Home | History | Annotate | Download | only in Math
      1 /** @file
      2   Compute the base 10 logrithm of x.
      3 
      4   Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
      5   This program and the accompanying materials are licensed and made available under
      6   the terms and conditions of the BSD License that accompanies this distribution.
      7   The full text of the license may be found at
      8   http://opensource.org/licenses/bsd-license.
      9 
     10   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     11   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     12 
     13  * ====================================================
     14  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     15  *
     16  * Developed at SunPro, a Sun Microsystems, Inc. business.
     17  * Permission to use, copy, modify, and distribute this
     18  * software is freely granted, provided that this notice
     19  * is preserved.
     20  * ====================================================
     21 
     22   e_log10.c 5.1 93/09/24
     23   NetBSD: e_log10.c,v 1.12 2002/05/26 22:01:51 wiz Exp
     24 **/
     25 #include  <LibConfig.h>
     26 #include  <sys/EfiCdefs.h>
     27 
     28 /* __ieee754_log10(x)
     29  * Return the base 10 logarithm of x
     30  *
     31  * Method :
     32  *  Let log10_2hi = leading 40 bits of log10(2) and
     33  *      log10_2lo = log10(2) - log10_2hi,
     34  *      ivln10   = 1/log(10) rounded.
     35  *  Then
     36  *    n = ilogb(x),
     37  *    if(n<0)  n = n+1;
     38  *    x = scalbn(x,-n);
     39  *    log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
     40  *
     41  * Note 1:
     42  *  To guarantee log10(10**n)=n, where 10**n is normal, the rounding
     43  *  mode must set to Round-to-Nearest.
     44  * Note 2:
     45  *  [1/log(10)] rounded to 53 bits has error  .198   ulps;
     46  *  log10 is monotonic at all binary break points.
     47  *
     48  * Special cases:
     49  *  log10(x) is NaN with signal if x < 0;
     50  *  log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
     51  *  log10(NaN) is that NaN with no signal;
     52  *  log10(10**N) = N  for N=0,1,...,22.
     53  *
     54  * Constants:
     55  * The hexadecimal values are the intended ones for the following constants.
     56  * The decimal values may be used, provided that the compiler will convert
     57  * from decimal to binary accurately enough to produce the hexadecimal values
     58  * shown.
     59  */
     60 
     61 #include "math.h"
     62 #include "math_private.h"
     63 #include  <errno.h>
     64 
     65 #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
     66   // potential divide by 0 -- near line 80, (x-x)/zero is on purpose
     67   #pragma warning ( disable : 4723 )
     68 #endif
     69 
     70 static const double
     71 two54      =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
     72 ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
     73 log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
     74 log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
     75 
     76 static const double zero   =  0.0;
     77 
     78 double
     79 __ieee754_log10(double x)
     80 {
     81   double y,z;
     82   int32_t i,k,hx;
     83   u_int32_t lx;
     84 
     85   EXTRACT_WORDS(hx,lx,x);
     86 
     87   k=0;
     88   if (hx < 0x00100000) {            /* x < 2**-1022  */
     89     if (((hx&0x7fffffff)|lx)==0)
     90       return -two54/zero;           /* log(+-0)=-inf */
     91     if (hx<0) {
     92       errno = EDOM;
     93       return (x-x)/zero;            /* log(-#) = NaN */
     94     }
     95     k -= 54; x *= two54;            /* subnormal number, scale up x */
     96     GET_HIGH_WORD(hx,x);
     97   }
     98   if (hx >= 0x7ff00000) return x+x;
     99   k += (hx>>20)-1023;
    100   i  = ((u_int32_t)k&0x80000000)>>31;
    101   hx = (hx&0x000fffff)|((0x3ff-i)<<20);
    102   y  = (double)(k+i);
    103   SET_HIGH_WORD(x,hx);
    104   z  = y*log10_2lo + ivln10*__ieee754_log(x);
    105   return  z+y*log10_2hi;
    106 }
    107