Home | History | Annotate | Download | only in Math
      1 /** @file
      2   Compute the logrithm of x.
      3 
      4   Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
      5   This program and the accompanying materials are licensed and made available under
      6   the terms and conditions of the BSD License that accompanies this distribution.
      7   The full text of the license may be found at
      8   http://opensource.org/licenses/bsd-license.
      9 
     10   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     11   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     12 
     13  * ====================================================
     14  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     15  *
     16  * Developed at SunPro, a Sun Microsystems, Inc. business.
     17  * Permission to use, copy, modify, and distribute this
     18  * software is freely granted, provided that this notice
     19  * is preserved.
     20  * ====================================================
     21 
     22   e_sqrt.c 5.1 93/09/24
     23   NetBSD: e_sqrt.c,v 1.12 2002/05/26 22:01:52 wiz Exp
     24 **/
     25 #include  <LibConfig.h>
     26 #include  <sys/EfiCdefs.h>
     27 
     28 #include  <errno.h>
     29 #include "math.h"
     30 #include "math_private.h"
     31 
     32 #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
     33 // potential divide by 0 -- near line 129, (x-x)/(x-x) is on purpose
     34 #pragma warning ( disable : 4723 )
     35 #endif
     36 
     37 /* __ieee754_sqrt(x)
     38  * Return correctly rounded sqrt.
     39  *           ------------------------------------------
     40  *       |  Use the hardware sqrt if you have one |
     41  *           ------------------------------------------
     42  * Method:
     43  *   Bit by bit method using integer arithmetic. (Slow, but portable)
     44  *   1. Normalization
     45  *  Scale x to y in [1,4) with even powers of 2:
     46  *  find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
     47  *    sqrt(x) = 2^k * sqrt(y)
     48  *   2. Bit by bit computation
     49  *  Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
     50  *       i               0
     51  *                                     i+1         2
     52  *      s  = 2*q , and  y  =  2   * ( y - q  ).   (1)
     53  *       i      i            i                 i
     54  *
     55  *  To compute q    from q , one checks whether
     56  *        i+1       i
     57  *
     58  *            -(i+1) 2
     59  *      (q + 2      ) <= y.     (2)
     60  *            i
     61  *                    -(i+1)
     62  *  If (2) is false, then q   = q ; otherwise q   = q  + 2      .
     63  *             i+1   i             i+1   i
     64  *
     65  *  With some algebric manipulation, it is not difficult to see
     66  *  that (2) is equivalent to
     67  *                             -(i+1)
     68  *      s  +  2       <= y      (3)
     69  *       i                i
     70  *
     71  *  The advantage of (3) is that s  and y  can be computed by
     72  *              i      i
     73  *  the following recurrence formula:
     74  *      if (3) is false
     75  *
     76  *      s     =  s  , y    = y   ;      (4)
     77  *       i+1      i    i+1    i
     78  *
     79  *      otherwise,
     80  *                         -i                     -(i+1)
     81  *      s   =  s  + 2  ,  y    = y  -  s  - 2     (5)
     82  *           i+1      i          i+1    i     i
     83  *
     84  *  One may easily use induction to prove (4) and (5).
     85  *  Note. Since the left hand side of (3) contain only i+2 bits,
     86  *        it does not necessary to do a full (53-bit) comparison
     87  *        in (3).
     88  *   3. Final rounding
     89  *  After generating the 53 bits result, we compute one more bit.
     90  *  Together with the remainder, we can decide whether the
     91  *  result is exact, bigger than 1/2ulp, or less than 1/2ulp
     92  *  (it will never equal to 1/2ulp).
     93  *  The rounding mode can be detected by checking whether
     94  *  huge + tiny is equal to huge, and whether huge - tiny is
     95  *  equal to huge for some floating point number "huge" and "tiny".
     96  *
     97  * Special cases:
     98  *  sqrt(+-0) = +-0   ... exact
     99  *  sqrt(inf) = inf
    100  *  sqrt(-ve) = NaN   ... with invalid signal
    101  *  sqrt(NaN) = NaN   ... with invalid signal for signaling NaN
    102  *
    103  * Other methods : see the appended file at the end of the program below.
    104  *---------------
    105  */
    106 
    107 static  const double  one = 1.0, tiny=1.0e-300;
    108 
    109 double
    110 __ieee754_sqrt(double x)
    111 {
    112   double z;
    113   int32_t sign = (int)0x80000000;
    114   int32_t ix0,s0,q,m,t,i;
    115   u_int32_t r,t1,s1,ix1,q1;
    116 
    117   EXTRACT_WORDS(ix0,ix1,x);
    118 
    119     /* take care of Inf and NaN */
    120   if((ix0&0x7ff00000)==0x7ff00000) {
    121       return x*x+x;   /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
    122              sqrt(-inf)=sNaN */
    123   }
    124     /* take care of zero */
    125   if(ix0<=0) {
    126       if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
    127       else if(ix0<0) {
    128         errno = EDOM;
    129         return (x-x)/(x-x);   /* sqrt(-ve) = sNaN */
    130       }
    131   }
    132     /* normalize x */
    133   m = (ix0>>20);
    134   if(m==0) {        /* subnormal x */
    135       while(ix0==0) {
    136     m -= 21;
    137     ix0 |= (ix1>>11); ix1 <<= 21;
    138       }
    139       for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
    140       m -= i-1;
    141       ix0 |= (ix1>>(32-i));
    142       ix1 <<= i;
    143   }
    144   m -= 1023;  /* unbias exponent */
    145   ix0 = (ix0&0x000fffff)|0x00100000;
    146   if(m&1){  /* odd m, double x to make it even */
    147       ix0 += ix0 + ((ix1&sign)>>31);
    148       ix1 += ix1;
    149   }
    150   m >>= 1;  /* m = [m/2] */
    151 
    152     /* generate sqrt(x) bit by bit */
    153   ix0 += ix0 + ((ix1&sign)>>31);
    154   ix1 += ix1;
    155   q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
    156   r = 0x00200000;   /* r = moving bit from right to left */
    157 
    158   while(r!=0) {
    159       t = s0+r;
    160       if(t<=ix0) {
    161     s0   = t+r;
    162     ix0 -= t;
    163     q   += r;
    164       }
    165       ix0 += ix0 + ((ix1&sign)>>31);
    166       ix1 += ix1;
    167       r>>=1;
    168   }
    169 
    170   r = sign;
    171   while(r!=0) {
    172       t1 = s1+r;
    173       t  = s0;
    174       if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
    175     s1  = t1+r;
    176     if(((t1&sign)==(u_int32_t)sign)&&(s1&sign)==0) s0 += 1;
    177     ix0 -= t;
    178     if (ix1 < t1) ix0 -= 1;
    179     ix1 -= t1;
    180     q1  += r;
    181       }
    182       ix0 += ix0 + ((ix1&sign)>>31);
    183       ix1 += ix1;
    184       r>>=1;
    185   }
    186 
    187     /* use floating add to find out rounding direction */
    188   if((ix0|ix1)!=0) {
    189       z = one-tiny; /* trigger inexact flag */
    190       if (z>=one) {
    191           z = one+tiny;
    192           if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
    193     else if (z>one) {
    194         if (q1==(u_int32_t)0xfffffffe) q+=1;
    195         q1+=2;
    196     } else
    197               q1 += (q1&1);
    198       }
    199   }
    200   ix0 = (q>>1)+0x3fe00000;
    201   ix1 =  q1>>1;
    202   if ((q&1)==1) ix1 |= sign;
    203   ix0 += (m <<20);
    204   INSERT_WORDS(z,ix0,ix1);
    205   return z;
    206 }
    207 
    208 /*
    209 Other methods  (use floating-point arithmetic)
    210 -------------
    211 (This is a copy of a drafted paper by Prof W. Kahan
    212 and K.C. Ng, written in May, 1986)
    213 
    214   Two algorithms are given here to implement sqrt(x)
    215   (IEEE double precision arithmetic) in software.
    216   Both supply sqrt(x) correctly rounded. The first algorithm (in
    217   Section A) uses newton iterations and involves four divisions.
    218   The second one uses reciproot iterations to avoid division, but
    219   requires more multiplications. Both algorithms need the ability
    220   to chop results of arithmetic operations instead of round them,
    221   and the INEXACT flag to indicate when an arithmetic operation
    222   is executed exactly with no roundoff error, all part of the
    223   standard (IEEE 754-1985). The ability to perform shift, add,
    224   subtract and logical AND operations upon 32-bit words is needed
    225   too, though not part of the standard.
    226 
    227 A.  sqrt(x) by Newton Iteration
    228 
    229    (1)  Initial approximation
    230 
    231   Let x0 and x1 be the leading and the trailing 32-bit words of
    232   a floating point number x (in IEEE double format) respectively
    233 
    234       1    11        52         ...widths
    235      ------------------------------------------------------
    236   x: |s|    e     |       f       |
    237      ------------------------------------------------------
    238         msb    lsb  msb             lsb ...order
    239 
    240 
    241        ------------------------        ------------------------
    242   x0:  |s|   e    |    f1     |  x1: |          f2           |
    243        ------------------------        ------------------------
    244 
    245   By performing shifts and subtracts on x0 and x1 (both regarded
    246   as integers), we obtain an 8-bit approximation of sqrt(x) as
    247   follows.
    248 
    249     k  := (x0>>1) + 0x1ff80000;
    250     y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
    251   Here k is a 32-bit integer and T1[] is an integer array containing
    252   correction terms. Now magically the floating value of y (y's
    253   leading 32-bit word is y0, the value of its trailing word is 0)
    254   approximates sqrt(x) to almost 8-bit.
    255 
    256   Value of T1:
    257   static int T1[32]= {
    258   0,  1024, 3062, 5746, 9193, 13348,  18162,  23592,
    259   29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
    260   83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
    261   16499,  12183,  8588, 5674, 3403, 1742, 661,  130,};
    262 
    263     (2) Iterative refinement
    264 
    265   Apply Heron's rule three times to y, we have y approximates
    266   sqrt(x) to within 1 ulp (Unit in the Last Place):
    267 
    268     y := (y+x/y)/2    ... almost 17 sig. bits
    269     y := (y+x/y)/2    ... almost 35 sig. bits
    270     y := y-(y-x/y)/2  ... within 1 ulp
    271 
    272 
    273   Remark 1.
    274       Another way to improve y to within 1 ulp is:
    275 
    276     y := (y+x/y)    ... almost 17 sig. bits to 2*sqrt(x)
    277     y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
    278 
    279         2
    280           (x-y )*y
    281     y := y + 2* ----------  ...within 1 ulp
    282              2
    283            3y  + x
    284 
    285 
    286   This formula has one division fewer than the one above; however,
    287   it requires more multiplications and additions. Also x must be
    288   scaled in advance to avoid spurious overflow in evaluating the
    289   expression 3y*y+x. Hence it is not recommended uless division
    290   is slow. If division is very slow, then one should use the
    291   reciproot algorithm given in section B.
    292 
    293     (3) Final adjustment
    294 
    295   By twiddling y's last bit it is possible to force y to be
    296   correctly rounded according to the prevailing rounding mode
    297   as follows. Let r and i be copies of the rounding mode and
    298   inexact flag before entering the square root program. Also we
    299   use the expression y+-ulp for the next representable floating
    300   numbers (up and down) of y. Note that y+-ulp = either fixed
    301   point y+-1, or multiply y by nextafter(1,+-inf) in chopped
    302   mode.
    303 
    304     I := FALSE; ... reset INEXACT flag I
    305     R := RZ;  ... set rounding mode to round-toward-zero
    306     z := x/y; ... chopped quotient, possibly inexact
    307     If(not I) then {  ... if the quotient is exact
    308         if(z=y) {
    309             I := i;  ... restore inexact flag
    310             R := r;  ... restore rounded mode
    311             return sqrt(x):=y.
    312         } else {
    313       z := z - ulp; ... special rounding
    314         }
    315     }
    316     i := TRUE;    ... sqrt(x) is inexact
    317     If (r=RN) then z=z+ulp  ... rounded-to-nearest
    318     If (r=RP) then {  ... round-toward-+inf
    319         y = y+ulp; z=z+ulp;
    320     }
    321     y := y+z;   ... chopped sum
    322     y0:=y0-0x00100000;  ... y := y/2 is correctly rounded.
    323           I := i;     ... restore inexact flag
    324           R := r;     ... restore rounded mode
    325           return sqrt(x):=y.
    326 
    327     (4) Special cases
    328 
    329   Square root of +inf, +-0, or NaN is itself;
    330   Square root of a negative number is NaN with invalid signal.
    331 
    332 
    333 B.  sqrt(x) by Reciproot Iteration
    334 
    335    (1)  Initial approximation
    336 
    337   Let x0 and x1 be the leading and the trailing 32-bit words of
    338   a floating point number x (in IEEE double format) respectively
    339   (see section A). By performing shifs and subtracts on x0 and y0,
    340   we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
    341 
    342       k := 0x5fe80000 - (x0>>1);
    343       y0:= k - T2[63&(k>>14)].  ... y ~ 1/sqrt(x) to 7.8 bits
    344 
    345   Here k is a 32-bit integer and T2[] is an integer array
    346   containing correction terms. Now magically the floating
    347   value of y (y's leading 32-bit word is y0, the value of
    348   its trailing word y1 is set to zero) approximates 1/sqrt(x)
    349   to almost 7.8-bit.
    350 
    351   Value of T2:
    352   static int T2[64]= {
    353   0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
    354   0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
    355   0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
    356   0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
    357   0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
    358   0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
    359   0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
    360   0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
    361 
    362     (2) Iterative refinement
    363 
    364   Apply Reciproot iteration three times to y and multiply the
    365   result by x to get an approximation z that matches sqrt(x)
    366   to about 1 ulp. To be exact, we will have
    367     -1ulp < sqrt(x)-z<1.0625ulp.
    368 
    369   ... set rounding mode to Round-to-nearest
    370      y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
    371      y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
    372   ... special arrangement for better accuracy
    373      z := x*y     ... 29 bits to sqrt(x), with z*y<1
    374      z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
    375 
    376   Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
    377   (a) the term z*y in the final iteration is always less than 1;
    378   (b) the error in the final result is biased upward so that
    379     -1 ulp < sqrt(x) - z < 1.0625 ulp
    380       instead of |sqrt(x)-z|<1.03125ulp.
    381 
    382     (3) Final adjustment
    383 
    384   By twiddling y's last bit it is possible to force y to be
    385   correctly rounded according to the prevailing rounding mode
    386   as follows. Let r and i be copies of the rounding mode and
    387   inexact flag before entering the square root program. Also we
    388   use the expression y+-ulp for the next representable floating
    389   numbers (up and down) of y. Note that y+-ulp = either fixed
    390   point y+-1, or multiply y by nextafter(1,+-inf) in chopped
    391   mode.
    392 
    393   R := RZ;    ... set rounding mode to round-toward-zero
    394   switch(r) {
    395       case RN:    ... round-to-nearest
    396          if(x<= z*(z-ulp)...chopped) z = z - ulp; else
    397          if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
    398          break;
    399       case RZ:case RM:  ... round-to-zero or round-to--inf
    400          R:=RP;   ... reset rounding mod to round-to-+inf
    401          if(x<z*z ... rounded up) z = z - ulp; else
    402          if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
    403          break;
    404       case RP:    ... round-to-+inf
    405          if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
    406          if(x>z*z ...chopped) z = z+ulp;
    407          break;
    408   }
    409 
    410   Remark 3. The above comparisons can be done in fixed point. For
    411   example, to compare x and w=z*z chopped, it suffices to compare
    412   x1 and w1 (the trailing parts of x and w), regarding them as
    413   two's complement integers.
    414 
    415   ...Is z an exact square root?
    416   To determine whether z is an exact square root of x, let z1 be the
    417   trailing part of z, and also let x0 and x1 be the leading and
    418   trailing parts of x.
    419 
    420   If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
    421       I := 1;   ... Raise Inexact flag: z is not exact
    422   else {
    423       j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
    424       k := z1 >> 26;    ... get z's 25-th and 26-th
    425               fraction bits
    426       I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
    427   }
    428   R:= r   ... restore rounded mode
    429   return sqrt(x):=z.
    430 
    431   If multiplication is cheaper than the foregoing red tape, the
    432   Inexact flag can be evaluated by
    433 
    434       I := i;
    435       I := (z*z!=x) or I.
    436 
    437   Note that z*z can overwrite I; this value must be sensed if it is
    438   True.
    439 
    440   Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
    441   zero.
    442 
    443         --------------------
    444     z1: |        f2        |
    445         --------------------
    446     bit 31       bit 0
    447 
    448   Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
    449   or even of logb(x) have the following relations:
    450 
    451   -------------------------------------------------
    452   bit 27,26 of z1   bit 1,0 of x1 logb(x)
    453   -------------------------------------------------
    454   00      00    odd and even
    455   01      01    even
    456   10      10    odd
    457   10      00    even
    458   11      01    even
    459   -------------------------------------------------
    460 
    461     (4) Special cases (see (4) of Section A).
    462 
    463  */
    464 
    465