Home | History | Annotate | Download | only in PiSmmCore
      1 /** @file
      2   SMM IPL that produces SMM related runtime protocols and load the SMM Core into SMRAM
      3 
      4   Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
      5   This program and the accompanying materials are licensed and made available
      6   under the terms and conditions of the BSD License which accompanies this
      7   distribution.  The full text of the license may be found at
      8   http://opensource.org/licenses/bsd-license.php
      9 
     10   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     11   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     12 
     13 **/
     14 
     15 #include <PiDxe.h>
     16 
     17 #include <Protocol/SmmBase2.h>
     18 #include <Protocol/SmmCommunication.h>
     19 #include <Protocol/SmmAccess2.h>
     20 #include <Protocol/SmmConfiguration.h>
     21 #include <Protocol/SmmControl2.h>
     22 #include <Protocol/DxeSmmReadyToLock.h>
     23 #include <Protocol/Cpu.h>
     24 
     25 #include <Guid/EventGroup.h>
     26 #include <Guid/EventLegacyBios.h>
     27 #include <Guid/LoadModuleAtFixedAddress.h>
     28 
     29 #include <Library/BaseLib.h>
     30 #include <Library/BaseMemoryLib.h>
     31 #include <Library/PeCoffLib.h>
     32 #include <Library/CacheMaintenanceLib.h>
     33 #include <Library/MemoryAllocationLib.h>
     34 #include <Library/DebugLib.h>
     35 #include <Library/UefiBootServicesTableLib.h>
     36 #include <Library/DxeServicesTableLib.h>
     37 #include <Library/DxeServicesLib.h>
     38 #include <Library/UefiLib.h>
     39 #include <Library/UefiRuntimeLib.h>
     40 #include <Library/PcdLib.h>
     41 #include <Library/ReportStatusCodeLib.h>
     42 
     43 #include "PiSmmCorePrivateData.h"
     44 
     45 //
     46 // Function prototypes from produced protocols
     47 //
     48 
     49 /**
     50   Indicate whether the driver is currently executing in the SMM Initialization phase.
     51 
     52   @param   This                    The EFI_SMM_BASE2_PROTOCOL instance.
     53   @param   InSmram                 Pointer to a Boolean which, on return, indicates that the driver is currently executing
     54                                    inside of SMRAM (TRUE) or outside of SMRAM (FALSE).
     55 
     56   @retval  EFI_INVALID_PARAMETER   InSmram was NULL.
     57   @retval  EFI_SUCCESS             The call returned successfully.
     58 
     59 **/
     60 EFI_STATUS
     61 EFIAPI
     62 SmmBase2InSmram (
     63   IN CONST EFI_SMM_BASE2_PROTOCOL  *This,
     64   OUT      BOOLEAN                 *InSmram
     65   );
     66 
     67 /**
     68   Retrieves the location of the System Management System Table (SMST).
     69 
     70   @param   This                    The EFI_SMM_BASE2_PROTOCOL instance.
     71   @param   Smst                    On return, points to a pointer to the System Management Service Table (SMST).
     72 
     73   @retval  EFI_INVALID_PARAMETER   Smst or This was invalid.
     74   @retval  EFI_SUCCESS             The memory was returned to the system.
     75   @retval  EFI_UNSUPPORTED         Not in SMM.
     76 
     77 **/
     78 EFI_STATUS
     79 EFIAPI
     80 SmmBase2GetSmstLocation (
     81   IN CONST EFI_SMM_BASE2_PROTOCOL  *This,
     82   OUT      EFI_SMM_SYSTEM_TABLE2   **Smst
     83   );
     84 
     85 /**
     86   Communicates with a registered handler.
     87 
     88   This function provides a service to send and receive messages from a registered
     89   UEFI service.  This function is part of the SMM Communication Protocol that may
     90   be called in physical mode prior to SetVirtualAddressMap() and in virtual mode
     91   after SetVirtualAddressMap().
     92 
     93   @param[in]     This                The EFI_SMM_COMMUNICATION_PROTOCOL instance.
     94   @param[in, out] CommBuffer          A pointer to the buffer to convey into SMRAM.
     95   @param[in, out] CommSize            The size of the data buffer being passed in.On exit, the size of data
     96                                      being returned. Zero if the handler does not wish to reply with any data.
     97 
     98   @retval EFI_SUCCESS                The message was successfully posted.
     99   @retval EFI_INVALID_PARAMETER      The CommBuffer was NULL.
    100 **/
    101 EFI_STATUS
    102 EFIAPI
    103 SmmCommunicationCommunicate (
    104   IN CONST EFI_SMM_COMMUNICATION_PROTOCOL  *This,
    105   IN OUT VOID                              *CommBuffer,
    106   IN OUT UINTN                             *CommSize
    107   );
    108 
    109 /**
    110   Event notification that is fired every time a gEfiSmmConfigurationProtocol installs.
    111 
    112   @param  Event                 The Event that is being processed, not used.
    113   @param  Context               Event Context, not used.
    114 
    115 **/
    116 VOID
    117 EFIAPI
    118 SmmIplSmmConfigurationEventNotify (
    119   IN EFI_EVENT  Event,
    120   IN VOID       *Context
    121   );
    122 
    123 /**
    124   Event notification that is fired every time a DxeSmmReadyToLock protocol is added
    125   or if gEfiEventReadyToBootGuid is signalled.
    126 
    127   @param  Event                 The Event that is being processed, not used.
    128   @param  Context               Event Context, not used.
    129 
    130 **/
    131 VOID
    132 EFIAPI
    133 SmmIplReadyToLockEventNotify (
    134   IN EFI_EVENT  Event,
    135   IN VOID       *Context
    136   );
    137 
    138 /**
    139   Event notification that is fired when DxeDispatch Event Group is signaled.
    140 
    141   @param  Event                 The Event that is being processed, not used.
    142   @param  Context               Event Context, not used.
    143 
    144 **/
    145 VOID
    146 EFIAPI
    147 SmmIplDxeDispatchEventNotify (
    148   IN EFI_EVENT  Event,
    149   IN VOID       *Context
    150   );
    151 
    152 /**
    153   Event notification that is fired when a GUIDed Event Group is signaled.
    154 
    155   @param  Event                 The Event that is being processed, not used.
    156   @param  Context               Event Context, not used.
    157 
    158 **/
    159 VOID
    160 EFIAPI
    161 SmmIplGuidedEventNotify (
    162   IN EFI_EVENT  Event,
    163   IN VOID       *Context
    164   );
    165 
    166 /**
    167   Event notification that is fired when EndOfDxe Event Group is signaled.
    168 
    169   @param  Event                 The Event that is being processed, not used.
    170   @param  Context               Event Context, not used.
    171 
    172 **/
    173 VOID
    174 EFIAPI
    175 SmmIplEndOfDxeEventNotify (
    176   IN EFI_EVENT  Event,
    177   IN VOID       *Context
    178   );
    179 
    180 /**
    181   Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
    182 
    183   This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
    184   It convers pointer to new virtual address.
    185 
    186   @param  Event        Event whose notification function is being invoked.
    187   @param  Context      Pointer to the notification function's context.
    188 
    189 **/
    190 VOID
    191 EFIAPI
    192 SmmIplSetVirtualAddressNotify (
    193   IN EFI_EVENT  Event,
    194   IN VOID       *Context
    195   );
    196 
    197 //
    198 // Data structure used to declare a table of protocol notifications and event
    199 // notifications required by the SMM IPL
    200 //
    201 typedef struct {
    202   BOOLEAN           Protocol;
    203   BOOLEAN           CloseOnLock;
    204   EFI_GUID          *Guid;
    205   EFI_EVENT_NOTIFY  NotifyFunction;
    206   VOID              *NotifyContext;
    207   EFI_TPL           NotifyTpl;
    208   EFI_EVENT         Event;
    209 } SMM_IPL_EVENT_NOTIFICATION;
    210 
    211 //
    212 // Handle to install the SMM Base2 Protocol and the SMM Communication Protocol
    213 //
    214 EFI_HANDLE  mSmmIplHandle = NULL;
    215 
    216 //
    217 // SMM Base 2 Protocol instance
    218 //
    219 EFI_SMM_BASE2_PROTOCOL  mSmmBase2 = {
    220   SmmBase2InSmram,
    221   SmmBase2GetSmstLocation
    222 };
    223 
    224 //
    225 // SMM Communication Protocol instance
    226 //
    227 EFI_SMM_COMMUNICATION_PROTOCOL  mSmmCommunication = {
    228   SmmCommunicationCommunicate
    229 };
    230 
    231 //
    232 // SMM Core Private Data structure that contains the data shared between
    233 // the SMM IPL and the SMM Core.
    234 //
    235 SMM_CORE_PRIVATE_DATA  mSmmCorePrivateData = {
    236   SMM_CORE_PRIVATE_DATA_SIGNATURE,    // Signature
    237   NULL,                               // SmmIplImageHandle
    238   0,                                  // SmramRangeCount
    239   NULL,                               // SmramRanges
    240   NULL,                               // SmmEntryPoint
    241   FALSE,                              // SmmEntryPointRegistered
    242   FALSE,                              // InSmm
    243   NULL,                               // Smst
    244   NULL,                               // CommunicationBuffer
    245   0,                                  // BufferSize
    246   EFI_SUCCESS                         // ReturnStatus
    247 };
    248 
    249 //
    250 // Global pointer used to access mSmmCorePrivateData from outside and inside SMM
    251 //
    252 SMM_CORE_PRIVATE_DATA  *gSmmCorePrivate = &mSmmCorePrivateData;
    253 
    254 //
    255 // SMM IPL global variables
    256 //
    257 EFI_SMM_CONTROL2_PROTOCOL  *mSmmControl2;
    258 EFI_SMM_ACCESS2_PROTOCOL   *mSmmAccess;
    259 EFI_SMRAM_DESCRIPTOR       *mCurrentSmramRange;
    260 BOOLEAN                    mSmmLocked = FALSE;
    261 BOOLEAN                    mEndOfDxe  = FALSE;
    262 EFI_PHYSICAL_ADDRESS       mSmramCacheBase;
    263 UINT64                     mSmramCacheSize;
    264 
    265 EFI_SMM_COMMUNICATE_HEADER mCommunicateHeader;
    266 
    267 //
    268 // Table of Protocol notification and GUIDed Event notifications that the SMM IPL requires
    269 //
    270 SMM_IPL_EVENT_NOTIFICATION  mSmmIplEvents[] = {
    271   //
    272   // Declare protocol notification on the SMM Configuration protocol.  When this notification is established,
    273   // the associated event is immediately signalled, so the notification function will be executed and the
    274   // SMM Configuration Protocol will be found if it is already in the handle database.
    275   //
    276   { TRUE,  FALSE, &gEfiSmmConfigurationProtocolGuid,  SmmIplSmmConfigurationEventNotify, &gEfiSmmConfigurationProtocolGuid,  TPL_NOTIFY,   NULL },
    277   //
    278   // Declare protocol notification on DxeSmmReadyToLock protocols.  When this notification is established,
    279   // the associated event is immediately signalled, so the notification function will be executed and the
    280   // DXE SMM Ready To Lock Protocol will be found if it is already in the handle database.
    281   //
    282   { TRUE,  TRUE,  &gEfiDxeSmmReadyToLockProtocolGuid, SmmIplReadyToLockEventNotify,      &gEfiDxeSmmReadyToLockProtocolGuid, TPL_CALLBACK, NULL },
    283   //
    284   // Declare event notification on EndOfDxe event.  When this notification is established,
    285   // the associated event is immediately signalled, so the notification function will be executed and the
    286   // SMM End Of Dxe Protocol will be found if it is already in the handle database.
    287   //
    288   { FALSE, TRUE,  &gEfiEndOfDxeEventGroupGuid,        SmmIplGuidedEventNotify,           &gEfiEndOfDxeEventGroupGuid,        TPL_CALLBACK, NULL },
    289   //
    290   // Declare event notification on EndOfDxe event.  This is used to set EndOfDxe event signaled flag.
    291   //
    292   { FALSE, TRUE,  &gEfiEndOfDxeEventGroupGuid,        SmmIplEndOfDxeEventNotify,         &gEfiEndOfDxeEventGroupGuid,        TPL_CALLBACK, NULL },
    293   //
    294   // Declare event notification on the DXE Dispatch Event Group.  This event is signaled by the DXE Core
    295   // each time the DXE Core dispatcher has completed its work.  When this event is signalled, the SMM Core
    296   // if notified, so the SMM Core can dispatch SMM drivers.
    297   //
    298   { FALSE, TRUE,  &gEfiEventDxeDispatchGuid,          SmmIplDxeDispatchEventNotify,      &gEfiEventDxeDispatchGuid,          TPL_CALLBACK, NULL },
    299   //
    300   // Declare event notification on Ready To Boot Event Group.  This is an extra event notification that is
    301   // used to make sure SMRAM is locked before any boot options are processed.
    302   //
    303   { FALSE, TRUE,  &gEfiEventReadyToBootGuid,          SmmIplReadyToLockEventNotify,      &gEfiEventReadyToBootGuid,          TPL_CALLBACK, NULL },
    304   //
    305   // Declare event notification on Legacy Boot Event Group.  This is used to inform the SMM Core that the platform
    306   // is performing a legacy boot operation, and that the UEFI environment is no longer available and the SMM Core
    307   // must guarantee that it does not access any UEFI related structures outside of SMRAM.
    308   // It is also to inform the SMM Core to notify SMM driver that system enter legacy boot.
    309   //
    310   { FALSE, FALSE, &gEfiEventLegacyBootGuid,           SmmIplGuidedEventNotify,           &gEfiEventLegacyBootGuid,           TPL_CALLBACK, NULL },
    311   //
    312   // Declare event notification on Exit Boot Services Event Group.  This is used to inform the SMM Core
    313   // to notify SMM driver that system enter exit boot services.
    314   //
    315   { FALSE, FALSE, &gEfiEventExitBootServicesGuid,     SmmIplGuidedEventNotify,           &gEfiEventExitBootServicesGuid,     TPL_CALLBACK, NULL },
    316   //
    317   // Declare event notification on Ready To Boot Event Group.  This is used to inform the SMM Core
    318   // to notify SMM driver that system enter ready to boot.
    319   //
    320   { FALSE, FALSE, &gEfiEventReadyToBootGuid,          SmmIplGuidedEventNotify,           &gEfiEventReadyToBootGuid,          TPL_CALLBACK, NULL },
    321   //
    322   // Declare event notification on SetVirtualAddressMap() Event Group.  This is used to convert gSmmCorePrivate
    323   // and mSmmControl2 from physical addresses to virtual addresses.
    324   //
    325   { FALSE, FALSE, &gEfiEventVirtualAddressChangeGuid, SmmIplSetVirtualAddressNotify,     NULL,                               TPL_CALLBACK, NULL },
    326   //
    327   // Terminate the table of event notifications
    328   //
    329   { FALSE, FALSE, NULL,                               NULL,                              NULL,                               TPL_CALLBACK, NULL }
    330 };
    331 
    332 /**
    333   Find the maximum SMRAM cache range that covers the range specified by SmramRange.
    334 
    335   This function searches and joins all adjacent ranges of SmramRange into a range to be cached.
    336 
    337   @param   SmramRange       The SMRAM range to search from.
    338   @param   SmramCacheBase   The returned cache range base.
    339   @param   SmramCacheSize   The returned cache range size.
    340 
    341 **/
    342 VOID
    343 GetSmramCacheRange (
    344   IN  EFI_SMRAM_DESCRIPTOR *SmramRange,
    345   OUT EFI_PHYSICAL_ADDRESS *SmramCacheBase,
    346   OUT UINT64               *SmramCacheSize
    347   )
    348 {
    349   UINTN                Index;
    350   EFI_PHYSICAL_ADDRESS RangeCpuStart;
    351   UINT64               RangePhysicalSize;
    352   BOOLEAN              FoundAjacentRange;
    353 
    354   *SmramCacheBase = SmramRange->CpuStart;
    355   *SmramCacheSize = SmramRange->PhysicalSize;
    356 
    357   do {
    358     FoundAjacentRange = FALSE;
    359     for (Index = 0; Index < gSmmCorePrivate->SmramRangeCount; Index++) {
    360       RangeCpuStart     = gSmmCorePrivate->SmramRanges[Index].CpuStart;
    361       RangePhysicalSize = gSmmCorePrivate->SmramRanges[Index].PhysicalSize;
    362       if (RangeCpuStart < *SmramCacheBase && *SmramCacheBase == (RangeCpuStart + RangePhysicalSize)) {
    363         *SmramCacheBase   = RangeCpuStart;
    364         *SmramCacheSize  += RangePhysicalSize;
    365         FoundAjacentRange = TRUE;
    366       } else if ((*SmramCacheBase + *SmramCacheSize) == RangeCpuStart && RangePhysicalSize > 0) {
    367         *SmramCacheSize  += RangePhysicalSize;
    368         FoundAjacentRange = TRUE;
    369       }
    370     }
    371   } while (FoundAjacentRange);
    372 
    373 }
    374 
    375 /**
    376   Indicate whether the driver is currently executing in the SMM Initialization phase.
    377 
    378   @param   This                    The EFI_SMM_BASE2_PROTOCOL instance.
    379   @param   InSmram                 Pointer to a Boolean which, on return, indicates that the driver is currently executing
    380                                    inside of SMRAM (TRUE) or outside of SMRAM (FALSE).
    381 
    382   @retval  EFI_INVALID_PARAMETER   InSmram was NULL.
    383   @retval  EFI_SUCCESS             The call returned successfully.
    384 
    385 **/
    386 EFI_STATUS
    387 EFIAPI
    388 SmmBase2InSmram (
    389   IN CONST EFI_SMM_BASE2_PROTOCOL  *This,
    390   OUT      BOOLEAN                 *InSmram
    391   )
    392 {
    393   if (InSmram == NULL) {
    394     return EFI_INVALID_PARAMETER;
    395   }
    396 
    397   *InSmram = gSmmCorePrivate->InSmm;
    398 
    399   return EFI_SUCCESS;
    400 }
    401 
    402 /**
    403   Retrieves the location of the System Management System Table (SMST).
    404 
    405   @param   This                    The EFI_SMM_BASE2_PROTOCOL instance.
    406   @param   Smst                    On return, points to a pointer to the System Management Service Table (SMST).
    407 
    408   @retval  EFI_INVALID_PARAMETER   Smst or This was invalid.
    409   @retval  EFI_SUCCESS             The memory was returned to the system.
    410   @retval  EFI_UNSUPPORTED         Not in SMM.
    411 
    412 **/
    413 EFI_STATUS
    414 EFIAPI
    415 SmmBase2GetSmstLocation (
    416   IN CONST EFI_SMM_BASE2_PROTOCOL  *This,
    417   OUT      EFI_SMM_SYSTEM_TABLE2   **Smst
    418   )
    419 {
    420   if ((This == NULL) ||(Smst == NULL)) {
    421     return EFI_INVALID_PARAMETER;
    422   }
    423 
    424   if (!gSmmCorePrivate->InSmm) {
    425     return EFI_UNSUPPORTED;
    426   }
    427 
    428   *Smst = gSmmCorePrivate->Smst;
    429 
    430   return EFI_SUCCESS;
    431 }
    432 
    433 /**
    434   Communicates with a registered handler.
    435 
    436   This function provides a service to send and receive messages from a registered
    437   UEFI service.  This function is part of the SMM Communication Protocol that may
    438   be called in physical mode prior to SetVirtualAddressMap() and in virtual mode
    439   after SetVirtualAddressMap().
    440 
    441   @param[in] This                The EFI_SMM_COMMUNICATION_PROTOCOL instance.
    442   @param[in, out] CommBuffer          A pointer to the buffer to convey into SMRAM.
    443   @param[in, out] CommSize            The size of the data buffer being passed in.On exit, the size of data
    444                                  being returned. Zero if the handler does not wish to reply with any data.
    445 
    446   @retval EFI_SUCCESS            The message was successfully posted.
    447   @retval EFI_INVALID_PARAMETER  The CommBuffer was NULL.
    448 **/
    449 EFI_STATUS
    450 EFIAPI
    451 SmmCommunicationCommunicate (
    452   IN CONST EFI_SMM_COMMUNICATION_PROTOCOL  *This,
    453   IN OUT VOID                              *CommBuffer,
    454   IN OUT UINTN                             *CommSize
    455   )
    456 {
    457   EFI_STATUS                  Status;
    458   EFI_SMM_COMMUNICATE_HEADER  *CommunicateHeader;
    459   BOOLEAN                     OldInSmm;
    460 
    461   //
    462   // Check parameters
    463   //
    464   if ((CommBuffer == NULL) || (CommSize == NULL)) {
    465     return EFI_INVALID_PARAMETER;
    466   }
    467 
    468   //
    469   // CommSize must hold HeaderGuid and MessageLength
    470   //
    471   if (*CommSize < OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data)) {
    472     return EFI_INVALID_PARAMETER;
    473   }
    474 
    475   //
    476   // If not already in SMM, then generate a Software SMI
    477   //
    478   if (!gSmmCorePrivate->InSmm && gSmmCorePrivate->SmmEntryPointRegistered) {
    479     //
    480     // Put arguments for Software SMI in gSmmCorePrivate
    481     //
    482     gSmmCorePrivate->CommunicationBuffer = CommBuffer;
    483     gSmmCorePrivate->BufferSize          = *CommSize;
    484 
    485     //
    486     // Generate Software SMI
    487     //
    488     Status = mSmmControl2->Trigger (mSmmControl2, NULL, NULL, FALSE, 0);
    489     if (EFI_ERROR (Status)) {
    490       return EFI_UNSUPPORTED;
    491     }
    492 
    493     //
    494     // Return status from software SMI
    495     //
    496     *CommSize = gSmmCorePrivate->BufferSize;
    497     return gSmmCorePrivate->ReturnStatus;
    498   }
    499 
    500   //
    501   // If we are in SMM, then the execution mode must be physical, which means that
    502   // OS established virtual addresses can not be used.  If SetVirtualAddressMap()
    503   // has been called, then a direct invocation of the Software SMI is not
    504   // not allowed so return EFI_INVALID_PARAMETER.
    505   //
    506   if (EfiGoneVirtual()) {
    507     return EFI_INVALID_PARAMETER;
    508   }
    509 
    510   //
    511   // If we are not in SMM, don't allow call SmiManage() directly when SMRAM is closed or locked.
    512   //
    513   if ((!gSmmCorePrivate->InSmm) && (!mSmmAccess->OpenState || mSmmAccess->LockState)) {
    514     return EFI_INVALID_PARAMETER;
    515   }
    516 
    517   //
    518   // Save current InSmm state and set InSmm state to TRUE
    519   //
    520   OldInSmm = gSmmCorePrivate->InSmm;
    521   gSmmCorePrivate->InSmm = TRUE;
    522 
    523   //
    524   // Already in SMM and before SetVirtualAddressMap(), so call SmiManage() directly.
    525   //
    526   CommunicateHeader = (EFI_SMM_COMMUNICATE_HEADER *)CommBuffer;
    527   *CommSize -= OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data);
    528   Status = gSmmCorePrivate->Smst->SmiManage (
    529                                     &CommunicateHeader->HeaderGuid,
    530                                     NULL,
    531                                     CommunicateHeader->Data,
    532                                     CommSize
    533                                     );
    534 
    535   //
    536   // Update CommunicationBuffer, BufferSize and ReturnStatus
    537   // Communicate service finished, reset the pointer to CommBuffer to NULL
    538   //
    539   *CommSize += OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data);
    540 
    541   //
    542   // Restore original InSmm state
    543   //
    544   gSmmCorePrivate->InSmm = OldInSmm;
    545 
    546   return (Status == EFI_SUCCESS) ? EFI_SUCCESS : EFI_NOT_FOUND;
    547 }
    548 
    549 /**
    550   Event notification that is fired when GUIDed Event Group is signaled.
    551 
    552   @param  Event                 The Event that is being processed, not used.
    553   @param  Context               Event Context, not used.
    554 
    555 **/
    556 VOID
    557 EFIAPI
    558 SmmIplGuidedEventNotify (
    559   IN EFI_EVENT  Event,
    560   IN VOID       *Context
    561   )
    562 {
    563   UINTN                       Size;
    564 
    565   //
    566   // Use Guid to initialize EFI_SMM_COMMUNICATE_HEADER structure
    567   //
    568   CopyGuid (&mCommunicateHeader.HeaderGuid, (EFI_GUID *)Context);
    569   mCommunicateHeader.MessageLength = 1;
    570   mCommunicateHeader.Data[0] = 0;
    571 
    572   //
    573   // Generate the Software SMI and return the result
    574   //
    575   Size = sizeof (mCommunicateHeader);
    576   SmmCommunicationCommunicate (&mSmmCommunication, &mCommunicateHeader, &Size);
    577 }
    578 
    579 /**
    580   Event notification that is fired when EndOfDxe Event Group is signaled.
    581 
    582   @param  Event                 The Event that is being processed, not used.
    583   @param  Context               Event Context, not used.
    584 
    585 **/
    586 VOID
    587 EFIAPI
    588 SmmIplEndOfDxeEventNotify (
    589   IN EFI_EVENT  Event,
    590   IN VOID       *Context
    591   )
    592 {
    593   mEndOfDxe = TRUE;
    594 }
    595 
    596 /**
    597   Event notification that is fired when DxeDispatch Event Group is signaled.
    598 
    599   @param  Event                 The Event that is being processed, not used.
    600   @param  Context               Event Context, not used.
    601 
    602 **/
    603 VOID
    604 EFIAPI
    605 SmmIplDxeDispatchEventNotify (
    606   IN EFI_EVENT  Event,
    607   IN VOID       *Context
    608   )
    609 {
    610   UINTN                       Size;
    611   EFI_STATUS                  Status;
    612 
    613   //
    614   // Keep calling the SMM Core Dispatcher until there is no request to restart it.
    615   //
    616   while (TRUE) {
    617     //
    618     // Use Guid to initialize EFI_SMM_COMMUNICATE_HEADER structure
    619     // Clear the buffer passed into the Software SMI.  This buffer will return
    620     // the status of the SMM Core Dispatcher.
    621     //
    622     CopyGuid (&mCommunicateHeader.HeaderGuid, (EFI_GUID *)Context);
    623     mCommunicateHeader.MessageLength = 1;
    624     mCommunicateHeader.Data[0] = 0;
    625 
    626     //
    627     // Generate the Software SMI and return the result
    628     //
    629     Size = sizeof (mCommunicateHeader);
    630     SmmCommunicationCommunicate (&mSmmCommunication, &mCommunicateHeader, &Size);
    631 
    632     //
    633     // Return if there is no request to restart the SMM Core Dispatcher
    634     //
    635     if (mCommunicateHeader.Data[0] != COMM_BUFFER_SMM_DISPATCH_RESTART) {
    636       return;
    637     }
    638 
    639     //
    640     // Attempt to reset SMRAM cacheability to UC
    641     // Assume CPU AP is available at this time
    642     //
    643     Status = gDS->SetMemorySpaceAttributes(
    644                     mSmramCacheBase,
    645                     mSmramCacheSize,
    646                     EFI_MEMORY_UC
    647                     );
    648     if (EFI_ERROR (Status)) {
    649       DEBUG ((DEBUG_WARN, "SMM IPL failed to reset SMRAM window to EFI_MEMORY_UC\n"));
    650     }
    651 
    652     //
    653     // Close all SMRAM ranges to protect SMRAM
    654     //
    655     Status = mSmmAccess->Close (mSmmAccess);
    656     ASSERT_EFI_ERROR (Status);
    657 
    658     //
    659     // Print debug message that the SMRAM window is now closed.
    660     //
    661     DEBUG ((DEBUG_INFO, "SMM IPL closed SMRAM window\n"));
    662   }
    663 }
    664 
    665 /**
    666   Event notification that is fired every time a gEfiSmmConfigurationProtocol installs.
    667 
    668   @param  Event                 The Event that is being processed, not used.
    669   @param  Context               Event Context, not used.
    670 
    671 **/
    672 VOID
    673 EFIAPI
    674 SmmIplSmmConfigurationEventNotify (
    675   IN EFI_EVENT  Event,
    676   IN VOID       *Context
    677   )
    678 {
    679   EFI_STATUS                      Status;
    680   EFI_SMM_CONFIGURATION_PROTOCOL  *SmmConfiguration;
    681 
    682   //
    683   // Make sure this notification is for this handler
    684   //
    685   Status = gBS->LocateProtocol (Context, NULL, (VOID **)&SmmConfiguration);
    686   if (EFI_ERROR (Status)) {
    687     return;
    688   }
    689 
    690   //
    691   // Register the SMM Entry Point provided by the SMM Core with the SMM COnfiguration protocol
    692   //
    693   Status = SmmConfiguration->RegisterSmmEntry (SmmConfiguration, gSmmCorePrivate->SmmEntryPoint);
    694   ASSERT_EFI_ERROR (Status);
    695 
    696   //
    697   // Set flag to indicate that the SMM Entry Point has been registered which
    698   // means that SMIs are now fully operational.
    699   //
    700   gSmmCorePrivate->SmmEntryPointRegistered = TRUE;
    701 
    702   //
    703   // Print debug message showing SMM Core entry point address.
    704   //
    705   DEBUG ((DEBUG_INFO, "SMM IPL registered SMM Entry Point address %p\n", (VOID *)(UINTN)gSmmCorePrivate->SmmEntryPoint));
    706 }
    707 
    708 /**
    709   Event notification that is fired every time a DxeSmmReadyToLock protocol is added
    710   or if gEfiEventReadyToBootGuid is signaled.
    711 
    712   @param  Event                 The Event that is being processed, not used.
    713   @param  Context               Event Context, not used.
    714 
    715 **/
    716 VOID
    717 EFIAPI
    718 SmmIplReadyToLockEventNotify (
    719   IN EFI_EVENT  Event,
    720   IN VOID       *Context
    721   )
    722 {
    723   EFI_STATUS  Status;
    724   VOID        *Interface;
    725   UINTN       Index;
    726 
    727   //
    728   // See if we are already locked
    729   //
    730   if (mSmmLocked) {
    731     return;
    732   }
    733 
    734   //
    735   // Make sure this notification is for this handler
    736   //
    737   if (CompareGuid ((EFI_GUID *)Context, &gEfiDxeSmmReadyToLockProtocolGuid)) {
    738     Status = gBS->LocateProtocol (&gEfiDxeSmmReadyToLockProtocolGuid, NULL, &Interface);
    739     if (EFI_ERROR (Status)) {
    740       return;
    741     }
    742   } else {
    743     //
    744     // If SMM is not locked yet and we got here from gEfiEventReadyToBootGuid being
    745     // signaled, then gEfiDxeSmmReadyToLockProtocolGuid was not installed as expected.
    746     // Print a warning on debug builds.
    747     //
    748     DEBUG ((DEBUG_WARN, "SMM IPL!  DXE SMM Ready To Lock Protocol not installed before Ready To Boot signal\n"));
    749   }
    750 
    751   if (!mEndOfDxe) {
    752     DEBUG ((DEBUG_ERROR, "EndOfDxe Event must be signaled before DxeSmmReadyToLock Protocol installation!\n"));
    753     REPORT_STATUS_CODE (
    754       EFI_ERROR_CODE | EFI_ERROR_UNRECOVERED,
    755       (EFI_SOFTWARE_SMM_DRIVER | EFI_SW_EC_ILLEGAL_SOFTWARE_STATE)
    756       );
    757     ASSERT (FALSE);
    758   }
    759 
    760   //
    761   // Lock the SMRAM (Note: Locking SMRAM may not be supported on all platforms)
    762   //
    763   mSmmAccess->Lock (mSmmAccess);
    764 
    765   //
    766   // Close protocol and event notification events that do not apply after the
    767   // DXE SMM Ready To Lock Protocol has been installed or the Ready To Boot
    768   // event has been signalled.
    769   //
    770   for (Index = 0; mSmmIplEvents[Index].NotifyFunction != NULL; Index++) {
    771     if (mSmmIplEvents[Index].CloseOnLock) {
    772       gBS->CloseEvent (mSmmIplEvents[Index].Event);
    773     }
    774   }
    775 
    776   //
    777   // Inform SMM Core that the DxeSmmReadyToLock protocol was installed
    778   //
    779   SmmIplGuidedEventNotify (Event, (VOID *)&gEfiDxeSmmReadyToLockProtocolGuid);
    780 
    781   //
    782   // Print debug message that the SMRAM window is now locked.
    783   //
    784   DEBUG ((DEBUG_INFO, "SMM IPL locked SMRAM window\n"));
    785 
    786   //
    787   // Set flag so this operation will not be performed again
    788   //
    789   mSmmLocked = TRUE;
    790 }
    791 
    792 /**
    793   Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE.
    794 
    795   This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event.
    796   It convers pointer to new virtual address.
    797 
    798   @param  Event        Event whose notification function is being invoked.
    799   @param  Context      Pointer to the notification function's context.
    800 
    801 **/
    802 VOID
    803 EFIAPI
    804 SmmIplSetVirtualAddressNotify (
    805   IN EFI_EVENT  Event,
    806   IN VOID       *Context
    807   )
    808 {
    809   EfiConvertPointer (0x0, (VOID **)&mSmmControl2);
    810 }
    811 
    812 /**
    813   Get the fixed loading address from image header assigned by build tool. This function only be called
    814   when Loading module at Fixed address feature enabled.
    815 
    816   @param  ImageContext              Pointer to the image context structure that describes the PE/COFF
    817                                     image that needs to be examined by this function.
    818   @retval EFI_SUCCESS               An fixed loading address is assigned to this image by build tools .
    819   @retval EFI_NOT_FOUND             The image has no assigned fixed loading address.
    820 **/
    821 EFI_STATUS
    822 GetPeCoffImageFixLoadingAssignedAddress(
    823   IN OUT PE_COFF_LOADER_IMAGE_CONTEXT  *ImageContext
    824   )
    825 {
    826    UINTN                              SectionHeaderOffset;
    827    EFI_STATUS                         Status;
    828    EFI_IMAGE_SECTION_HEADER           SectionHeader;
    829    EFI_IMAGE_OPTIONAL_HEADER_UNION    *ImgHdr;
    830    EFI_PHYSICAL_ADDRESS               FixLoadingAddress;
    831    UINT16                             Index;
    832    UINTN                              Size;
    833    UINT16                             NumberOfSections;
    834    EFI_PHYSICAL_ADDRESS               SmramBase;
    835    UINT64                             SmmCodeSize;
    836    UINT64                             ValueInSectionHeader;
    837    //
    838    // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressSmmCodePageNumber
    839    //
    840    SmmCodeSize = EFI_PAGES_TO_SIZE (PcdGet32(PcdLoadFixAddressSmmCodePageNumber));
    841 
    842    FixLoadingAddress = 0;
    843    Status = EFI_NOT_FOUND;
    844    SmramBase = mCurrentSmramRange->CpuStart;
    845    //
    846    // Get PeHeader pointer
    847    //
    848    ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
    849    SectionHeaderOffset = (UINTN)(
    850                                  ImageContext->PeCoffHeaderOffset +
    851                                  sizeof (UINT32) +
    852                                  sizeof (EFI_IMAGE_FILE_HEADER) +
    853                                  ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader
    854                                  );
    855    NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
    856 
    857    //
    858    // Get base address from the first section header that doesn't point to code section.
    859    //
    860    for (Index = 0; Index < NumberOfSections; Index++) {
    861      //
    862      // Read section header from file
    863      //
    864      Size = sizeof (EFI_IMAGE_SECTION_HEADER);
    865      Status = ImageContext->ImageRead (
    866                               ImageContext->Handle,
    867                               SectionHeaderOffset,
    868                               &Size,
    869                               &SectionHeader
    870                               );
    871      if (EFI_ERROR (Status)) {
    872        return Status;
    873      }
    874 
    875      Status = EFI_NOT_FOUND;
    876 
    877      if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
    878        //
    879        // Build tool saves the offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields in the
    880        // first section header that doesn't point to code section in image header. And there is an assumption that when the
    881        // feature is enabled, if a module is assigned a loading address by tools, PointerToRelocations & PointerToLineNumbers
    882        // fields should NOT be Zero, or else, these 2 fields should be set to Zero
    883        //
    884        ValueInSectionHeader = ReadUnaligned64((UINT64*)&SectionHeader.PointerToRelocations);
    885        if (ValueInSectionHeader != 0) {
    886          //
    887          // Found first section header that doesn't point to code section in which build tool saves the
    888          // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
    889          //
    890          FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(SmramBase + (INT64)ValueInSectionHeader);
    891 
    892          if (SmramBase + SmmCodeSize > FixLoadingAddress && SmramBase <=  FixLoadingAddress) {
    893            //
    894            // The assigned address is valid. Return the specified loading address
    895            //
    896            ImageContext->ImageAddress = FixLoadingAddress;
    897            Status = EFI_SUCCESS;
    898          }
    899        }
    900        break;
    901      }
    902      SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
    903    }
    904    DEBUG ((EFI_D_INFO|EFI_D_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r \n", FixLoadingAddress, Status));
    905    return Status;
    906 }
    907 /**
    908   Load the SMM Core image into SMRAM and executes the SMM Core from SMRAM.
    909 
    910   @param[in, out] SmramRange            Descriptor for the range of SMRAM to reload the
    911                                         currently executing image, the rang of SMRAM to
    912                                         hold SMM Core will be excluded.
    913   @param[in, out] SmramRangeSmmCore     Descriptor for the range of SMRAM to hold SMM Core.
    914 
    915   @param[in]      Context               Context to pass into SMM Core
    916 
    917   @return  EFI_STATUS
    918 
    919 **/
    920 EFI_STATUS
    921 ExecuteSmmCoreFromSmram (
    922   IN OUT EFI_SMRAM_DESCRIPTOR   *SmramRange,
    923   IN OUT EFI_SMRAM_DESCRIPTOR   *SmramRangeSmmCore,
    924   IN     VOID                   *Context
    925   )
    926 {
    927   EFI_STATUS                    Status;
    928   VOID                          *SourceBuffer;
    929   UINTN                         SourceSize;
    930   PE_COFF_LOADER_IMAGE_CONTEXT  ImageContext;
    931   UINTN                         PageCount;
    932   EFI_IMAGE_ENTRY_POINT         EntryPoint;
    933 
    934   //
    935   // Search all Firmware Volumes for a PE/COFF image in a file of type SMM_CORE
    936   //
    937   Status = GetSectionFromAnyFvByFileType (
    938              EFI_FV_FILETYPE_SMM_CORE,
    939              0,
    940              EFI_SECTION_PE32,
    941              0,
    942              &SourceBuffer,
    943              &SourceSize
    944              );
    945   if (EFI_ERROR (Status)) {
    946     return Status;
    947   }
    948 
    949   //
    950   // Initilize ImageContext
    951   //
    952   ImageContext.Handle    = SourceBuffer;
    953   ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
    954 
    955   //
    956   // Get information about the image being loaded
    957   //
    958   Status = PeCoffLoaderGetImageInfo (&ImageContext);
    959   if (EFI_ERROR (Status)) {
    960     return Status;
    961   }
    962   //
    963   // if Loading module at Fixed Address feature is enabled, the SMM core driver will be loaded to
    964   // the address assigned by build tool.
    965   //
    966   if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
    967     //
    968     // Get the fixed loading address assigned by Build tool
    969     //
    970     Status = GetPeCoffImageFixLoadingAssignedAddress (&ImageContext);
    971     if (!EFI_ERROR (Status)) {
    972       //
    973       // Since the memory range to load SMM CORE will be cut out in SMM core, so no need to allocate and free this range
    974       //
    975       PageCount = 0;
    976       //
    977       // Reserved Smram Region for SmmCore is not used, and remove it from SmramRangeCount.
    978       //
    979       gSmmCorePrivate->SmramRangeCount --;
    980     } else {
    981       DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR: Loading module at fixed address at address failed\n"));
    982       //
    983       // Allocate memory for the image being loaded from the EFI_SRAM_DESCRIPTOR
    984       // specified by SmramRange
    985       //
    986       PageCount = (UINTN)EFI_SIZE_TO_PAGES((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
    987 
    988       ASSERT ((SmramRange->PhysicalSize & EFI_PAGE_MASK) == 0);
    989       ASSERT (SmramRange->PhysicalSize > EFI_PAGES_TO_SIZE (PageCount));
    990 
    991       SmramRange->PhysicalSize -= EFI_PAGES_TO_SIZE (PageCount);
    992       SmramRangeSmmCore->CpuStart = SmramRange->CpuStart + SmramRange->PhysicalSize;
    993       SmramRangeSmmCore->PhysicalStart = SmramRange->PhysicalStart + SmramRange->PhysicalSize;
    994       SmramRangeSmmCore->RegionState = SmramRange->RegionState | EFI_ALLOCATED;
    995       SmramRangeSmmCore->PhysicalSize = EFI_PAGES_TO_SIZE (PageCount);
    996 
    997       //
    998       // Align buffer on section boundary
    999       //
   1000       ImageContext.ImageAddress = SmramRangeSmmCore->CpuStart;
   1001     }
   1002   } else {
   1003     //
   1004     // Allocate memory for the image being loaded from the EFI_SRAM_DESCRIPTOR
   1005     // specified by SmramRange
   1006     //
   1007     PageCount = (UINTN)EFI_SIZE_TO_PAGES((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
   1008 
   1009     ASSERT ((SmramRange->PhysicalSize & EFI_PAGE_MASK) == 0);
   1010     ASSERT (SmramRange->PhysicalSize > EFI_PAGES_TO_SIZE (PageCount));
   1011 
   1012     SmramRange->PhysicalSize -= EFI_PAGES_TO_SIZE (PageCount);
   1013     SmramRangeSmmCore->CpuStart = SmramRange->CpuStart + SmramRange->PhysicalSize;
   1014     SmramRangeSmmCore->PhysicalStart = SmramRange->PhysicalStart + SmramRange->PhysicalSize;
   1015     SmramRangeSmmCore->RegionState = SmramRange->RegionState | EFI_ALLOCATED;
   1016     SmramRangeSmmCore->PhysicalSize = EFI_PAGES_TO_SIZE (PageCount);
   1017 
   1018     //
   1019     // Align buffer on section boundary
   1020     //
   1021     ImageContext.ImageAddress = SmramRangeSmmCore->CpuStart;
   1022   }
   1023 
   1024   ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
   1025   ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));
   1026 
   1027   //
   1028   // Print debug message showing SMM Core load address.
   1029   //
   1030   DEBUG ((DEBUG_INFO, "SMM IPL loading SMM Core at SMRAM address %p\n", (VOID *)(UINTN)ImageContext.ImageAddress));
   1031 
   1032   //
   1033   // Load the image to our new buffer
   1034   //
   1035   Status = PeCoffLoaderLoadImage (&ImageContext);
   1036   if (!EFI_ERROR (Status)) {
   1037     //
   1038     // Relocate the image in our new buffer
   1039     //
   1040     Status = PeCoffLoaderRelocateImage (&ImageContext);
   1041     if (!EFI_ERROR (Status)) {
   1042       //
   1043       // Flush the instruction cache so the image data are written before we execute it
   1044       //
   1045       InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize);
   1046 
   1047       //
   1048       // Print debug message showing SMM Core entry point address.
   1049       //
   1050       DEBUG ((DEBUG_INFO, "SMM IPL calling SMM Core at SMRAM address %p\n", (VOID *)(UINTN)ImageContext.EntryPoint));
   1051 
   1052       gSmmCorePrivate->PiSmmCoreImageBase = ImageContext.ImageAddress;
   1053       gSmmCorePrivate->PiSmmCoreImageSize = ImageContext.ImageSize;
   1054       DEBUG ((DEBUG_INFO, "PiSmmCoreImageBase - 0x%016lx\n", gSmmCorePrivate->PiSmmCoreImageBase));
   1055       DEBUG ((DEBUG_INFO, "PiSmmCoreImageSize - 0x%016lx\n", gSmmCorePrivate->PiSmmCoreImageSize));
   1056 
   1057       gSmmCorePrivate->PiSmmCoreEntryPoint = ImageContext.EntryPoint;
   1058 
   1059       //
   1060       // Execute image
   1061       //
   1062       EntryPoint = (EFI_IMAGE_ENTRY_POINT)(UINTN)ImageContext.EntryPoint;
   1063       Status = EntryPoint ((EFI_HANDLE)Context, gST);
   1064     }
   1065   }
   1066 
   1067   //
   1068   // Always free memory allocted by GetFileBufferByFilePath ()
   1069   //
   1070   FreePool (SourceBuffer);
   1071 
   1072   return Status;
   1073 }
   1074 
   1075 /**
   1076   SMM split SMRAM entry.
   1077 
   1078   @param[in, out] RangeToCompare             Pointer to EFI_SMRAM_DESCRIPTOR to compare.
   1079   @param[in, out] ReservedRangeToCompare     Pointer to EFI_SMM_RESERVED_SMRAM_REGION to compare.
   1080   @param[out]     Ranges                     Output pointer to hold split EFI_SMRAM_DESCRIPTOR entry.
   1081   @param[in, out] RangeCount                 Pointer to range count.
   1082   @param[out]     ReservedRanges             Output pointer to hold split EFI_SMM_RESERVED_SMRAM_REGION entry.
   1083   @param[in, out] ReservedRangeCount         Pointer to reserved range count.
   1084   @param[out]     FinalRanges                Output pointer to hold split final EFI_SMRAM_DESCRIPTOR entry
   1085                                              that no need to be split anymore.
   1086   @param[in, out] FinalRangeCount            Pointer to final range count.
   1087 
   1088 **/
   1089 VOID
   1090 SmmSplitSmramEntry (
   1091   IN OUT EFI_SMRAM_DESCRIPTOR           *RangeToCompare,
   1092   IN OUT EFI_SMM_RESERVED_SMRAM_REGION  *ReservedRangeToCompare,
   1093   OUT    EFI_SMRAM_DESCRIPTOR           *Ranges,
   1094   IN OUT UINTN                          *RangeCount,
   1095   OUT    EFI_SMM_RESERVED_SMRAM_REGION  *ReservedRanges,
   1096   IN OUT UINTN                          *ReservedRangeCount,
   1097   OUT    EFI_SMRAM_DESCRIPTOR           *FinalRanges,
   1098   IN OUT UINTN                          *FinalRangeCount
   1099   )
   1100 {
   1101   UINT64    RangeToCompareEnd;
   1102   UINT64    ReservedRangeToCompareEnd;
   1103 
   1104   RangeToCompareEnd         = RangeToCompare->CpuStart + RangeToCompare->PhysicalSize;
   1105   ReservedRangeToCompareEnd = ReservedRangeToCompare->SmramReservedStart + ReservedRangeToCompare->SmramReservedSize;
   1106 
   1107   if ((RangeToCompare->CpuStart >= ReservedRangeToCompare->SmramReservedStart) &&
   1108       (RangeToCompare->CpuStart < ReservedRangeToCompareEnd)) {
   1109     if (RangeToCompareEnd < ReservedRangeToCompareEnd) {
   1110       //
   1111       // RangeToCompare  ReservedRangeToCompare
   1112       //                 ----                    ----    --------------------------------------
   1113       //                 |  |                    |  | -> 1. ReservedRangeToCompare
   1114       // ----            |  |                    |--|    --------------------------------------
   1115       // |  |            |  |                    |  |
   1116       // |  |            |  |                    |  | -> 2. FinalRanges[*FinalRangeCount] and increment *FinalRangeCount
   1117       // |  |            |  |                    |  |       RangeToCompare->PhysicalSize = 0
   1118       // ----            |  |                    |--|    --------------------------------------
   1119       //                 |  |                    |  | -> 3. ReservedRanges[*ReservedRangeCount] and increment *ReservedRangeCount
   1120       //                 ----                    ----    --------------------------------------
   1121       //
   1122 
   1123       //
   1124       // 1. Update ReservedRangeToCompare.
   1125       //
   1126       ReservedRangeToCompare->SmramReservedSize = RangeToCompare->CpuStart - ReservedRangeToCompare->SmramReservedStart;
   1127       //
   1128       // 2. Update FinalRanges[FinalRangeCount] and increment *FinalRangeCount.
   1129       //    Zero RangeToCompare->PhysicalSize.
   1130       //
   1131       FinalRanges[*FinalRangeCount].CpuStart      = RangeToCompare->CpuStart;
   1132       FinalRanges[*FinalRangeCount].PhysicalStart = RangeToCompare->PhysicalStart;
   1133       FinalRanges[*FinalRangeCount].RegionState   = RangeToCompare->RegionState | EFI_ALLOCATED;
   1134       FinalRanges[*FinalRangeCount].PhysicalSize  = RangeToCompare->PhysicalSize;
   1135       *FinalRangeCount += 1;
   1136       RangeToCompare->PhysicalSize = 0;
   1137       //
   1138       // 3. Update ReservedRanges[*ReservedRangeCount] and increment *ReservedRangeCount.
   1139       //
   1140       ReservedRanges[*ReservedRangeCount].SmramReservedStart = FinalRanges[*FinalRangeCount - 1].CpuStart + FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1141       ReservedRanges[*ReservedRangeCount].SmramReservedSize  = ReservedRangeToCompareEnd - RangeToCompareEnd;
   1142       *ReservedRangeCount += 1;
   1143     } else {
   1144       //
   1145       // RangeToCompare  ReservedRangeToCompare
   1146       //                 ----                    ----    --------------------------------------
   1147       //                 |  |                    |  | -> 1. ReservedRangeToCompare
   1148       // ----            |  |                    |--|    --------------------------------------
   1149       // |  |            |  |                    |  |
   1150       // |  |            |  |                    |  | -> 2. FinalRanges[*FinalRangeCount] and increment *FinalRangeCount
   1151       // |  |            |  |                    |  |
   1152       // |  |            ----                    |--|    --------------------------------------
   1153       // |  |                                    |  | -> 3. RangeToCompare
   1154       // ----                                    ----    --------------------------------------
   1155       //
   1156 
   1157       //
   1158       // 1. Update ReservedRangeToCompare.
   1159       //
   1160       ReservedRangeToCompare->SmramReservedSize = RangeToCompare->CpuStart - ReservedRangeToCompare->SmramReservedStart;
   1161       //
   1162       // 2. Update FinalRanges[FinalRangeCount] and increment *FinalRangeCount.
   1163       //
   1164       FinalRanges[*FinalRangeCount].CpuStart      = RangeToCompare->CpuStart;
   1165       FinalRanges[*FinalRangeCount].PhysicalStart = RangeToCompare->PhysicalStart;
   1166       FinalRanges[*FinalRangeCount].RegionState   = RangeToCompare->RegionState | EFI_ALLOCATED;
   1167       FinalRanges[*FinalRangeCount].PhysicalSize  = ReservedRangeToCompareEnd - RangeToCompare->CpuStart;
   1168       *FinalRangeCount += 1;
   1169       //
   1170       // 3. Update RangeToCompare.
   1171       //
   1172       RangeToCompare->CpuStart      += FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1173       RangeToCompare->PhysicalStart += FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1174       RangeToCompare->PhysicalSize  -= FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1175     }
   1176   } else if ((ReservedRangeToCompare->SmramReservedStart >= RangeToCompare->CpuStart) &&
   1177              (ReservedRangeToCompare->SmramReservedStart < RangeToCompareEnd)) {
   1178     if (ReservedRangeToCompareEnd < RangeToCompareEnd) {
   1179       //
   1180       // RangeToCompare  ReservedRangeToCompare
   1181       // ----                                    ----    --------------------------------------
   1182       // |  |                                    |  | -> 1. RangeToCompare
   1183       // |  |            ----                    |--|    --------------------------------------
   1184       // |  |            |  |                    |  |
   1185       // |  |            |  |                    |  | -> 2. FinalRanges[*FinalRangeCount] and increment *FinalRangeCount
   1186       // |  |            |  |                    |  |       ReservedRangeToCompare->SmramReservedSize = 0
   1187       // |  |            ----                    |--|    --------------------------------------
   1188       // |  |                                    |  | -> 3. Ranges[*RangeCount] and increment *RangeCount
   1189       // ----                                    ----    --------------------------------------
   1190       //
   1191 
   1192       //
   1193       // 1. Update RangeToCompare.
   1194       //
   1195       RangeToCompare->PhysicalSize = ReservedRangeToCompare->SmramReservedStart - RangeToCompare->CpuStart;
   1196       //
   1197       // 2. Update FinalRanges[FinalRangeCount] and increment *FinalRangeCount.
   1198       //    ReservedRangeToCompare->SmramReservedSize = 0
   1199       //
   1200       FinalRanges[*FinalRangeCount].CpuStart      = ReservedRangeToCompare->SmramReservedStart;
   1201       FinalRanges[*FinalRangeCount].PhysicalStart = RangeToCompare->PhysicalStart + RangeToCompare->PhysicalSize;
   1202       FinalRanges[*FinalRangeCount].RegionState   = RangeToCompare->RegionState | EFI_ALLOCATED;
   1203       FinalRanges[*FinalRangeCount].PhysicalSize  = ReservedRangeToCompare->SmramReservedSize;
   1204       *FinalRangeCount += 1;
   1205       ReservedRangeToCompare->SmramReservedSize = 0;
   1206       //
   1207       // 3. Update Ranges[*RangeCount] and increment *RangeCount.
   1208       //
   1209       Ranges[*RangeCount].CpuStart      = FinalRanges[*FinalRangeCount - 1].CpuStart + FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1210       Ranges[*RangeCount].PhysicalStart = FinalRanges[*FinalRangeCount - 1].PhysicalStart + FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1211       Ranges[*RangeCount].RegionState   = RangeToCompare->RegionState;
   1212       Ranges[*RangeCount].PhysicalSize  = RangeToCompareEnd - ReservedRangeToCompareEnd;
   1213       *RangeCount += 1;
   1214     } else {
   1215       //
   1216       // RangeToCompare  ReservedRangeToCompare
   1217       // ----                                    ----    --------------------------------------
   1218       // |  |                                    |  | -> 1. RangeToCompare
   1219       // |  |            ----                    |--|    --------------------------------------
   1220       // |  |            |  |                    |  |
   1221       // |  |            |  |                    |  | -> 2. FinalRanges[*FinalRangeCount] and increment *FinalRangeCount
   1222       // |  |            |  |                    |  |
   1223       // ----            |  |                    |--|    --------------------------------------
   1224       //                 |  |                    |  | -> 3. ReservedRangeToCompare
   1225       //                 ----                    ----    --------------------------------------
   1226       //
   1227 
   1228       //
   1229       // 1. Update RangeToCompare.
   1230       //
   1231       RangeToCompare->PhysicalSize = ReservedRangeToCompare->SmramReservedStart - RangeToCompare->CpuStart;
   1232       //
   1233       // 2. Update FinalRanges[FinalRangeCount] and increment *FinalRangeCount.
   1234       //    ReservedRangeToCompare->SmramReservedSize = 0
   1235       //
   1236       FinalRanges[*FinalRangeCount].CpuStart      = ReservedRangeToCompare->SmramReservedStart;
   1237       FinalRanges[*FinalRangeCount].PhysicalStart = RangeToCompare->PhysicalStart + RangeToCompare->PhysicalSize;
   1238       FinalRanges[*FinalRangeCount].RegionState   = RangeToCompare->RegionState | EFI_ALLOCATED;
   1239       FinalRanges[*FinalRangeCount].PhysicalSize  = RangeToCompareEnd - ReservedRangeToCompare->SmramReservedStart;
   1240       *FinalRangeCount += 1;
   1241       //
   1242       // 3. Update ReservedRangeToCompare.
   1243       //
   1244       ReservedRangeToCompare->SmramReservedStart += FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1245       ReservedRangeToCompare->SmramReservedSize  -= FinalRanges[*FinalRangeCount - 1].PhysicalSize;
   1246     }
   1247   }
   1248 }
   1249 
   1250 /**
   1251   Returns if SMRAM range and SMRAM reserved range are overlapped.
   1252 
   1253   @param[in] RangeToCompare             Pointer to EFI_SMRAM_DESCRIPTOR to compare.
   1254   @param[in] ReservedRangeToCompare     Pointer to EFI_SMM_RESERVED_SMRAM_REGION to compare.
   1255 
   1256   @retval TRUE  There is overlap.
   1257   @retval FALSE There is no overlap.
   1258 
   1259 **/
   1260 BOOLEAN
   1261 SmmIsSmramOverlap (
   1262   IN EFI_SMRAM_DESCRIPTOR           *RangeToCompare,
   1263   IN EFI_SMM_RESERVED_SMRAM_REGION  *ReservedRangeToCompare
   1264   )
   1265 {
   1266   UINT64    RangeToCompareEnd;
   1267   UINT64    ReservedRangeToCompareEnd;
   1268 
   1269   RangeToCompareEnd         = RangeToCompare->CpuStart + RangeToCompare->PhysicalSize;
   1270   ReservedRangeToCompareEnd = ReservedRangeToCompare->SmramReservedStart + ReservedRangeToCompare->SmramReservedSize;
   1271 
   1272   if ((RangeToCompare->CpuStart >= ReservedRangeToCompare->SmramReservedStart) &&
   1273       (RangeToCompare->CpuStart < ReservedRangeToCompareEnd)) {
   1274     return TRUE;
   1275   } else if ((ReservedRangeToCompare->SmramReservedStart >= RangeToCompare->CpuStart) &&
   1276              (ReservedRangeToCompare->SmramReservedStart < RangeToCompareEnd)) {
   1277     return TRUE;
   1278   }
   1279   return FALSE;
   1280 }
   1281 
   1282 /**
   1283   Get full SMRAM ranges.
   1284 
   1285   It will get SMRAM ranges from SmmAccess protocol and SMRAM reserved ranges from
   1286   SmmConfiguration protocol, split the entries if there is overlap between them.
   1287   It will also reserve one entry for SMM core.
   1288 
   1289   @param[out] FullSmramRangeCount   Output pointer to full SMRAM range count.
   1290 
   1291   @return Pointer to full SMRAM ranges.
   1292 
   1293 **/
   1294 EFI_SMRAM_DESCRIPTOR *
   1295 GetFullSmramRanges (
   1296   OUT UINTN     *FullSmramRangeCount
   1297   )
   1298 {
   1299   EFI_STATUS                        Status;
   1300   EFI_SMM_CONFIGURATION_PROTOCOL    *SmmConfiguration;
   1301   UINTN                             Size;
   1302   UINTN                             Index;
   1303   UINTN                             Index2;
   1304   EFI_SMRAM_DESCRIPTOR              *FullSmramRanges;
   1305   UINTN                             TempSmramRangeCount;
   1306   UINTN                             AdditionSmramRangeCount;
   1307   EFI_SMRAM_DESCRIPTOR              *TempSmramRanges;
   1308   UINTN                             SmramRangeCount;
   1309   EFI_SMRAM_DESCRIPTOR              *SmramRanges;
   1310   UINTN                             SmramReservedCount;
   1311   EFI_SMM_RESERVED_SMRAM_REGION     *SmramReservedRanges;
   1312   UINTN                             MaxCount;
   1313   BOOLEAN                           Rescan;
   1314 
   1315   //
   1316   // Get SMM Configuration Protocol if it is present.
   1317   //
   1318   SmmConfiguration = NULL;
   1319   Status = gBS->LocateProtocol (&gEfiSmmConfigurationProtocolGuid, NULL, (VOID **) &SmmConfiguration);
   1320 
   1321   //
   1322   // Get SMRAM information.
   1323   //
   1324   Size = 0;
   1325   Status = mSmmAccess->GetCapabilities (mSmmAccess, &Size, NULL);
   1326   ASSERT (Status == EFI_BUFFER_TOO_SMALL);
   1327 
   1328   SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
   1329 
   1330   //
   1331   // Get SMRAM reserved region count.
   1332   //
   1333   SmramReservedCount = 0;
   1334   if (SmmConfiguration != NULL) {
   1335     while (SmmConfiguration->SmramReservedRegions[SmramReservedCount].SmramReservedSize != 0) {
   1336       SmramReservedCount++;
   1337     }
   1338   }
   1339 
   1340   //
   1341   // Reserve one entry for SMM Core in the full SMRAM ranges.
   1342   //
   1343   AdditionSmramRangeCount = 1;
   1344   if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
   1345     //
   1346     // Reserve two entries for all SMM drivers and SMM Core in the full SMRAM ranges.
   1347     //
   1348     AdditionSmramRangeCount = 2;
   1349   }
   1350 
   1351   if (SmramReservedCount == 0) {
   1352     //
   1353     // No reserved SMRAM entry from SMM Configuration Protocol.
   1354     //
   1355     *FullSmramRangeCount = SmramRangeCount + AdditionSmramRangeCount;
   1356     Size = (*FullSmramRangeCount) * sizeof (EFI_SMRAM_DESCRIPTOR);
   1357     FullSmramRanges = (EFI_SMRAM_DESCRIPTOR *) AllocateZeroPool (Size);
   1358     ASSERT (FullSmramRanges != NULL);
   1359 
   1360     Status = mSmmAccess->GetCapabilities (mSmmAccess, &Size, FullSmramRanges);
   1361     ASSERT_EFI_ERROR (Status);
   1362 
   1363     return FullSmramRanges;
   1364   }
   1365 
   1366   //
   1367   // Why MaxCount = X + 2 * Y?
   1368   // Take Y = 1 as example below, Y > 1 case is just the iteration of Y = 1.
   1369   //
   1370   //   X = 1 Y = 1     MaxCount = 3 = 1 + 2 * 1
   1371   //   ----            ----
   1372   //   |  |  ----      |--|
   1373   //   |  |  |  |  ->  |  |
   1374   //   |  |  ----      |--|
   1375   //   ----            ----
   1376   //
   1377   //   X = 2 Y = 1     MaxCount = 4 = 2 + 2 * 1
   1378   //   ----            ----
   1379   //   |  |            |  |
   1380   //   |  |  ----      |--|
   1381   //   |  |  |  |      |  |
   1382   //   |--|  |  |  ->  |--|
   1383   //   |  |  |  |      |  |
   1384   //   |  |  ----      |--|
   1385   //   |  |            |  |
   1386   //   ----            ----
   1387   //
   1388   //   X = 3 Y = 1     MaxCount = 5 = 3 + 2 * 1
   1389   //   ----            ----
   1390   //   |  |            |  |
   1391   //   |  |  ----      |--|
   1392   //   |--|  |  |      |--|
   1393   //   |  |  |  |  ->  |  |
   1394   //   |--|  |  |      |--|
   1395   //   |  |  ----      |--|
   1396   //   |  |            |  |
   1397   //   ----            ----
   1398   //
   1399   //   ......
   1400   //
   1401   MaxCount = SmramRangeCount + 2 * SmramReservedCount;
   1402 
   1403   Size = MaxCount * sizeof (EFI_SMM_RESERVED_SMRAM_REGION);
   1404   SmramReservedRanges = (EFI_SMM_RESERVED_SMRAM_REGION *) AllocatePool (Size);
   1405   ASSERT (SmramReservedRanges != NULL);
   1406   for (Index = 0; Index < SmramReservedCount; Index++) {
   1407     CopyMem (&SmramReservedRanges[Index], &SmmConfiguration->SmramReservedRegions[Index], sizeof (EFI_SMM_RESERVED_SMRAM_REGION));
   1408   }
   1409 
   1410   Size = MaxCount * sizeof (EFI_SMRAM_DESCRIPTOR);
   1411   TempSmramRanges = (EFI_SMRAM_DESCRIPTOR *) AllocatePool (Size);
   1412   ASSERT (TempSmramRanges != NULL);
   1413   TempSmramRangeCount = 0;
   1414 
   1415   SmramRanges = (EFI_SMRAM_DESCRIPTOR *) AllocatePool (Size);
   1416   ASSERT (SmramRanges != NULL);
   1417   Status = mSmmAccess->GetCapabilities (mSmmAccess, &Size, SmramRanges);
   1418   ASSERT_EFI_ERROR (Status);
   1419 
   1420   do {
   1421     Rescan = FALSE;
   1422     for (Index = 0; (Index < SmramRangeCount) && !Rescan; Index++) {
   1423       //
   1424       // Skip zero size entry.
   1425       //
   1426       if (SmramRanges[Index].PhysicalSize != 0) {
   1427         for (Index2 = 0; (Index2 < SmramReservedCount) && !Rescan; Index2++) {
   1428           //
   1429           // Skip zero size entry.
   1430           //
   1431           if (SmramReservedRanges[Index2].SmramReservedSize != 0) {
   1432             if (SmmIsSmramOverlap (
   1433                   &SmramRanges[Index],
   1434                   &SmramReservedRanges[Index2]
   1435                   )) {
   1436               //
   1437               // There is overlap, need to split entry and then rescan.
   1438               //
   1439               SmmSplitSmramEntry (
   1440                 &SmramRanges[Index],
   1441                 &SmramReservedRanges[Index2],
   1442                 SmramRanges,
   1443                 &SmramRangeCount,
   1444                 SmramReservedRanges,
   1445                 &SmramReservedCount,
   1446                 TempSmramRanges,
   1447                 &TempSmramRangeCount
   1448                 );
   1449               Rescan = TRUE;
   1450             }
   1451           }
   1452         }
   1453         if (!Rescan) {
   1454           //
   1455           // No any overlap, copy the entry to the temp SMRAM ranges.
   1456           // Zero SmramRanges[Index].PhysicalSize = 0;
   1457           //
   1458           CopyMem (&TempSmramRanges[TempSmramRangeCount++], &SmramRanges[Index], sizeof (EFI_SMRAM_DESCRIPTOR));
   1459           SmramRanges[Index].PhysicalSize = 0;
   1460         }
   1461       }
   1462     }
   1463   } while (Rescan);
   1464   ASSERT (TempSmramRangeCount <= MaxCount);
   1465 
   1466   //
   1467   // Sort the entries
   1468   //
   1469   FullSmramRanges = AllocateZeroPool ((TempSmramRangeCount + AdditionSmramRangeCount) * sizeof (EFI_SMRAM_DESCRIPTOR));
   1470   ASSERT (FullSmramRanges != NULL);
   1471   *FullSmramRangeCount = 0;
   1472   do {
   1473     for (Index = 0; Index < TempSmramRangeCount; Index++) {
   1474       if (TempSmramRanges[Index].PhysicalSize != 0) {
   1475         break;
   1476       }
   1477     }
   1478     ASSERT (Index < TempSmramRangeCount);
   1479     for (Index2 = 0; Index2 < TempSmramRangeCount; Index2++) {
   1480       if ((Index2 != Index) && (TempSmramRanges[Index2].PhysicalSize != 0) && (TempSmramRanges[Index2].CpuStart < TempSmramRanges[Index].CpuStart)) {
   1481         Index = Index2;
   1482       }
   1483     }
   1484     CopyMem (&FullSmramRanges[*FullSmramRangeCount], &TempSmramRanges[Index], sizeof (EFI_SMRAM_DESCRIPTOR));
   1485     *FullSmramRangeCount += 1;
   1486     TempSmramRanges[Index].PhysicalSize = 0;
   1487   } while (*FullSmramRangeCount < TempSmramRangeCount);
   1488   ASSERT (*FullSmramRangeCount == TempSmramRangeCount);
   1489   *FullSmramRangeCount += AdditionSmramRangeCount;
   1490 
   1491   FreePool (SmramRanges);
   1492   FreePool (SmramReservedRanges);
   1493   FreePool (TempSmramRanges);
   1494 
   1495   return FullSmramRanges;
   1496 }
   1497 
   1498 /**
   1499   The Entry Point for SMM IPL
   1500 
   1501   Load SMM Core into SMRAM, register SMM Core entry point for SMIs, install
   1502   SMM Base 2 Protocol and SMM Communication Protocol, and register for the
   1503   critical events required to coordinate between DXE and SMM environments.
   1504 
   1505   @param  ImageHandle    The firmware allocated handle for the EFI image.
   1506   @param  SystemTable    A pointer to the EFI System Table.
   1507 
   1508   @retval EFI_SUCCESS    The entry point is executed successfully.
   1509   @retval Other          Some error occurred when executing this entry point.
   1510 
   1511 **/
   1512 EFI_STATUS
   1513 EFIAPI
   1514 SmmIplEntry (
   1515   IN EFI_HANDLE        ImageHandle,
   1516   IN EFI_SYSTEM_TABLE  *SystemTable
   1517   )
   1518 {
   1519   EFI_STATUS                      Status;
   1520   UINTN                           Index;
   1521   UINT64                          MaxSize;
   1522   VOID                            *Registration;
   1523   UINT64                          SmmCodeSize;
   1524   EFI_LOAD_FIXED_ADDRESS_CONFIGURATION_TABLE    *LMFAConfigurationTable;
   1525   EFI_CPU_ARCH_PROTOCOL           *CpuArch;
   1526   EFI_STATUS                      SetAttrStatus;
   1527   EFI_SMRAM_DESCRIPTOR            *SmramRangeSmmDriver;
   1528 
   1529   //
   1530   // Fill in the image handle of the SMM IPL so the SMM Core can use this as the
   1531   // ParentImageHandle field of the Load Image Protocol for all SMM Drivers loaded
   1532   // by the SMM Core
   1533   //
   1534   mSmmCorePrivateData.SmmIplImageHandle = ImageHandle;
   1535 
   1536   //
   1537   // Get SMM Access Protocol
   1538   //
   1539   Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&mSmmAccess);
   1540   ASSERT_EFI_ERROR (Status);
   1541 
   1542   //
   1543   // Get SMM Control2 Protocol
   1544   //
   1545   Status = gBS->LocateProtocol (&gEfiSmmControl2ProtocolGuid, NULL, (VOID **)&mSmmControl2);
   1546   ASSERT_EFI_ERROR (Status);
   1547 
   1548   gSmmCorePrivate->SmramRanges = GetFullSmramRanges (&gSmmCorePrivate->SmramRangeCount);
   1549 
   1550   //
   1551   // Open all SMRAM ranges
   1552   //
   1553   Status = mSmmAccess->Open (mSmmAccess);
   1554   ASSERT_EFI_ERROR (Status);
   1555 
   1556   //
   1557   // Print debug message that the SMRAM window is now open.
   1558   //
   1559   DEBUG ((DEBUG_INFO, "SMM IPL opened SMRAM window\n"));
   1560 
   1561   //
   1562   // Find the largest SMRAM range between 1MB and 4GB that is at least 256KB - 4K in size
   1563   //
   1564   mCurrentSmramRange = NULL;
   1565   for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < gSmmCorePrivate->SmramRangeCount; Index++) {
   1566     //
   1567     // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
   1568     //
   1569     if ((gSmmCorePrivate->SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
   1570       continue;
   1571     }
   1572 
   1573     if (gSmmCorePrivate->SmramRanges[Index].CpuStart >= BASE_1MB) {
   1574       if ((gSmmCorePrivate->SmramRanges[Index].CpuStart + gSmmCorePrivate->SmramRanges[Index].PhysicalSize - 1) <= MAX_ADDRESS) {
   1575         if (gSmmCorePrivate->SmramRanges[Index].PhysicalSize >= MaxSize) {
   1576           MaxSize = gSmmCorePrivate->SmramRanges[Index].PhysicalSize;
   1577           mCurrentSmramRange = &gSmmCorePrivate->SmramRanges[Index];
   1578         }
   1579       }
   1580     }
   1581   }
   1582 
   1583   if (mCurrentSmramRange != NULL) {
   1584     //
   1585     // Print debug message showing SMRAM window that will be used by SMM IPL and SMM Core
   1586     //
   1587     DEBUG ((DEBUG_INFO, "SMM IPL found SMRAM window %p - %p\n",
   1588       (VOID *)(UINTN)mCurrentSmramRange->CpuStart,
   1589       (VOID *)(UINTN)(mCurrentSmramRange->CpuStart + mCurrentSmramRange->PhysicalSize - 1)
   1590       ));
   1591 
   1592     GetSmramCacheRange (mCurrentSmramRange, &mSmramCacheBase, &mSmramCacheSize);
   1593     //
   1594     // If CPU AP is present, attempt to set SMRAM cacheability to WB
   1595     // Note that it is expected that cacheability of SMRAM has been set to WB if CPU AP
   1596     // is not available here.
   1597     //
   1598     CpuArch = NULL;
   1599     Status = gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&CpuArch);
   1600     if (!EFI_ERROR (Status)) {
   1601       Status = gDS->SetMemorySpaceAttributes(
   1602                       mSmramCacheBase,
   1603                       mSmramCacheSize,
   1604                       EFI_MEMORY_WB
   1605                       );
   1606       if (EFI_ERROR (Status)) {
   1607         DEBUG ((DEBUG_WARN, "SMM IPL failed to set SMRAM window to EFI_MEMORY_WB\n"));
   1608       }
   1609     }
   1610     //
   1611     // if Loading module at Fixed Address feature is enabled, save the SMRAM base to Load
   1612     // Modules At Fixed Address Configuration Table.
   1613     //
   1614     if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
   1615       //
   1616       // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressSmmCodePageNumber
   1617       //
   1618       SmmCodeSize = LShiftU64 (PcdGet32(PcdLoadFixAddressSmmCodePageNumber), EFI_PAGE_SHIFT);
   1619       //
   1620       // The SMRAM available memory is assumed to be larger than SmmCodeSize
   1621       //
   1622       ASSERT (mCurrentSmramRange->PhysicalSize > SmmCodeSize);
   1623       //
   1624       // Retrieve Load modules At fixed address configuration table and save the SMRAM base.
   1625       //
   1626       Status = EfiGetSystemConfigurationTable (
   1627                 &gLoadFixedAddressConfigurationTableGuid,
   1628                (VOID **) &LMFAConfigurationTable
   1629                );
   1630       if (!EFI_ERROR (Status) && LMFAConfigurationTable != NULL) {
   1631         LMFAConfigurationTable->SmramBase = mCurrentSmramRange->CpuStart;
   1632         //
   1633         // Print the SMRAM base
   1634         //
   1635         DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: TSEG BASE is %x. \n", LMFAConfigurationTable->SmramBase));
   1636       }
   1637 
   1638       //
   1639       // Fill the Smram range for all SMM code
   1640       //
   1641       SmramRangeSmmDriver = &gSmmCorePrivate->SmramRanges[gSmmCorePrivate->SmramRangeCount - 2];
   1642       SmramRangeSmmDriver->CpuStart      = mCurrentSmramRange->CpuStart;
   1643       SmramRangeSmmDriver->PhysicalStart = mCurrentSmramRange->PhysicalStart;
   1644       SmramRangeSmmDriver->RegionState   = mCurrentSmramRange->RegionState | EFI_ALLOCATED;
   1645       SmramRangeSmmDriver->PhysicalSize  = SmmCodeSize;
   1646 
   1647       mCurrentSmramRange->PhysicalSize  -= SmmCodeSize;
   1648       mCurrentSmramRange->CpuStart       = mCurrentSmramRange->CpuStart + SmmCodeSize;
   1649       mCurrentSmramRange->PhysicalStart  = mCurrentSmramRange->PhysicalStart + SmmCodeSize;
   1650     }
   1651     //
   1652     // Load SMM Core into SMRAM and execute it from SMRAM
   1653     //
   1654     Status = ExecuteSmmCoreFromSmram (
   1655                mCurrentSmramRange,
   1656                &gSmmCorePrivate->SmramRanges[gSmmCorePrivate->SmramRangeCount - 1],
   1657                gSmmCorePrivate
   1658                );
   1659     if (EFI_ERROR (Status)) {
   1660       //
   1661       // Print error message that the SMM Core failed to be loaded and executed.
   1662       //
   1663       DEBUG ((DEBUG_ERROR, "SMM IPL could not load and execute SMM Core from SMRAM\n"));
   1664 
   1665       //
   1666       // Attempt to reset SMRAM cacheability to UC
   1667       //
   1668       if (CpuArch != NULL) {
   1669         SetAttrStatus = gDS->SetMemorySpaceAttributes(
   1670                                mSmramCacheBase,
   1671                                mSmramCacheSize,
   1672                                EFI_MEMORY_UC
   1673                                );
   1674         if (EFI_ERROR (SetAttrStatus)) {
   1675           DEBUG ((DEBUG_WARN, "SMM IPL failed to reset SMRAM window to EFI_MEMORY_UC\n"));
   1676         }
   1677       }
   1678     }
   1679   } else {
   1680     //
   1681     // Print error message that there are not enough SMRAM resources to load the SMM Core.
   1682     //
   1683     DEBUG ((DEBUG_ERROR, "SMM IPL could not find a large enough SMRAM region to load SMM Core\n"));
   1684   }
   1685 
   1686   //
   1687   // If the SMM Core could not be loaded then close SMRAM window, free allocated
   1688   // resources, and return an error so SMM IPL will be unloaded.
   1689   //
   1690   if (mCurrentSmramRange == NULL || EFI_ERROR (Status)) {
   1691     //
   1692     // Close all SMRAM ranges
   1693     //
   1694     Status = mSmmAccess->Close (mSmmAccess);
   1695     ASSERT_EFI_ERROR (Status);
   1696 
   1697     //
   1698     // Print debug message that the SMRAM window is now closed.
   1699     //
   1700     DEBUG ((DEBUG_INFO, "SMM IPL closed SMRAM window\n"));
   1701 
   1702     //
   1703     // Free all allocated resources
   1704     //
   1705     FreePool (gSmmCorePrivate->SmramRanges);
   1706 
   1707     return EFI_UNSUPPORTED;
   1708   }
   1709 
   1710   //
   1711   // Install SMM Base2 Protocol and SMM Communication Protocol
   1712   //
   1713   Status = gBS->InstallMultipleProtocolInterfaces (
   1714                   &mSmmIplHandle,
   1715                   &gEfiSmmBase2ProtocolGuid,         &mSmmBase2,
   1716                   &gEfiSmmCommunicationProtocolGuid, &mSmmCommunication,
   1717                   NULL
   1718                   );
   1719   ASSERT_EFI_ERROR (Status);
   1720 
   1721   //
   1722   // Create the set of protocol and event notififcations that the SMM IPL requires
   1723   //
   1724   for (Index = 0; mSmmIplEvents[Index].NotifyFunction != NULL; Index++) {
   1725     if (mSmmIplEvents[Index].Protocol) {
   1726       mSmmIplEvents[Index].Event = EfiCreateProtocolNotifyEvent (
   1727                                      mSmmIplEvents[Index].Guid,
   1728                                      mSmmIplEvents[Index].NotifyTpl,
   1729                                      mSmmIplEvents[Index].NotifyFunction,
   1730                                      mSmmIplEvents[Index].NotifyContext,
   1731                                     &Registration
   1732                                     );
   1733     } else {
   1734       Status = gBS->CreateEventEx (
   1735                       EVT_NOTIFY_SIGNAL,
   1736                       mSmmIplEvents[Index].NotifyTpl,
   1737                       mSmmIplEvents[Index].NotifyFunction,
   1738                       mSmmIplEvents[Index].NotifyContext,
   1739                       mSmmIplEvents[Index].Guid,
   1740                       &mSmmIplEvents[Index].Event
   1741                       );
   1742       ASSERT_EFI_ERROR (Status);
   1743     }
   1744   }
   1745 
   1746   return EFI_SUCCESS;
   1747 }
   1748