Home | History | Annotate | Download | only in gdtoa
      1 /** @file
      2   This is a variation on dtoa.c that converts arbitary binary
      3   floating-point formats to and from decimal notation.  It uses
      4   double-precision arithmetic internally, so there are still
      5   various #ifdefs that adapt the calculations to the native
      6   IEEE double-precision arithmetic.
      7 
      8   Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.<BR>
      9   This program and the accompanying materials are licensed and made available under
     10   the terms and conditions of the BSD License that accompanies this distribution.
     11   The full text of the license may be found at
     12   http://opensource.org/licenses/bsd-license.
     13 
     14   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     15   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     16 
     17   *****************************************************************
     18 
     19   The author of this software is David M. Gay.
     20 
     21   Copyright (C) 1998-2000 by Lucent Technologies
     22   All Rights Reserved
     23 
     24   Permission to use, copy, modify, and distribute this software and
     25   its documentation for any purpose and without fee is hereby
     26   granted, provided that the above copyright notice appear in all
     27   copies and that both that the copyright notice and this
     28   permission notice and warranty disclaimer appear in supporting
     29   documentation, and that the name of Lucent or any of its entities
     30   not be used in advertising or publicity pertaining to
     31   distribution of the software without specific, written prior
     32   permission.
     33 
     34   LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
     35   INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
     36   IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
     37   SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     38   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
     39   IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
     40   ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
     41   THIS SOFTWARE.
     42 
     43   Please send bug reports to David M. Gay (dmg at acm dot org,
     44   with " at " changed at "@" and " dot " changed to ".").
     45 
     46   *****************************************************************
     47 
     48   NetBSD: gdtoaimp.h,v 1.5.4.1 2007/05/07 19:49:06 pavel Exp
     49 **/
     50 
     51 /* On a machine with IEEE extended-precision registers, it is
     52  * necessary to specify double-precision (53-bit) rounding precision
     53  * before invoking strtod or dtoa.  If the machine uses (the equivalent
     54  * of) Intel 80x87 arithmetic, the call
     55  *  _control87(PC_53, MCW_PC);
     56  * does this with many compilers.  Whether this or another call is
     57  * appropriate depends on the compiler; for this to work, it may be
     58  * necessary to #include "float.h" or another system-dependent header
     59  * file.
     60  */
     61 
     62 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
     63  *
     64  * This strtod returns a nearest machine number to the input decimal
     65  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
     66  * broken by the IEEE round-even rule.  Otherwise ties are broken by
     67  * biased rounding (add half and chop).
     68  *
     69  * Inspired loosely by William D. Clinger's paper "How to Read Floating
     70  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
     71  *
     72  * Modifications:
     73  *
     74  *  1. We only require IEEE, IBM, or VAX double-precision
     75  *    arithmetic (not IEEE double-extended).
     76  *  2. We get by with floating-point arithmetic in a case that
     77  *    Clinger missed -- when we're computing d * 10^n
     78  *    for a small integer d and the integer n is not too
     79  *    much larger than 22 (the maximum integer k for which
     80  *    we can represent 10^k exactly), we may be able to
     81  *    compute (d*10^k) * 10^(e-k) with just one roundoff.
     82  *  3. Rather than a bit-at-a-time adjustment of the binary
     83  *    result in the hard case, we use floating-point
     84  *    arithmetic to determine the adjustment to within
     85  *    one bit; only in really hard cases do we need to
     86  *    compute a second residual.
     87  *  4. Because of 3., we don't need a large table of powers of 10
     88  *    for ten-to-e (just some small tables, e.g. of 10^k
     89  *    for 0 <= k <= 22).
     90  */
     91 
     92 /*
     93  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
     94  *  significant byte has the lowest address.
     95  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
     96  *  significant byte has the lowest address.
     97  * #define Long int on machines with 32-bit ints and 64-bit longs.
     98  * #define Sudden_Underflow for IEEE-format machines without gradual
     99  *  underflow (i.e., that flush to zero on underflow).
    100  * #define No_leftright to omit left-right logic in fast floating-point
    101  *  computation of dtoa.
    102  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
    103  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
    104  *  that use extended-precision instructions to compute rounded
    105  *  products and quotients) with IBM.
    106  * #define ROUND_BIASED for IEEE-format with biased rounding.
    107  * #define Inaccurate_Divide for IEEE-format with correctly rounded
    108  *  products but inaccurate quotients, e.g., for Intel i860.
    109  * #define NO_LONG_LONG on machines that do not have a "long long"
    110  *  integer type (of >= 64 bits).  On such machines, you can
    111  *  #define Just_16 to store 16 bits per 32-bit Long when doing
    112  *  high-precision integer arithmetic.  Whether this speeds things
    113  *  up or slows things down depends on the machine and the number
    114  *  being converted.  If long long is available and the name is
    115  *  something other than "long long", #define Llong to be the name,
    116  *  and if "unsigned Llong" does not work as an unsigned version of
    117  *  Llong, #define #ULLong to be the corresponding unsigned type.
    118  * #define Bad_float_h if your system lacks a float.h or if it does not
    119  *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
    120  *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
    121  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
    122  *  if memory is available and otherwise does something you deem
    123  *  appropriate.  If MALLOC is undefined, malloc will be invoked
    124  *  directly -- and assumed always to succeed.
    125  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
    126  *  memory allocations from a private pool of memory when possible.
    127  *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
    128  *  unless #defined to be a different length.  This default length
    129  *  suffices to get rid of MALLOC calls except for unusual cases,
    130  *  such as decimal-to-binary conversion of a very long string of
    131  *  digits.  When converting IEEE double precision values, the
    132  *  longest string gdtoa can return is about 751 bytes long.  For
    133  *  conversions by strtod of strings of 800 digits and all gdtoa
    134  *  conversions of IEEE doubles in single-threaded executions with
    135  *  8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
    136  *  4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
    137  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
    138  *  Infinity and NaN (case insensitively).
    139  *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
    140  *  strtodg also accepts (case insensitively) strings of the form
    141  *  NaN(x), where x is a string of hexadecimal digits and spaces;
    142  *  if there is only one string of hexadecimal digits, it is taken
    143  *  for the fraction bits of the resulting NaN; if there are two or
    144  *  more strings of hexadecimal digits, each string is assigned
    145  *  to the next available sequence of 32-bit words of fractions
    146  *  bits (starting with the most significant), right-aligned in
    147  *  each sequence.
    148  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
    149  *  multiple threads.  In this case, you must provide (or suitably
    150  *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
    151  *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
    152  *  in pow5mult, ensures lazy evaluation of only one copy of high
    153  *  powers of 5; omitting this lock would introduce a small
    154  *  probability of wasting memory, but would otherwise be harmless.)
    155  *  You must also invoke freedtoa(s) to free the value s returned by
    156  *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
    157  * #define IMPRECISE_INEXACT if you do not care about the setting of
    158  *  the STRTOG_Inexact bits in the special case of doing IEEE double
    159  *  precision conversions (which could also be done by the strtog in
    160  *  dtoa.c).
    161  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
    162  *  floating-point constants.
    163  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
    164  *  strtodg.c).
    165  * #define NO_STRING_H to use private versions of memcpy.
    166  *  On some K&R systems, it may also be necessary to
    167  *  #define DECLARE_SIZE_T in this case.
    168  * #define YES_ALIAS to permit aliasing certain double values with
    169  *  arrays of ULongs.  This leads to slightly better code with
    170  *  some compilers and was always used prior to 19990916, but it
    171  *  is not strictly legal and can cause trouble with aggressively
    172  *  optimizing compilers (e.g., gcc 2.95.1 under -O2).
    173  * #define USE_LOCALE to use the current locale's decimal_point value.
    174  */
    175 
    176 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
    177 #include  <LibConfig.h>
    178 
    179 #include <stdint.h>
    180 #define Short   int16_t
    181 #define UShort uint16_t
    182 #define Long    int32_t
    183 #define ULong  uint32_t
    184 #define LLong   int64_t
    185 #define ULLong uint64_t
    186 
    187 #define INFNAN_CHECK
    188 #ifdef _REENTRANT
    189 #define MULTIPLE_THREADS
    190 #endif
    191 #define USE_LOCALE
    192 
    193 #ifndef GDTOAIMP_H_INCLUDED
    194 #define GDTOAIMP_H_INCLUDED
    195 #include "gdtoa.h"
    196 #include "gd_qnan.h"
    197 
    198 #ifdef DEBUG
    199 #include "stdio.h"
    200 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
    201 #endif
    202 
    203 #include "stdlib.h"
    204 #include "string.h"
    205 
    206 #define Char void
    207 
    208 #ifdef MALLOC
    209 extern Char *MALLOC ANSI((size_t));
    210 #else
    211 #define MALLOC malloc
    212 #endif
    213 
    214 #undef IEEE_Arith
    215 #undef Avoid_Underflow
    216 #ifdef IEEE_BIG_ENDIAN
    217 #define IEEE_Arith
    218 #endif
    219 #ifdef IEEE_LITTLE_ENDIAN
    220 #define IEEE_Arith
    221 #endif
    222 
    223 #include "errno.h"
    224 #ifdef Bad_float_h
    225 
    226 #ifdef IEEE_Arith
    227 #define DBL_DIG 15
    228 #define DBL_MAX_10_EXP 308
    229 #define DBL_MAX_EXP 1024
    230 #define FLT_RADIX 2
    231 #define DBL_MAX 1.7976931348623157e+308
    232 #endif
    233 
    234 #ifndef LONG_MAX
    235 #define LONG_MAX 2147483647
    236 #endif
    237 
    238 #else /* ifndef Bad_float_h */
    239 #include "float.h"
    240 #endif /* Bad_float_h */
    241 
    242 #ifdef IEEE_Arith
    243 #define Scale_Bit 0x10
    244 #define n_bigtens 5
    245 #endif
    246 
    247 #include "math.h"
    248 
    249 #ifdef __cplusplus
    250 extern "C" {
    251 #endif
    252 
    253 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) != 1
    254 Exactly one of IEEE_LITTLE_ENDIAN or IEEE_BIG_ENDIAN should be defined.
    255 #endif
    256 
    257 /*  This union assumes that:
    258       sizeof(double) == 8
    259       sizeof(UINT32) == 4
    260 
    261     If this is not the case, the type and dimension of the L member will
    262     have to be modified.
    263 */
    264 typedef union { double d; UINT32 L[2]; } U;
    265 
    266 #ifdef YES_ALIAS
    267 #define dval(x) x
    268 #ifdef IEEE_LITTLE_ENDIAN
    269 #define word0(x) ((ULong *)&x)[1]
    270 #define word1(x) ((ULong *)&x)[0]
    271 #else
    272 #define word0(x) ((ULong *)&x)[0]
    273 #define word1(x) ((ULong *)&x)[1]
    274 #endif
    275 #else /* !YES_ALIAS */
    276 #ifdef IEEE_LITTLE_ENDIAN
    277 #define word0(x)  ( /* LINTED */ (U*)&x)->L[1]
    278 #define word1(x)  ( /* LINTED */ (U*)&x)->L[0]
    279 #else
    280 #define word0(x)  ( /* LINTED */ (U*)&x)->L[0]
    281 #define word1(x)  ( /* LINTED */ (U*)&x)->L[1]
    282 #endif
    283 #define dval(x)   ( /* LINTED */ (U*)&x)->d
    284 #endif /* YES_ALIAS */
    285 
    286 /* The following definition of Storeinc is appropriate for MIPS processors.
    287  * An alternative that might be better on some machines is
    288  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
    289  */
    290 #if defined(IEEE_LITTLE_ENDIAN)
    291 #define Storeinc(a,b,c) \
    292  (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
    293   ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
    294   a++)
    295 #else
    296 #define Storeinc(a,b,c) \
    297  (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
    298   ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
    299   a++)
    300 #endif
    301 
    302 /* #define P DBL_MANT_DIG */
    303 /* Ten_pmax = floor(P*log(2)/log(5)) */
    304 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
    305 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
    306 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
    307 
    308 #ifdef IEEE_Arith
    309 #define Exp_shift  20
    310 #define Exp_shift1 20
    311 #define Exp_msk1    0x100000
    312 #define Exp_msk11   0x100000
    313 #define Exp_mask  0x7ff00000
    314 #define P 53
    315 #define Bias 1023
    316 #define Emin (-1022)
    317 #define Exp_1  0x3ff00000
    318 #define Exp_11 0x3ff00000
    319 #define Ebits 11
    320 #define Frac_mask  0xfffffU
    321 #define Frac_mask1 0xfffffU
    322 #define Ten_pmax 22
    323 #define Bletch 0x10
    324 #define Bndry_mask  0xfffffU
    325 #define Bndry_mask1 0xfffffU
    326 #define LSB 1
    327 #define Sign_bit 0x80000000
    328 #define Log2P 1
    329 #define Tiny0 0
    330 #define Tiny1 1
    331 #define Quick_max 14
    332 #define Int_max 14
    333 
    334 #ifndef Flt_Rounds
    335 #ifdef FLT_ROUNDS
    336 #define Flt_Rounds FLT_ROUNDS
    337 #else
    338 #define Flt_Rounds 1
    339 #endif
    340 #endif /*Flt_Rounds*/
    341 
    342 #else /* ifndef IEEE_Arith */
    343 #undef  Sudden_Underflow
    344 #define Sudden_Underflow
    345 #ifdef IBM
    346 #undef Flt_Rounds
    347 #define Flt_Rounds 0
    348 #define Exp_shift  24
    349 #define Exp_shift1 24
    350 #define Exp_msk1   0x1000000
    351 #define Exp_msk11  0x1000000
    352 #define Exp_mask  0x7f000000
    353 #define P 14
    354 #define Bias 65
    355 #define Exp_1  0x41000000
    356 #define Exp_11 0x41000000
    357 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
    358 #define Frac_mask  0xffffff
    359 #define Frac_mask1 0xffffff
    360 #define Bletch 4
    361 #define Ten_pmax 22
    362 #define Bndry_mask  0xefffff
    363 #define Bndry_mask1 0xffffff
    364 #define LSB 1
    365 #define Sign_bit 0x80000000
    366 #define Log2P 4
    367 #define Tiny0 0x100000
    368 #define Tiny1 0
    369 #define Quick_max 14
    370 #define Int_max 15
    371 #else /* VAX */
    372 #undef Flt_Rounds
    373 #define Flt_Rounds 1
    374 #define Exp_shift  23
    375 #define Exp_shift1 7
    376 #define Exp_msk1    0x80
    377 #define Exp_msk11   0x800000
    378 #define Exp_mask  0x7f80
    379 #define P 56
    380 #define Bias 129
    381 #define Exp_1  0x40800000
    382 #define Exp_11 0x4080
    383 #define Ebits 8
    384 #define Frac_mask  0x7fffff
    385 #define Frac_mask1 0xffff007f
    386 #define Ten_pmax 24
    387 #define Bletch 2
    388 #define Bndry_mask  0xffff007f
    389 #define Bndry_mask1 0xffff007f
    390 #define LSB 0x10000
    391 #define Sign_bit 0x8000
    392 #define Log2P 1
    393 #define Tiny0 0x80
    394 #define Tiny1 0
    395 #define Quick_max 15
    396 #define Int_max 15
    397 #endif /* IBM, VAX */
    398 #endif /* IEEE_Arith */
    399 
    400 #ifndef IEEE_Arith
    401 #define ROUND_BIASED
    402 #endif
    403 
    404 #ifdef RND_PRODQUOT
    405 #define rounded_product(a,b) a = rnd_prod(a, b)
    406 #define rounded_quotient(a,b) a = rnd_quot(a, b)
    407 extern double rnd_prod(double, double), rnd_quot(double, double);
    408 #else
    409 #define rounded_product(a,b) a *= b
    410 #define rounded_quotient(a,b) a /= b
    411 #endif
    412 
    413 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
    414 #define Big1 0xffffffffU
    415 
    416 #undef  Pack_16
    417 #ifndef Pack_32
    418 #define Pack_32
    419 #endif
    420 
    421 #ifdef NO_LONG_LONG
    422 #undef ULLong
    423 #ifdef Just_16
    424 #undef Pack_32
    425 #define Pack_16
    426 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
    427  * This makes some inner loops simpler and sometimes saves work
    428  * during multiplications, but it often seems to make things slightly
    429  * slower.  Hence the default is now to store 32 bits per Long.
    430  */
    431 #endif
    432 #else /* long long available */
    433 #ifndef Llong
    434 #define Llong long long
    435 #endif
    436 #ifndef ULLong
    437 #define ULLong unsigned Llong
    438 #endif
    439 #endif /* NO_LONG_LONG */
    440 
    441 #ifdef Pack_32
    442 #define ULbits 32
    443 #define kshift 5
    444 #define kmask 31
    445 #define ALL_ON 0xffffffff
    446 #else
    447 #define ULbits 16
    448 #define kshift 4
    449 #define kmask 15
    450 #define ALL_ON 0xffff
    451 #endif
    452 
    453 #ifndef MULTIPLE_THREADS
    454 #define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
    455 #define FREE_DTOA_LOCK(n) /*nothing*/
    456 #else
    457 #include "reentrant.h"
    458 
    459 extern mutex_t __gdtoa_locks[2];
    460 
    461 #define ACQUIRE_DTOA_LOCK(n)  \
    462   do {              \
    463     if (__isthreaded)       \
    464       mutex_lock(&__gdtoa_locks[n]);    \
    465   } while (/* CONSTCOND */ 0)
    466 #define FREE_DTOA_LOCK(n) \
    467   do {              \
    468     if (__isthreaded)       \
    469       mutex_unlock(&__gdtoa_locks[n]);  \
    470   } while (/* CONSTCOND */ 0)
    471 #endif
    472 
    473 #define Kmax (sizeof(size_t) << 3)
    474 
    475  struct
    476 Bigint {
    477   struct Bigint *next;
    478   int k, maxwds, sign, wds;
    479   ULong x[1];
    480   };
    481 
    482  typedef struct Bigint Bigint;
    483 
    484 #ifdef NO_STRING_H
    485 #ifdef DECLARE_SIZE_T
    486 typedef unsigned int size_t;
    487 #endif
    488 extern void memcpy_D2A ANSI((void*, const void*, size_t));
    489 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
    490 #else /* !NO_STRING_H */
    491 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
    492 #endif /* NO_STRING_H */
    493 
    494 #define Balloc        __Balloc_D2A
    495 #define Bfree         __Bfree_D2A
    496 #define ULtoQ         __ULtoQ_D2A
    497 #define ULtof         __ULtof_D2A
    498 #define ULtod         __ULtod_D2A
    499 #define ULtodd        __ULtodd_D2A
    500 #define ULtox         __ULtox_D2A
    501 #define ULtoxL        __ULtoxL_D2A
    502 #define any_on        __any_on_D2A
    503 #define b2d           __b2d_D2A
    504 #define bigtens       __bigtens_D2A
    505 #define cmp           __cmp_D2A
    506 #define copybits      __copybits_D2A
    507 #define d2b           __d2b_D2A
    508 #define decrement     __decrement_D2A
    509 #define diff          __diff_D2A
    510 #define dtoa_result   __dtoa_result_D2A
    511 #define g__fmt        __g__fmt_D2A
    512 #define gethex        __gethex_D2A
    513 #define hexdig        __hexdig_D2A
    514 #define hexdig_init_D2A __hexdig_init_D2A
    515 #define hexnan        __hexnan_D2A
    516 #define hi0bits       __hi0bits_D2A
    517 #define hi0bits_D2A   __hi0bits_D2A
    518 #define i2b           __i2b_D2A
    519 #define increment     __increment_D2A
    520 #define lo0bits       __lo0bits_D2A
    521 #define lshift        __lshift_D2A
    522 #define match         __match_D2A
    523 #define mult          __mult_D2A
    524 #define multadd       __multadd_D2A
    525 #define nrv_alloc     __nrv_alloc_D2A
    526 #define pow5mult      __pow5mult_D2A
    527 #define quorem        __quorem_D2A
    528 #define ratio         __ratio_D2A
    529 #define rshift        __rshift_D2A
    530 #define rv_alloc      __rv_alloc_D2A
    531 #define s2b           __s2b_D2A
    532 #define set_ones      __set_ones_D2A
    533 #define strcp         __strcp_D2A
    534 #define strcp_D2A     __strcp_D2A
    535 #define strtoIg       __strtoIg_D2A
    536 #define sum           __sum_D2A
    537 #define tens          __tens_D2A
    538 #define tinytens      __tinytens_D2A
    539 #define tinytens      __tinytens_D2A
    540 #define trailz        __trailz_D2A
    541 #define ulp           __ulp_D2A
    542 
    543 extern char          *dtoa_result;
    544 extern CONST double   bigtens[], tens[], tinytens[];
    545 extern unsigned char  hexdig[];
    546 
    547 extern Bigint  *Balloc      (int);
    548 extern void     Bfree       (Bigint*);
    549 extern void     ULtof       (ULong*, ULong*, Long, int);
    550 extern void     ULtod       (ULong*, ULong*, Long, int);
    551 extern void     ULtodd      (ULong*, ULong*, Long, int);
    552 extern void     ULtoQ       (ULong*, ULong*, Long, int);
    553 extern void     ULtox       (UShort*, ULong*, Long, int);
    554 extern void     ULtoxL      (ULong*, ULong*, Long, int);
    555 extern ULong    any_on      (Bigint*, int);
    556 extern double   b2d         (Bigint*, int*);
    557 extern int      cmp         (Bigint*, Bigint*);
    558 extern void     copybits    (ULong*, int, Bigint*);
    559 extern Bigint  *d2b         (double, int*, int*);
    560 extern int      decrement   (Bigint*);
    561 extern Bigint  *diff        (Bigint*, Bigint*);
    562 extern char    *dtoa        (double d, int mode, int ndigits,
    563                                   int *decpt, int *sign, char **rve);
    564 extern char    *g__fmt      (char*, char*, char*, int, ULong);
    565 extern int      gethex      (CONST char**, CONST FPI*, Long*, Bigint**, int);
    566 extern void     hexdig_init_D2A(Void);
    567 extern int      hexnan      (CONST char**, CONST FPI*, ULong*);
    568 extern int      hi0bits_D2A (ULong);
    569 extern Bigint  *i2b         (int);
    570 extern Bigint  *increment   (Bigint*);
    571 extern int      lo0bits     (ULong*);
    572 extern Bigint  *lshift      (Bigint*, int);
    573 extern int      match       (CONST char**, CONST char*);
    574 extern Bigint  *mult        (Bigint*, Bigint*);
    575 extern Bigint  *multadd     (Bigint*, int, int);
    576 extern char    *nrv_alloc   (CONST char*, char **, size_t);
    577 extern Bigint  *pow5mult    (Bigint*, int);
    578 extern int      quorem      (Bigint*, Bigint*);
    579 extern double   ratio       (Bigint*, Bigint*);
    580 extern void     rshift      (Bigint*, int);
    581 extern char    *rv_alloc    (size_t);
    582 extern Bigint  *s2b         (CONST char*, int, int, ULong);
    583 extern Bigint  *set_ones    (Bigint*, int);
    584 extern char    *strcp       (char*, const char*);
    585 extern int      strtoIg     (CONST char*, char**, FPI*, Long*, Bigint**, int*);
    586 extern double   strtod      (const char *s00, char **se);
    587 extern Bigint  *sum         (Bigint*, Bigint*);
    588 extern int      trailz      (CONST Bigint*);
    589 extern double   ulp         (double);
    590 
    591 #ifdef __cplusplus
    592 }
    593 #endif
    594 /*
    595  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
    596  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
    597  * respectively), but now are determined by compiling and running
    598  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
    599  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
    600  * and -DNAN_WORD1=...  values if necessary.  This should still work.
    601  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
    602  */
    603 #ifdef IEEE_Arith
    604 #ifdef IEEE_BIG_ENDIAN
    605 #define _0 0
    606 #define _1 1
    607 #ifndef NAN_WORD0
    608 #define NAN_WORD0 d_QNAN0
    609 #endif
    610 #ifndef NAN_WORD1
    611 #define NAN_WORD1 d_QNAN1
    612 #endif
    613 #else
    614 #define _0 1
    615 #define _1 0
    616 #ifndef NAN_WORD0
    617 #define NAN_WORD0 d_QNAN1
    618 #endif
    619 #ifndef NAN_WORD1
    620 #define NAN_WORD1 d_QNAN0
    621 #endif
    622 #endif
    623 #else
    624 #undef INFNAN_CHECK
    625 #endif
    626 
    627 #undef SI
    628 #ifdef Sudden_Underflow
    629 #define SI 1
    630 #else
    631 #define SI 0
    632 #endif
    633 
    634 #endif /* GDTOAIMP_H_INCLUDED */
    635