case SECTION_HII:
    643       Filter = IsHiiRsrcShdr;
    644       break;
    645     case SECTION_DATA:
    646       Filter = IsDataShdr;
    647       break;
    648     default:
    649       return FALSE;
    650   }
    651 
    652   //
    653   // First: copy sections.
    654   //
    655   for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    656     Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    657     if ((*Filter)(Shdr)) {
    658       switch (Shdr->sh_type) {
    659       case SHT_PROGBITS:
    660         /* Copy.  */
    661         memcpy(mCoffFile + mCoffSectionsOffset[Idx],
    662               (UINT8*)mEhdr + Shdr->sh_offset,
    663               (size_t) Shdr->sh_size);
    664         break;
    665 
    666       case SHT_NOBITS:
    667         memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
    668         break;
    669 
    670       default:
    671         //
    672         //  Ignore for unkown section type.
    673         //
    674         VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
    675         break;
    676       }
    677     }
    678   }
    679 
    680   //
    681   // Second: apply relocations.
    682   //
    683   VerboseMsg ("Applying Relocations...");
    684   for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    685     //
    686     // Determine if this is a relocation section.
    687     //
    688     Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    689     if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
    690       continue;
    691     }
    692 
    693     //
    694     // If this is a ET_DYN (PIE) executable, we will encounter a dynamic SHT_RELA
    695     // section that applies to the entire binary, and which will have its section
    696     // index set to #0 (which is a NULL section with the SHF_ALLOC bit cleared).
    697     //
    698     // In the absence of GOT based relocations (which we currently don't support),
    699     // this RELA section will contain redundant R_xxx_RELATIVE relocations, one
    700     // for every R_xxx_xx64 relocation appearing in the per-section RELA sections.
    701     // (i.e., .rela.text and .rela.data)
    702     //
    703     if (RelShdr->sh_info == 0) {
    704       continue;
    705     }
    706 
    707     //
    708     // Relocation section found.  Now extract section information that the relocations
    709     // apply to in the ELF data and the new COFF data.
    710     //
    711     SecShdr = GetShdrByIndex(RelShdr->sh_info);
    712     SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
    713 
    714     //
    715     // Only process relocations for the current filter type.
    716     //
    717     if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
    718       UINT64 RelIdx;
    719 
    720       //
    721       // Determine the symbol table referenced by the relocation data.
    722       //
    723       Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
    724       UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
    725 
    726       //
    727       // Process all relocation entries for this section.
    728       //
    729       for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {
    730 
    731         //
    732         // Set pointer to relocation entry
    733         //
    734         Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
    735 
    736         //
    737         // Set pointer to symbol table entry associated with the relocation entry.
    738         //
    739         Elf_Sym  *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
    740 
    741         Elf_Shdr *SymShdr;
    742         UINT8    *Targ;
    743 
    744         //
    745         // Check section header index found in symbol table and get the section
    746         // header location.
    747         //
    748         if (Sym->st_shndx == SHN_UNDEF
    749             || Sym->st_shndx >= mEhdr->e_shnum) {
    750           const UINT8 *SymName = GetSymName(Sym);
    751           if (SymName == NULL) {
    752             SymName = (const UINT8 *)"<unknown>";
    753           }
    754 
    755           Error (NULL, 0, 3000, "Invalid",
    756                  "%s: Bad definition for symbol '%s'@%#llx or unsupported symbol type.  "
    757                  "For example, absolute and undefined symbols are not supported.",
    758                  mInImageName, SymName, Sym->st_value);
    759 
    760           exit(EXIT_FAILURE);
    761         }
    762         SymShdr = GetShdrByIndex(Sym->st_shndx);
    763 
    764         //
    765         // Convert the relocation data to a pointer into the coff file.
    766         //
    767         // Note:
    768         //   r_offset is the virtual address of the storage unit to be relocated.
    769         //   sh_addr is the virtual address for the base of the section.
    770         //
    771         //   r_offset in a memory address.
    772         //   Convert it to a pointer in the coff file.
    773         //
    774         Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
    775 
    776         //
    777         // Determine how to handle each relocation type based on the machine type.
    778         //
    779         if (mEhdr->e_machine == EM_X86_64) {
    780           switch (ELF_R_TYPE(Rel->r_info)) {
    781           case R_X86_64_NONE:
    782             break;
    783           case R_X86_64_64:
    784             //
    785             // Absolute relocation.
    786             //
    787             VerboseMsg ("R_X86_64_64");
    788             VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
    789               (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
    790               *(UINT64 *)Targ);
    791             *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
    792             VerboseMsg ("Relocation:  0x%016LX", *(UINT64*)Targ);
    793             break;
    794           case R_X86_64_32:
    795             VerboseMsg ("R_X86_64_32");
    796             VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
    797               (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
    798               *(UINT32 *)Targ);
    799             *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
    800             VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
    801             break;
    802           case R_X86_64_32S:
    803             VerboseMsg ("R_X86_64_32S");
    804             VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
    805               (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
    806               *(UINT32 *)Targ);
    807             *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
    808             VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
    809             break;
    810 
    811           case R_X86_64_PLT32:
    812             //
    813             // Treat R_X86_64_PLT32 relocations as R_X86_64_PC32: this is
    814             // possible since we know all code symbol references resolve to
    815             // definitions in the same module (UEFI has no shared libraries),
    816             // and so there is never a reason to jump via a PLT entry,
    817             // allowing us to resolve the reference using the symbol directly.
    818             //
    819             VerboseMsg ("Treating R_X86_64_PLT32 as R_X86_64_PC32 ...");
    820             /* fall through */
    821           case R_X86_64_PC32:
    822             //
    823             // Relative relocation: Symbol - Ip + Addend
    824             //
    825             VerboseMsg ("R_X86_64_PC32");
    826             VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
    827               (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
    828               *(UINT32 *)Targ);
    829             *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
    830               + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
    831               - (SecOffset - SecShdr->sh_addr));
    832             VerboseMsg ("Relocation:  0x%08X", *(UINT32 *)Targ);
    833             break;
    834           default:
    835             Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
    836           }
    837         } else if (mEhdr->e_machine == EM_AARCH64) {
    838 
    839           switch (ELF_R_TYPE(Rel->r_info)) {
    840 
    841           case R_AARCH64_ADR_PREL_PG_HI21:
    842             //
    843             // AArch64 PG_H21 relocations are typically paired with ABS_LO12
    844             // relocations, where a PC-relative reference with +/- 4 GB range is
    845             // split into a relative high part and an absolute low part. Since
    846             // the absolute low part represents the offset into a 4 KB page, we
    847             // either have to convert the ADRP into an ADR instruction, or we
    848             // need to use a section alignment of at least 4 KB, so that the
    849             // binary appears at a correct offset at runtime. In any case, we
    850             // have to make sure that the 4 KB relative offsets of both the
    851             // section containing the reference as well as the section to which
    852             // it refers have not been changed during PE/COFF conversion (i.e.,
    853             // in ScanSections64() above).
    854             //
    855             if (mCoffAlignment < 0x1000) {
    856               //
    857               // Attempt to convert the ADRP into an ADR instruction.
    858               // This is only possible if the symbol is within +/- 1 MB.
    859               //
    860               INT64 Offset;
    861 
    862               // Decode the ADRP instruction
    863               Offset = (INT32)((*(UINT32 *)Targ & 0xffffe0) << 8);
    864               Offset = (Offset << (6 - 5)) | ((*(UINT32 *)Targ & 0x60000000) >> (29 - 12));
    865 
    866               //
    867               // ADRP offset is relative to the previous page boundary,
    868               // whereas ADR offset is relative to the instruction itself.
    869               // So fix up the offset so it points to the page containing
    870               // the symbol.
    871               //
    872               Offset -= (UINTN)(Targ - mCoffFile) & 0xfff;
    873 
    874               if (Offset < -0x100000 || Offset > 0xfffff) {
    875                 Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s  due to its size (> 1 MB), this module requires 4 KB section alignment.",
    876                   mInImageName);
    877                 break;
    878               }
    879 
    880               // Re-encode the offset as an ADR instruction
    881               *(UINT32 *)Targ &= 0x1000001f;
    882               *(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
    883             }
    884             /* fall through */
    885 
    886           case R_AARCH64_ADD_ABS_LO12_NC:
    887           case R_AARCH64_LDST8_ABS_LO12_NC:
    888           case R_AARCH64_LDST16_ABS_LO12_NC:
    889           case R_AARCH64_LDST32_ABS_LO12_NC:
    890           case R_AARCH64_LDST64_ABS_LO12_NC:
    891           case R_AARCH64_LDST128_ABS_LO12_NC:
    892             if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 ||
    893                 ((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0) {
    894               Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires identical ELF and PE/COFF section offsets modulo 4 KB.",
    895                 mInImageName);
    896               break;
    897             }
    898             /* fall through */
    899 
    900           case R_AARCH64_ADR_PREL_LO21:
    901           case R_AARCH64_CONDBR19:
    902           case R_AARCH64_LD_PREL_LO19:
    903           case R_AARCH64_CALL26:
    904           case R_AARCH64_JUMP26:
    905           case R_AARCH64_PREL64:
    906           case R_AARCH64_PREL32:
    907           case R_AARCH64_PREL16:
    908             //
    909             // The GCC toolchains (i.e., binutils) may corrupt section relative
    910             // relocations when emitting relocation sections into fully linked
    911             // binaries. More specifically, they tend to fail to take into
    912             // account the fact that a '.rodata + XXX' relocation needs to have
    913             // its addend recalculated once .rodata is merged into the .text
    914             // section, and the relocation emitted into the .rela.text section.
    915             //
    916             // We cannot really recover from this loss of information, so the
    917             // only workaround is to prevent having to recalculate any relative
    918             // relocations at all, by using a linker script that ensures that
    919             // the offset between the Place and the Symbol is the same in both
    920             // the ELF and the PE/COFF versions of the binary.
    921             //
    922             if ((SymShdr->sh_addr - SecShdr->sh_addr) !=
    923                 (mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) {
    924               Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets",
    925                 mInImageName);
    926             }
    927             break;
    928 
    929           // Absolute relocations.
    930           case R_AARCH64_ABS64:
    931             *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
    932             break;
    933 
    934           default:
    935             Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
    936           }
    937         } else {
    938           Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
    939         }
    940       }
    941     }
    942   }
    943 
    944   return TRUE;
    945 }
    946 
    947 STATIC
    948 VOID
    949 WriteRelocations64 (
    950   VOID
    951   )
    952 {
    953   UINT32                           Index;
    954   EFI_IMAGE_OPTIONAL_HEADER_UNION  *NtHdr;
    955   EFI_IMAGE_DATA_DIRECTORY         *Dir;
    956 
    957   for (Index = 0; Index < mEhdr->e_shnum; Index++) {
    958     Elf_Shdr *RelShdr = GetShdrByIndex(Index);
    959     if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
    960       Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
    961       if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
    962         UINT64 RelIdx;
    963 
    964         for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
    965           Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
    966 
    967           if (mEhdr->e_machine == EM_X86_64) {
    968             switch (ELF_R_TYPE(Rel->r_info)) {
    969             case R_X86_64_NONE:
    970             case R_X86_64_PC32:
    971             case R_X86_64_PLT32:
    972               break;
    973             case R_X86_64_64:
    974               VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X",
    975                 mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
    976               CoffAddFixup(
    977                 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
    978                 + (Rel->r_offset - SecShdr->sh_addr)),
    979                 EFI_IMAGE_REL_BASED_DIR64);
    980               break;
    981             case R_X86_64_32S:
    982             case R_X86_64_32:
    983               VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X",
    984                 mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
    985               CoffAddFixup(
    986                 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
    987                 + (Rel->r_offset - SecShdr->sh_addr)),
    988                 EFI_IMAGE_REL_BASED_HIGHLOW);
    989               break;
    990             default:
    991               Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
    992             }
    993           } else if (mEhdr->e_machine == EM_AARCH64) {
    994 
    995             switch (ELF_R_TYPE(Rel->r_info)) {
    996             case R_AARCH64_ADR_PREL_LO21:
    997             case R_AARCH64_CONDBR19:
    998             case R_AARCH64_LD_PREL_LO19:
    999             case R_AARCH64_CALL26:
   1000             case R_AARCH64_JUMP26:
   1001             case R_AARCH64_PREL64:
   1002             case R_AARCH64_PREL32:
   1003             case R_AARCH64_PREL16:
   1004             case R_AARCH64_ADR_PREL_PG_HI21:
   1005             case R_AARCH64_ADD_ABS_LO12_NC:
   1006             case R_AARCH64_LDST8_ABS_LO12_NC:
   1007             case R_AARCH64_LDST16_ABS_LO12_NC:
   1008             case R_AARCH64_LDST32_ABS_LO12_NC:
   1009             case R_AARCH64_LDST64_ABS_LO12_NC:
   1010             case R_AARCH64_LDST128_ABS_LO12_NC:
   1011               //
   1012               // No fixups are required for relative relocations, provided that
   1013               // the relative offsets between sections have been preserved in
   1014               // the ELF to PE/COFF conversion. We have already asserted that
   1015               // this is the case in WriteSections64 ().
   1016               //
   1017               break;
   1018 
   1019             case R_AARCH64_ABS64:
   1020               CoffAddFixup(
   1021                 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
   1022                 + (Rel->r_offset - SecShdr->sh_addr)),
   1023                 EFI_IMAGE_REL_BASED_DIR64);
   1024               break;
   1025 
   1026             case R_AARCH64_ABS32:
   1027               CoffAddFixup(
   1028                 (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
   1029                 + (Rel->r_offset - SecShdr->sh_addr)),
   1030                 EFI_IMAGE_REL_BASED_HIGHLOW);
   1031              break;
   1032 
   1033             default:
   1034                 Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
   1035             }
   1036           } else {
   1037             Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
   1038           }
   1039         }
   1040       }
   1041     }
   1042   }
   1043 
   1044   //
   1045   // Pad by adding empty entries.
   1046   //
   1047   while (mCoffOffset & (mCoffAlignment - 1)) {
   1048     CoffAddFixupEntry(0);
   1049   }
   1050 
   1051   NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
   1052   Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
   1053   Dir->Size = mCoffOffset - mRelocOffset;
   1054   if (Dir->Size == 0) {
   1055     // If no relocations, null out the directory entry and don't add the .reloc section
   1056     Dir->VirtualAddress = 0;
   1057     NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
   1058   } else {
   1059     Dir->VirtualAddress = mRelocOffset;
   1060     CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
   1061             EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
   1062             | EFI_IMAGE_SCN_MEM_DISCARDABLE
   1063             | EFI_IMAGE_SCN_MEM_READ);
   1064   }
   1065 }
   1066 
   1067 STATIC
   1068 VOID
   1069 WriteDebug64 (
   1070   VOID
   1071   )
   1072 {
   1073   UINT32                              Len;
   1074   EFI_IMAGE_OPTIONAL_HEADER_UNION     *NtHdr;
   1075   EFI_IMAGE_DATA_DIRECTORY            *DataDir;
   1076   EFI_IMAGE_DEBUG_DIRECTORY_ENTRY     *Dir;
   1077   EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
   1078 
   1079   Len = strlen(mInImageName) + 1;
   1080 
   1081   Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
   1082   Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
   1083   Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
   1084   Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
   1085   Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
   1086 
   1087   Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
   1088   Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
   1089   strcpy ((char *)(Nb10 + 1), mInImageName);
   1090 
   1091 
   1092   NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
   1093   DataDir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
   1094   DataDir->VirtualAddress = mDebugOffset;
   1095   DataDir->Size = Dir->SizeOfData + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
   1096 }
   1097 
   1098 STATIC
   1099 VOID
   1100 SetImageSize64 (
   1101   VOID
   1102   )
   1103 {
   1104   EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
   1105 
   1106   //
   1107   // Set image size
   1108   //
   1109   NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
   1110   NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = mCoffOffset;
   1111 }
   1112 
   1113 STATIC
   1114 VOID
   1115 CleanUp64 (
   1116   VOID
   1117   )
   1118 {
   1119   if (mCoffSectionsOffset != NULL) {
   1120     free (mCoffSectionsOffset);
   1121   }
   1122 }
   1123 
   1124 
   1125