Home | History | Annotate | Download | only in tool
      1 /*
      2  * [The "BSD license"]
      3  *  Copyright (c) 2010 Terence Parr
      4  *  All rights reserved.
      5  *
      6  *  Redistribution and use in source and binary forms, with or without
      7  *  modification, are permitted provided that the following conditions
      8  *  are met:
      9  *  1. Redistributions of source code must retain the above copyright
     10  *      notice, this list of conditions and the following disclaimer.
     11  *  2. Redistributions in binary form must reproduce the above copyright
     12  *      notice, this list of conditions and the following disclaimer in the
     13  *      documentation and/or other materials provided with the distribution.
     14  *  3. The name of the author may not be used to endorse or promote products
     15  *      derived from this software without specific prior written permission.
     16  *
     17  *  THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  *  IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  *  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  *  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 package org.antlr.tool;
     29 
     30 import org.antlr.Tool;
     31 import org.antlr.analysis.*;
     32 import org.antlr.analysis.DFA;
     33 import org.antlr.codegen.CodeGenerator;
     34 import org.antlr.codegen.*;
     35 import org.antlr.grammar.v3.*;
     36 import org.antlr.misc.*;
     37 import org.antlr.misc.Utils;
     38 import org.antlr.runtime.*;
     39 import org.antlr.runtime.tree.CommonTreeNodeStream;
     40 import org.stringtemplate.v4.ST;
     41 import org.stringtemplate.v4.STGroup;
     42 import org.stringtemplate.v4.STGroupString;
     43 
     44 import java.io.*;
     45 import java.util.*;
     46 
     47 /** Represents a grammar in memory. */
     48 public class Grammar {
     49 	public static final String SYNPRED_RULE_PREFIX = "synpred";
     50 
     51 	public static final String GRAMMAR_FILE_EXTENSION = ".g";
     52 
     53 	/** used for generating lexer temp files */
     54 	public static final String LEXER_GRAMMAR_FILE_EXTENSION = ".g";
     55 
     56 	public static final int INITIAL_DECISION_LIST_SIZE = 300;
     57 	public static final int INVALID_RULE_INDEX = -1;
     58 
     59 	// the various kinds of labels. t=type, id=ID, types+=type ids+=ID
     60 	public static final int RULE_LABEL = 1;
     61 	public static final int TOKEN_LABEL = 2;
     62 	public static final int RULE_LIST_LABEL = 3;
     63 	public static final int TOKEN_LIST_LABEL = 4;
     64     public static final int CHAR_LABEL = 5; // used in lexer for x='a'
     65     public static final int WILDCARD_TREE_LABEL = 6; // Used in tree grammar x=.
     66     public static final int WILDCARD_TREE_LIST_LABEL = 7; // Used in tree grammar x+=.
     67 
     68 
     69     public static String[] LabelTypeToString =
     70 		{"<invalid>", "rule", "token", "rule-list", "token-list", "wildcard-tree", "wildcard-tree-list"};
     71 
     72 	public static final String ARTIFICIAL_TOKENS_RULENAME = "Tokens";
     73 	public static final String FRAGMENT_RULE_MODIFIER = "fragment";
     74 
     75 	public static final String SYNPREDGATE_ACTION_NAME = "synpredgate";
     76 
     77 	/** When converting ANTLR char and string literals, here is the
     78 	 *  value set of escape chars.
     79 	 */
     80 	public static int ANTLRLiteralEscapedCharValue[] = new int[255];
     81 
     82 	/** Given a char, we need to be able to show as an ANTLR literal.
     83 	 */
     84 	public static String ANTLRLiteralCharValueEscape[] = new String[255];
     85 
     86 	static {
     87 		ANTLRLiteralEscapedCharValue['n'] = '\n';
     88 		ANTLRLiteralEscapedCharValue['r'] = '\r';
     89 		ANTLRLiteralEscapedCharValue['t'] = '\t';
     90 		ANTLRLiteralEscapedCharValue['b'] = '\b';
     91 		ANTLRLiteralEscapedCharValue['f'] = '\f';
     92 		ANTLRLiteralEscapedCharValue['\\'] = '\\';
     93 		ANTLRLiteralEscapedCharValue['\''] = '\'';
     94 		ANTLRLiteralEscapedCharValue['"'] = '"';
     95 		ANTLRLiteralCharValueEscape['\n'] = "\\n";
     96 		ANTLRLiteralCharValueEscape['\r'] = "\\r";
     97 		ANTLRLiteralCharValueEscape['\t'] = "\\t";
     98 		ANTLRLiteralCharValueEscape['\b'] = "\\b";
     99 		ANTLRLiteralCharValueEscape['\f'] = "\\f";
    100 		ANTLRLiteralCharValueEscape['\\'] = "\\\\";
    101 		ANTLRLiteralCharValueEscape['\''] = "\\'";
    102 	}
    103 
    104 	public static final int LEXER = 1;
    105 	public static final int PARSER = 2;
    106 	public static final int TREE_PARSER = 3;
    107 	public static final int COMBINED = 4;
    108 	public static final String[] grammarTypeToString = new String[] {
    109 		"<invalid>",
    110 		"lexer",
    111 		"parser",
    112 		"tree",
    113 		"combined"
    114 	};
    115 
    116 	public static final String[] grammarTypeToFileNameSuffix = new String[] {
    117 		"<invalid>",
    118 		"Lexer",
    119 		"Parser",
    120 		"", // no suffix for tree grammars
    121 		"Parser" // if combined grammar, gen Parser and Lexer will be done later
    122 	};
    123 
    124 	/** Set of valid imports.  E.g., can only import a tree parser into
    125 	 *  another tree parser.  Maps delegate to set of delegator grammar types.
    126 	 *  validDelegations.get(LEXER) gives list of the kinds of delegators
    127 	 *  that can import lexers.
    128 	 */
    129 	public static MultiMap<Integer,Integer> validDelegations =
    130 		new MultiMap<Integer,Integer>() {
    131 			{
    132 				map(LEXER, LEXER);
    133 				map(LEXER, PARSER);
    134 				map(LEXER, COMBINED);
    135 
    136 				map(PARSER, PARSER);
    137 				map(PARSER, COMBINED);
    138 
    139 				map(TREE_PARSER, TREE_PARSER);
    140 
    141 				// TODO: allow COMBINED
    142 				// map(COMBINED, COMBINED);
    143 			}
    144 		};
    145 
    146 	/** This is the buffer of *all* tokens found in the grammar file
    147 	 *  including whitespace tokens etc...  I use this to extract
    148 	 *  lexer rules from combined grammars.
    149 	 */
    150 	public CommonTokenStream tokenBuffer;
    151 	public static final String IGNORE_STRING_IN_GRAMMAR_FILE_NAME = "__";
    152 	public static final String AUTO_GENERATED_TOKEN_NAME_PREFIX = "T__";
    153 
    154 	public static class Decision {
    155 		public Grammar grammar;
    156 		public int decision;
    157 		public NFAState startState;
    158 		public GrammarAST blockAST;
    159 		public DFA dfa;
    160 	}
    161 
    162 	public class LabelElementPair {
    163 		public Token label;
    164 		public GrammarAST elementRef;
    165 		public String referencedRuleName;
    166 		/** Has an action referenced the label?  Set by ActionAnalysis.g
    167 		 *  Currently only set for rule labels.
    168 		 */
    169 		public boolean actionReferencesLabel;
    170 		public int type; // in {RULE_LABEL,TOKEN_LABEL,RULE_LIST_LABEL,TOKEN_LIST_LABEL}
    171 		public LabelElementPair(Token label, GrammarAST elementRef) {
    172 			this.label = label;
    173 			this.elementRef = elementRef;
    174 			this.referencedRuleName = elementRef.getText();
    175 		}
    176 		public Rule getReferencedRule() {
    177 			return getRule(referencedRuleName);
    178 		}
    179 		public String toString() {
    180 			return elementRef.toString();
    181 		}
    182 	}
    183 
    184 	/** What name did the user provide for this grammar? */
    185 	public String name;
    186 
    187 	/** What type of grammar is this: lexer, parser, tree walker */
    188 	public int type;
    189 
    190 	/** A list of options specified at the grammar level such as language=Java.
    191 	 *  The value can be an AST for complicated values such as character sets.
    192 	 *  There may be code generator specific options in here.  I do no
    193 	 *  interpretation of the key/value pairs...they are simply available for
    194 	 *  who wants them.
    195 	 */
    196 	protected Map options;
    197 
    198 	public static final Set legalLexerOptions =
    199 			new HashSet() {
    200 				{
    201 				add("language"); add("tokenVocab");
    202 				add("TokenLabelType");
    203 				add("superClass");
    204 				add("filter");
    205 				add("k");
    206 				add("backtrack");
    207 				add("memoize");
    208 				}
    209 			};
    210 
    211 	public static final Set legalParserOptions =
    212 			new HashSet() {
    213 				{
    214 				add("language"); add("tokenVocab");
    215 				add("output"); add("rewrite"); add("ASTLabelType");
    216 				add("TokenLabelType");
    217 				add("superClass");
    218 				add("k");
    219 				add("backtrack");
    220 				add("memoize");
    221 				}
    222 			};
    223 
    224     public static final Set legalTreeParserOptions =
    225         new HashSet() {
    226             {
    227                 add("language"); add("tokenVocab");
    228                 add("output"); add("rewrite"); add("ASTLabelType");
    229                 add("TokenLabelType");
    230                 add("superClass");
    231                 add("k");
    232                 add("backtrack");
    233                 add("memoize");
    234                 add("filter");
    235             }
    236         };
    237 
    238 	public static final Set doNotCopyOptionsToLexer =
    239 		new HashSet() {
    240 			{
    241 				add("output"); add("ASTLabelType"); add("superClass");
    242 				add("k"); add("backtrack"); add("memoize"); add("rewrite");
    243 			}
    244 		};
    245 
    246 	public static final Map defaultOptions =
    247 			new HashMap() {
    248 				{
    249 					put("language","Java");
    250 				}
    251 			};
    252 
    253 	public static final Set legalBlockOptions =
    254 			new HashSet() {{add("k"); add("greedy"); add("backtrack"); add("memoize");}};
    255 
    256 	/** What are the default options for a subrule? */
    257 	public static final Map defaultBlockOptions =
    258 			new HashMap() {{put("greedy","true");}};
    259 
    260 	public static final Map defaultLexerBlockOptions =
    261 			new HashMap() {{put("greedy","true");}};
    262 
    263 	// Token options are here to avoid contaminating Token object in runtime
    264 
    265 	/** Legal options for terminal refs like ID<node=MyVarNode> */
    266 	public static final Set legalTokenOptions =
    267 		new HashSet() {
    268 			{
    269 				add(defaultTokenOption);
    270 				add("type");
    271 				add("text");
    272 				add("assoc");
    273 			}
    274 		};
    275 
    276 	public static final String defaultTokenOption = "node";
    277 
    278 	/** Is there a global fixed lookahead set for this grammar?
    279 	 *  If 0, nothing specified.  -1 implies we have not looked at
    280 	 *  the options table yet to set k.
    281 	 */
    282 	protected int global_k = -1;
    283 
    284 	/** Map a scope to a map of name:action pairs.
    285 	 *  Map<String, Map<String,GrammarAST>>
    286 	 *  The code generator will use this to fill holes in the output files.
    287 	 *  I track the AST node for the action in case I need the line number
    288 	 *  for errors.
    289 	 */
    290 	private Map<String, Map<String, Object>> actions =
    291 		new HashMap<String, Map<String, Object>>();
    292 
    293 	/** The NFA that represents the grammar with edges labelled with tokens
    294 	 *  or epsilon.  It is more suitable to analysis than an AST representation.
    295 	 */
    296 	public NFA nfa;
    297 
    298 	protected NFAFactory factory;
    299 
    300 	/** If this grammar is part of a larger composite grammar via delegate
    301 	 *  statement, then this points at the composite.  The composite holds
    302 	 *  a global list of rules, token types, decision numbers, etc...
    303 	 */
    304 	public CompositeGrammar composite;
    305 
    306 	/** A pointer back into grammar tree.  Needed so we can add delegates. */
    307 	public CompositeGrammarTree compositeTreeNode;
    308 
    309 	/** If this is a delegate of another grammar, this is the label used
    310 	 *  as an instance var by that grammar to point at this grammar. null
    311 	 *  if no label was specified in the delegate statement.
    312 	 */
    313 	public String label;
    314 
    315 	/** TODO: hook this to the charVocabulary option */
    316 	protected IntSet charVocabulary = null;
    317 
    318 	/** For ANTLRWorks, we want to be able to map a line:col to a specific
    319 	 *  decision DFA so it can display DFA.
    320 	 */
    321 	Map lineColumnToLookaheadDFAMap = new HashMap();
    322 
    323 	public Tool tool;
    324 
    325 	/** The unique set of all rule references in any rule; set of tree node
    326 	 *  objects so two refs to same rule can exist but at different line/position.
    327 	 */
    328 	protected Set<GrammarAST> ruleRefs = new HashSet<GrammarAST>();
    329 
    330 	protected Set<GrammarAST> scopedRuleRefs = new HashSet();
    331 
    332 	/** The unique set of all token ID references in any rule */
    333 	protected Set<Token> tokenIDRefs = new HashSet<Token>();
    334 
    335 	/** Be able to assign a number to every decision in grammar;
    336 	 *  decisions in 1..n
    337 	 */
    338 	protected int decisionCount = 0;
    339 
    340 	/** A list of all rules that are in any left-recursive cycle.  There
    341 	 *  could be multiple cycles, but this is a flat list of all problematic
    342 	 *  rules. This is stuff we couldn't refactor to precedence rule.
    343 	 */
    344 	protected Set<Rule> leftRecursiveRules;
    345 
    346 	/** An external tool requests that DFA analysis abort prematurely.  Stops
    347 	 *  at DFA granularity, which are limited to a DFA size and time computation
    348 	 *  as failsafe.
    349 	 */
    350 	protected boolean externalAnalysisAbort;
    351 
    352 	public int numNonLLStar = 0; // hack to track for -report
    353 
    354 	/** When we read in a grammar, we track the list of syntactic predicates
    355 	 *  and build faux rules for them later.  See my blog entry Dec 2, 2005:
    356 	 *  http://www.antlr.org/blog/antlr3/lookahead.tml
    357 	 *  This maps the name (we make up) for a pred to the AST grammar fragment.
    358 	 */
    359 	protected LinkedHashMap<String, GrammarAST> nameToSynpredASTMap;
    360 
    361 	/** Each left-recursive precedence rule must define precedence array
    362 	 *  for binary operators like:
    363 	 *
    364 	 *  	static int[] e_prec = new int[tokenNames.length];
    365 	 *  	static {
    366    	 *  		e_prec[75] = 1;
    367 	 *  	}
    368 	 *  Track and we push into parser later; this is computed
    369 	 *  early when we look for prec rules.
    370 	 */
    371 	public List<String> precRuleInitCodeBlocks = new ArrayList<String>();
    372 
    373     /** At least one rule has memoize=true */
    374     public boolean atLeastOneRuleMemoizes;
    375 
    376     /** At least one backtrack=true in rule or decision or grammar. */
    377     public boolean atLeastOneBacktrackOption;
    378 
    379 	/** Was this created from a COMBINED grammar? */
    380 	public boolean implicitLexer;
    381 
    382 	/** Map a rule to it's Rule object */
    383 	protected LinkedHashMap<String,Rule> nameToRuleMap = new LinkedHashMap<String,Rule>();
    384 
    385 	/** If this rule is a delegate, some rules might be overridden; don't
    386 	 *  want to gen code for them.
    387 	 */
    388 	public Set<String> overriddenRules = new HashSet<String>();
    389 
    390 	/** The list of all rules referenced in this grammar, not defined here,
    391 	 *  and defined in a delegate grammar.  Not all of these will be generated
    392 	 *  in the recognizer for this file; only those that are affected by rule
    393 	 *  definitions in this grammar.  I am not sure the Java target will need
    394 	 *  this but I'm leaving in case other targets need it.
    395 	 *  see NameSpaceChecker.lookForReferencesToUndefinedSymbols()
    396 	 */
    397 	protected Set<Rule> delegatedRuleReferences = new HashSet();
    398 
    399 	/** The ANTLRParser tracks lexer rules when reading combined grammars
    400 	 *  so we can build the Tokens rule.
    401 	 */
    402 	public List<String> lexerRuleNamesInCombined = new ArrayList<String>();
    403 
    404 	/** Track the scopes defined outside of rules and the scopes associated
    405 	 *  with all rules (even if empty).
    406 	 */
    407 	protected Map scopes = new HashMap();
    408 
    409 	/** An AST that records entire input grammar with all rules.  A simple
    410 	 *  grammar with one rule, "grammar t; a : A | B ;", looks like:
    411 	 * ( grammar t ( rule a ( BLOCK ( ALT A ) ( ALT B ) ) <end-of-rule> ) )
    412 	 */
    413 	protected GrammarAST grammarTree = null;
    414 
    415 	/** Each subrule/rule is a decision point and we must track them so we
    416 	 *  can go back later and build DFA predictors for them.  This includes
    417 	 *  all the rules, subrules, optional blocks, ()+, ()* etc...
    418 	 */
    419 	protected Vector<Decision> indexToDecision =
    420 		new Vector<Decision>(INITIAL_DECISION_LIST_SIZE);
    421 
    422 	/** If non-null, this is the code generator we will use to generate
    423 	 *  recognizers in the target language.
    424 	 */
    425 	protected CodeGenerator generator;
    426 
    427 	public NameSpaceChecker nameSpaceChecker = new NameSpaceChecker(this);
    428 
    429 	public LL1Analyzer ll1Analyzer = new LL1Analyzer(this);
    430 
    431 	/** For merged lexer/parsers, we must construct a separate lexer spec.
    432 	 *  This is the template for lexer; put the literals first then the
    433 	 *  regular rules.  We don't need to specify a token vocab import as
    434 	 *  I make the new grammar import from the old all in memory; don't want
    435 	 *  to force it to read from the disk.  Lexer grammar will have same
    436 	 *  name as original grammar but will be in different filename.  Foo.g
    437 	 *  with combined grammar will have FooParser.java generated and
    438 	 *  Foo__.g with again Foo inside.  It will however generate FooLexer.java
    439 	 *  as it's a lexer grammar.  A bit odd, but autogenerated.  Can tweak
    440 	 *  later if we want.
    441 	 */
    442 	protected String lexerGrammarTemplate =
    443 			"grammar(name, options, imports, actionNames, actions, literals, rules) ::= <<\n" +
    444 			"lexer grammar <name>;\n" +
    445 			"<if(options)>" +
    446 			"options {\n" +
    447 			"  <options:{it | <it.name>=<it.value>;<\\n>}>\n" +
    448 			"}<\\n>\n" +
    449 			"<endif>\n" +
    450 			"<if(imports)>import <imports; separator=\", \">;<endif>\n" +
    451 			"<actionNames,actions:{n,a|@<n> {<a>\\}\n}>\n" +
    452 			"<literals:{it | <it.ruleName> : <it.literal> ;\n}>\n" +
    453 			"<rules>\n" +
    454 			">>\n";
    455 	protected ST lexerGrammarST;
    456 
    457 	/** What file name holds this grammar? */
    458 	protected String fileName;
    459 
    460 	/** How long in ms did it take to build DFAs for this grammar?
    461 	 *  If this grammar is a combined grammar, it only records time for
    462 	 *  the parser grammar component.  This only records the time to
    463 	 *  do the LL(*) work; NFA->DFA conversion.
    464 	 */
    465 	public long DFACreationWallClockTimeInMS;
    466 
    467 	public int numberOfSemanticPredicates = 0;
    468 	public int numberOfManualLookaheadOptions = 0;
    469 	public Set<Integer> setOfNondeterministicDecisionNumbers = new HashSet<Integer>();
    470 	public Set<Integer> setOfNondeterministicDecisionNumbersResolvedWithPredicates =
    471 		new HashSet<Integer>();
    472 
    473 	/** Track decisions with syn preds specified for reporting.
    474 	 *  This is the a set of BLOCK type AST nodes.
    475 	 */
    476 	public Set<GrammarAST> blocksWithSynPreds = new HashSet();
    477 
    478 	/** Track decisions that actually use the syn preds in the DFA.
    479 	 *  Computed during NFA to DFA conversion.
    480 	 */
    481 	public Set<DFA> decisionsWhoseDFAsUsesSynPreds = new HashSet<DFA>();
    482 
    483 	/** Track names of preds so we can avoid generating preds that aren't used
    484 	 *  Computed during NFA to DFA conversion.  Just walk accept states
    485 	 *  and look for synpreds because that is the only state target whose
    486 	 *  incident edges can have synpreds.  Same is try for
    487 	 *  decisionsWhoseDFAsUsesSynPreds.
    488 	 */
    489 	public Set<String> synPredNamesUsedInDFA = new HashSet();
    490 
    491 	/** Track decisions with syn preds specified for reporting.
    492 	 *  This is the a set of BLOCK type AST nodes.
    493 	 */
    494 	public Set<GrammarAST> blocksWithSemPreds = new HashSet();
    495 
    496 	/** Track decisions that actually use the syn preds in the DFA. */
    497 	public Set<DFA> decisionsWhoseDFAsUsesSemPreds = new HashSet();
    498 
    499 	protected boolean allDecisionDFACreated = false;
    500 
    501 	/** We need a way to detect when a lexer grammar is autogenerated from
    502 	 *  another grammar or we are just sending in a string representing a
    503 	 *  grammar.  We don't want to generate a .tokens file, for example,
    504 	 *  in such cases.
    505 	 */
    506 	protected boolean builtFromString = false;
    507 
    508 	/** Factored out the sanity checking code; delegate to it. */
    509 	GrammarSanity sanity = new GrammarSanity(this);
    510 
    511 	/** Useful for asking questions about target during analysis */
    512 	Target target;
    513 
    514 	/** Create a grammar from file name.  */
    515 	public Grammar(Tool tool, String fileName, CompositeGrammar composite) {
    516 		this.composite = composite;
    517 		setTool(tool);
    518 		setFileName(fileName);
    519 		// ensure we have the composite set to something
    520 		if ( composite.delegateGrammarTreeRoot==null ) {
    521 			composite.setDelegationRoot(this);
    522 		}
    523 		STGroup lexerGrammarSTG = new STGroupString(lexerGrammarTemplate);
    524 		lexerGrammarST = lexerGrammarSTG.getInstanceOf("grammar");
    525 		target = CodeGenerator.loadLanguageTarget((String) getOption("language"));
    526 	}
    527 
    528 	/** Useful for when you are sure that you are not part of a composite
    529 	 *  already.  Used in Interp/RandomPhrase and testing.
    530 	 */
    531 	public Grammar() { this((Tool)null); }
    532 
    533 	public Grammar(Tool tool) {
    534 		setTool(tool);
    535 		builtFromString = true;
    536 		composite = new CompositeGrammar(this);
    537 		STGroup lexerGrammarSTG = new STGroupString(lexerGrammarTemplate);
    538 		lexerGrammarST = lexerGrammarSTG.getInstanceOf("grammar");
    539 		target = CodeGenerator.loadLanguageTarget((String)getOption("language"));
    540 	}
    541 
    542 	/** Used for testing; only useful on noncomposite grammars.*/
    543 	public Grammar(String grammarString)
    544 			throws RecognitionException
    545 	{
    546 		this(null, grammarString);
    547 	}
    548 
    549 	/** Used for testing and Interp/RandomPhrase.  Only useful on
    550 	 *  noncomposite grammars.
    551 	 */
    552 	public Grammar(Tool tool, String grammarString)
    553 		throws RecognitionException
    554 	{
    555 		this(tool);
    556 		setFileName("<string>");
    557 		StringReader r = new StringReader(grammarString);
    558 		parseAndBuildAST(r);
    559 		composite.assignTokenTypes();
    560 		//composite.translateLeftRecursiveRules();
    561 		addRulesForSyntacticPredicates();
    562 		composite.defineGrammarSymbols();
    563 		//composite.createNFAs();
    564 		checkNameSpaceAndActions();
    565 	}
    566 
    567 	public void setFileName(String fileName) {
    568 		this.fileName = fileName;
    569 	}
    570 
    571 	public String getFileName() {
    572 		return fileName;
    573 	}
    574 
    575 	public void setName(String name) {
    576 		if ( name==null ) {
    577 			return;
    578 		}
    579 		// don't error check autogenerated files (those with '__' in them)
    580 		String saneFile = fileName.replace('\\', '/');
    581 		int lastSlash = saneFile.lastIndexOf('/');
    582 		String onlyFileName = saneFile.substring(lastSlash+1, fileName.length());
    583 		if ( !builtFromString ) {
    584 			int lastDot = onlyFileName.lastIndexOf('.');
    585 			String onlyFileNameNoSuffix = null;
    586 			if ( lastDot < 0 ) {
    587 				ErrorManager.error(ErrorManager.MSG_FILENAME_EXTENSION_ERROR, fileName);
    588 				onlyFileNameNoSuffix = onlyFileName+GRAMMAR_FILE_EXTENSION;
    589 			}
    590 			else {
    591 				onlyFileNameNoSuffix = onlyFileName.substring(0,lastDot);
    592 			}
    593 			if ( !name.equals(onlyFileNameNoSuffix) ) {
    594 				ErrorManager.error(ErrorManager.MSG_FILE_AND_GRAMMAR_NAME_DIFFER,
    595 								   name,
    596 								   fileName);
    597 			}
    598 		}
    599 		this.name = name;
    600 	}
    601 
    602 	public void setGrammarContent(String grammarString) throws RecognitionException {
    603 		StringReader r = new StringReader(grammarString);
    604 		parseAndBuildAST(r);
    605 		composite.assignTokenTypes();
    606 		composite.defineGrammarSymbols();
    607 	}
    608 
    609 	public void parseAndBuildAST()
    610 		throws IOException
    611 	{
    612 		FileReader fr = null;
    613 		BufferedReader br = null;
    614 		try {
    615 			fr = new FileReader(fileName);
    616 			br = new BufferedReader(fr);
    617 			parseAndBuildAST(br);
    618 			br.close();
    619 			br = null;
    620 		}
    621 		finally {
    622 			if ( br!=null ) {
    623 				br.close();
    624 			}
    625 		}
    626 	}
    627 
    628 	public void parseAndBuildAST(Reader r) {
    629 		// BUILD AST FROM GRAMMAR
    630 		ANTLRLexer lexer;
    631 		try {
    632 			lexer = new ANTLRLexer(new ANTLRReaderStream(r));
    633 		} catch (IOException e) {
    634 			ErrorManager.internalError("unexpected stream error from parsing "+fileName, e);
    635 			return;
    636 		}
    637 
    638 		lexer.setFileName(this.getFileName());
    639 		tokenBuffer = new CommonTokenStream(lexer);
    640 		ANTLRParser parser = ANTLRParser.createParser(tokenBuffer);
    641 		parser.setFileName(this.getFileName());
    642 		ANTLRParser.grammar__return result = null;
    643 		try {
    644 			result = parser.grammar_(this);
    645 		}
    646 		catch (RecognitionException re) {
    647 			ErrorManager.internalError("unexpected parser recognition error from "+fileName, re);
    648 		}
    649 
    650         dealWithTreeFilterMode(); // tree grammar and filter=true?
    651 
    652         if ( lexer.hasASTOperator && !buildAST() ) {
    653 			Object value = getOption("output");
    654 			if ( value == null ) {
    655 				ErrorManager.grammarWarning(ErrorManager.MSG_REWRITE_OR_OP_WITH_NO_OUTPUT_OPTION,
    656 										    this, null);
    657 				setOption("output", "AST", null);
    658 			}
    659 			else {
    660 				ErrorManager.grammarError(ErrorManager.MSG_AST_OP_WITH_NON_AST_OUTPUT_OPTION,
    661 										  this, null, value);
    662 			}
    663 		}
    664 
    665 		setGrammarTree((GrammarAST)result.getTree());
    666 
    667 		//if ( grammarTree!=null ) System.out.println("grammar tree: "+grammarTree.toStringTree());
    668 
    669 		grammarTree.setUnknownTokenBoundaries();
    670 
    671 		setFileName(lexer.getFileName()); // the lexer #src might change name
    672 		if ( grammarTree==null || grammarTree.findFirstType(ANTLRParser.RULE)==null ) {
    673 			ErrorManager.error(ErrorManager.MSG_NO_RULES, getFileName());
    674 			return;
    675 		}
    676 	}
    677 
    678     protected void dealWithTreeFilterMode() {
    679         Object filterMode = (String)getOption("filter");
    680         if ( type==TREE_PARSER && filterMode!=null && filterMode.toString().equals("true") ) {
    681             // check for conflicting options
    682             // filter => backtrack=true
    683             // filter&&output=AST => rewrite=true
    684             // filter&&output!=AST => error
    685             // any deviation from valid option set is an error
    686             Object backtrack = (String)getOption("backtrack");
    687             Object output = getOption("output");
    688             Object rewrite = getOption("rewrite");
    689             if ( backtrack!=null && !backtrack.toString().equals("true") ) {
    690                 ErrorManager.error(ErrorManager.MSG_CONFLICTING_OPTION_IN_TREE_FILTER,
    691                                    "backtrack", backtrack);
    692             }
    693             if ( output!=null && !output.toString().equals("AST") ) {
    694                 ErrorManager.error(ErrorManager.MSG_CONFLICTING_OPTION_IN_TREE_FILTER,
    695                                    "output", output);
    696                 setOption("output", "", null);
    697             }
    698             if ( rewrite!=null && !rewrite.toString().equals("true") ) {
    699                 ErrorManager.error(ErrorManager.MSG_CONFLICTING_OPTION_IN_TREE_FILTER,
    700                                    "rewrite", rewrite);
    701             }
    702             // set options properly
    703             setOption("backtrack", "true", null);
    704             if ( output!=null && output.toString().equals("AST") ) {
    705                 setOption("rewrite", "true", null);
    706             }
    707             // @synpredgate set to state.backtracking==1 by code gen when filter=true
    708             // superClass set in template target::treeParser
    709         }
    710     }
    711 
    712 	public void translateLeftRecursiveRule(GrammarAST ruleAST) {
    713 		//System.out.println(ruleAST.toStringTree());
    714 		CommonTreeNodeStream input = new CommonTreeNodeStream(ruleAST);
    715 		LeftRecursiveRuleAnalyzer leftRecursiveRuleWalker =
    716 			new LeftRecursiveRuleAnalyzer(input, this, ruleAST.enclosingRuleName);
    717 		boolean isLeftRec = false;
    718 		try {
    719 			//System.out.println("TESTING "+ruleAST.enclosingRuleName);
    720 			isLeftRec = leftRecursiveRuleWalker.rec_rule(this);
    721 		}
    722 		catch (RecognitionException re) {
    723 			ErrorManager.error(ErrorManager.MSG_BAD_AST_STRUCTURE, re);
    724 		}
    725 		if ( !isLeftRec ) return;
    726 		List<String> rules = new ArrayList<String>();
    727 		rules.add( leftRecursiveRuleWalker.getArtificialPrecStartRule() ) ;
    728 		rules.add( leftRecursiveRuleWalker.getArtificialOpPrecRule() );
    729 		rules.add( leftRecursiveRuleWalker.getArtificialPrimaryRule() );
    730 		for (String r : rules) {
    731 			GrammarAST t = parseArtificialRule(r);
    732 			addRule(grammarTree, t);
    733 			//System.out.println(t.toStringTree());
    734 		}
    735 
    736 		//precRuleInitCodeBlocks.add( precRuleWalker.getOpPrecJavaCode() );
    737 	}
    738 
    739 	public void defineGrammarSymbols() {
    740 		if ( Tool.internalOption_PrintGrammarTree ) {
    741 			System.out.println(grammarTree.toStringList());
    742 		}
    743 
    744 		// DEFINE RULES
    745 		//System.out.println("### define "+name+" rules");
    746 		DefineGrammarItemsWalker defineItemsWalker = new DefineGrammarItemsWalker(new CommonTreeNodeStream(getGrammarTree()));
    747 		try {
    748 			defineItemsWalker.grammar_(this);
    749 		}
    750 		catch (RecognitionException re) {
    751 			ErrorManager.error(ErrorManager.MSG_BAD_AST_STRUCTURE,
    752 							   re);
    753 		}
    754 	}
    755 
    756 	/** ANALYZE ACTIONS, LOOKING FOR LABEL AND ATTR REFS, sanity check */
    757 	public void checkNameSpaceAndActions() {
    758 		examineAllExecutableActions();
    759 		checkAllRulesForUselessLabels();
    760 
    761 		nameSpaceChecker.checkConflicts();
    762 	}
    763 
    764 	/** Many imports are illegal such as lexer into a tree grammar */
    765 	public boolean validImport(Grammar delegate) {
    766 		List<Integer> validDelegators = validDelegations.get(delegate.type);
    767 		return validDelegators!=null && validDelegators.contains(this.type);
    768 	}
    769 
    770 	/** If the grammar is a combined grammar, return the text of the implicit
    771 	 *  lexer grammar.
    772 	 */
    773 	public String getLexerGrammar() {
    774 		if ( lexerGrammarST.getAttribute("literals")==null &&
    775 			 lexerGrammarST.getAttribute("rules")==null )
    776 		{
    777 			// if no rules, return nothing
    778 			return null;
    779 		}
    780 		lexerGrammarST.add("name", name);
    781 		// if there are any actions set for lexer, pass them in
    782 		if ( getActions().get("lexer")!=null ) {
    783 			lexerGrammarST.add("actionNames",
    784 										getActions().get("lexer").keySet());
    785 			lexerGrammarST.add("actions",
    786 										getActions().get("lexer").values());
    787 		}
    788 		// make sure generated grammar has the same options
    789 		if ( options!=null ) {
    790 			Iterator optionNames = options.keySet().iterator();
    791 			while (optionNames.hasNext()) {
    792 				String optionName = (String) optionNames.next();
    793 				if ( !doNotCopyOptionsToLexer.contains(optionName) ) {
    794 					Object value = options.get(optionName);
    795 					lexerGrammarST.addAggr("options.{name,value}", optionName, value);
    796 				}
    797 			}
    798 		}
    799 		return lexerGrammarST.render();
    800 	}
    801 
    802 	public String getImplicitlyGeneratedLexerFileName() {
    803 		return name+
    804 			   IGNORE_STRING_IN_GRAMMAR_FILE_NAME +
    805 			   LEXER_GRAMMAR_FILE_EXTENSION;
    806 	}
    807 
    808 	/** Get the name of the generated recognizer; may or may not be same
    809 	 *  as grammar name.
    810 	 *  Recognizer is TParser and TLexer from T if combined, else
    811 	 *  just use T regardless of grammar type.
    812 	 */
    813 	public String getRecognizerName() {
    814 		String suffix = "";
    815 		List<Grammar> grammarsFromRootToMe = composite.getDelegators(this);
    816 		//System.out.println("grammarsFromRootToMe="+grammarsFromRootToMe);
    817 		String qualifiedName = name;
    818 		if ( grammarsFromRootToMe!=null ) {
    819 			StringBuffer buf = new StringBuffer();
    820 			for (Grammar g : grammarsFromRootToMe) {
    821 				buf.append(g.name);
    822 				buf.append('_');
    823 			}
    824 			buf.append(name);
    825 			qualifiedName = buf.toString();
    826 		}
    827 		if ( type==Grammar.COMBINED ||
    828 			 (type==Grammar.LEXER && implicitLexer) )
    829 		{
    830 			suffix = Grammar.grammarTypeToFileNameSuffix[type];
    831 		}
    832 		return qualifiedName+suffix;
    833 	}
    834 
    835 	/** Parse a rule we add artificially that is a list of the other lexer
    836 	 *  rules like this: "Tokens : ID | INT | SEMI ;"  nextToken() will invoke
    837 	 *  this to set the current token.  Add char literals before
    838 	 *  the rule references.
    839 	 *
    840 	 *  If in filter mode, we want every alt to backtrack and we need to
    841 	 *  do k=1 to force the "first token def wins" rule.  Otherwise, the
    842 	 *  longest-match rule comes into play with LL(*).
    843 	 *
    844 	 *  The ANTLRParser antlr.g file now invokes this when parsing a lexer
    845 	 *  grammar, which I think is proper even though it peeks at the info
    846 	 *  that later phases will (re)compute.  It gets a list of lexer rules
    847 	 *  and builds a string representing the rule; then it creates a parser
    848 	 *  and adds the resulting tree to the grammar's tree.
    849 	 */
    850 	public GrammarAST addArtificialMatchTokensRule(GrammarAST grammarAST,
    851 												   List<String> ruleNames,
    852 												   List<String> delegateNames,
    853 												   boolean filterMode) {
    854 		ST matchTokenRuleST = null;
    855 		if ( filterMode ) {
    856 			matchTokenRuleST = new ST(
    857 					ARTIFICIAL_TOKENS_RULENAME+
    858 					" options {k=1; backtrack=true;} : <rules; separator=\"|\">;");
    859 		}
    860 		else {
    861 			matchTokenRuleST = new ST(
    862 					ARTIFICIAL_TOKENS_RULENAME+" : <rules; separator=\"|\">;");
    863 		}
    864 
    865 		// Now add token rule references
    866 		for (int i = 0; i < ruleNames.size(); i++) {
    867 			String rname = (String) ruleNames.get(i);
    868 			matchTokenRuleST.add("rules", rname);
    869 		}
    870 		for (int i = 0; i < delegateNames.size(); i++) {
    871 			String dname = (String) delegateNames.get(i);
    872 			matchTokenRuleST.add("rules", dname+".Tokens");
    873 		}
    874 		//System.out.println("tokens rule: "+matchTokenRuleST.toString());
    875 		GrammarAST r = parseArtificialRule(matchTokenRuleST.render());
    876 		addRule(grammarAST, r);
    877 		//addRule((GrammarAST)parser.getAST());
    878 		//return (GrammarAST)parser.getAST();
    879 		return r;
    880 	}
    881 
    882 	public GrammarAST parseArtificialRule(String ruleText) {
    883 		ANTLRLexer lexer = new ANTLRLexer(new ANTLRStringStream(ruleText));
    884 		ANTLRParser parser = ANTLRParser.createParser(new CommonTokenStream(lexer));
    885 		parser.setGrammar(this);
    886 		parser.setGrammarType(this.type);
    887 		try {
    888 			ANTLRParser.rule_return result = parser.rule();
    889 			return (GrammarAST)result.getTree();
    890 		}
    891 		catch (Exception e) {
    892 			ErrorManager.error(ErrorManager.MSG_ERROR_CREATING_ARTIFICIAL_RULE,
    893 							   e);
    894 			return null;
    895 		}
    896 	}
    897 
    898 	public void addRule(GrammarAST grammarTree, GrammarAST t) {
    899 		GrammarAST p = null;
    900 		for (int i = 0; i < grammarTree.getChildCount(); i++ ) {
    901 			p = (GrammarAST)grammarTree.getChild(i);
    902 			if (p == null || p.getType() == ANTLRParser.RULE || p.getType() == ANTLRParser.PREC_RULE) {
    903 				break;
    904 			}
    905 		}
    906 
    907 		if (p != null) {
    908 			grammarTree.addChild(t);
    909 		}
    910 	}
    911 
    912 	/** for any syntactic predicates, we need to define rules for them; they will get
    913 	 *  defined automatically like any other rule. :)
    914 	 */
    915 	protected List getArtificialRulesForSyntacticPredicates(LinkedHashMap<String,GrammarAST> nameToSynpredASTMap)
    916 	{
    917 		List<GrammarAST> rules = new ArrayList<GrammarAST>();
    918 		if ( nameToSynpredASTMap==null ) {
    919 			return rules;
    920 		}
    921 		boolean isLexer = grammarTree.getType()==ANTLRParser.LEXER_GRAMMAR;
    922 		for (String synpredName : nameToSynpredASTMap.keySet()) {
    923 			GrammarAST fragmentAST = nameToSynpredASTMap.get(synpredName);
    924 			GrammarAST ruleAST =
    925 				ANTLRParser.createSimpleRuleAST(synpredName,
    926 												fragmentAST,
    927 												isLexer);
    928 			rules.add(ruleAST);
    929 		}
    930 		return rules;
    931 	}
    932 
    933 	public void addRulesForSyntacticPredicates() {
    934 		// Get syn pred rules and add to existing tree
    935 		List synpredRules =
    936 			getArtificialRulesForSyntacticPredicates(nameToSynpredASTMap);
    937 		for (int i = 0; i < synpredRules.size(); i++) {
    938 			GrammarAST rAST = (GrammarAST) synpredRules.get(i);
    939 			grammarTree.addChild(rAST);
    940 		}
    941 	}
    942 
    943 	/** Walk the list of options, altering this Grammar object according
    944 	 *  to any I recognize.
    945 	protected void processOptions() {
    946 		Iterator optionNames = options.keySet().iterator();
    947 		while (optionNames.hasNext()) {
    948 			String optionName = (String) optionNames.next();
    949 			Object value = options.get(optionName);
    950 			if ( optionName.equals("tokenVocab") ) {
    951 
    952 			}
    953 		}
    954 	}
    955 	 */
    956 
    957 	/** Define all the rule begin/end NFAStates to solve forward reference
    958 	 *  issues.  Critical for composite grammars too.
    959 	 *  This is normally called on all root/delegates manually and then
    960 	 *  buildNFA() is called afterwards because the NFA construction needs
    961 	 *  to see rule start/stop states from potentially every grammar. Has
    962 	 *  to be have these created a priori.  Testing routines will often
    963 	 *  just call buildNFA(), which forces a call to this method if not
    964 	 *  done already. Works ONLY for single noncomposite grammars.
    965 	 */
    966 	public void createRuleStartAndStopNFAStates() {
    967 		//System.out.println("### createRuleStartAndStopNFAStates "+getGrammarTypeString()+" grammar "+name+" NFAs");
    968 		if ( nfa!=null ) {
    969 			return;
    970 		}
    971 		nfa = new NFA(this);
    972 		factory = new NFAFactory(nfa);
    973 
    974 		Collection rules = getRules();
    975 		for (Iterator itr = rules.iterator(); itr.hasNext();) {
    976 			Rule r = (Rule) itr.next();
    977 			String ruleName = r.name;
    978 			NFAState ruleBeginState = factory.newState();
    979 			ruleBeginState.setDescription("rule "+ruleName+" start");
    980 			ruleBeginState.enclosingRule = r;
    981 			r.startState = ruleBeginState;
    982 			NFAState ruleEndState = factory.newState();
    983 			ruleEndState.setDescription("rule "+ruleName+" end");
    984 			ruleEndState.setAcceptState(true);
    985 			ruleEndState.enclosingRule = r;
    986 			r.stopState = ruleEndState;
    987 		}
    988 	}
    989 
    990 	public void buildNFA() {
    991 		if ( nfa==null ) {
    992 			createRuleStartAndStopNFAStates();
    993 		}
    994 		if ( nfa.complete ) {
    995 			// don't let it create more than once; has side-effects
    996 			return;
    997 		}
    998 		//System.out.println("### build "+getGrammarTypeString()+" grammar "+name+" NFAs");
    999 		if ( getRules().size()==0 ) {
   1000 			return;
   1001 		}
   1002 
   1003 		CommonTreeNodeStream input = new CommonTreeNodeStream(getGrammarTree());
   1004 		TreeToNFAConverter nfaBuilder = new TreeToNFAConverter(input, this, nfa, factory);
   1005 		try {
   1006 			nfaBuilder.grammar_();
   1007 		}
   1008 		catch (RecognitionException re) {
   1009 			ErrorManager.error(ErrorManager.MSG_BAD_AST_STRUCTURE,
   1010 							   name,
   1011 							   re);
   1012 		}
   1013 		nfa.complete = true;
   1014 	}
   1015 
   1016 	/** For each decision in this grammar, compute a single DFA using the
   1017 	 *  NFA states associated with the decision.  The DFA construction
   1018 	 *  determines whether or not the alternatives in the decision are
   1019 	 *  separable using a regular lookahead language.
   1020 	 *
   1021 	 *  Store the lookahead DFAs in the AST created from the user's grammar
   1022 	 *  so the code generator or whoever can easily access it.
   1023 	 *
   1024 	 *  This is a separate method because you might want to create a
   1025 	 *  Grammar without doing the expensive analysis.
   1026 	 */
   1027 	public void createLookaheadDFAs() {
   1028 		createLookaheadDFAs(true);
   1029 	}
   1030 
   1031 	public void createLookaheadDFAs(boolean wackTempStructures) {
   1032 		if ( nfa==null ) {
   1033 			buildNFA();
   1034 		}
   1035 
   1036 		// CHECK FOR LEFT RECURSION; Make sure we can actually do analysis
   1037 		checkAllRulesForLeftRecursion();
   1038 
   1039 		/*
   1040 		// was there a severe problem while sniffing the grammar?
   1041 		if ( ErrorManager.doNotAttemptAnalysis() ) {
   1042 			return;
   1043 		}
   1044 		*/
   1045 
   1046 		long start = System.currentTimeMillis();
   1047 
   1048 		//System.out.println("### create DFAs");
   1049 		int numDecisions = getNumberOfDecisions();
   1050 		if ( NFAToDFAConverter.SINGLE_THREADED_NFA_CONVERSION ) {
   1051 			for (int decision=1; decision<=numDecisions; decision++) {
   1052 				NFAState decisionStartState = getDecisionNFAStartState(decision);
   1053 				if ( leftRecursiveRules.contains(decisionStartState.enclosingRule) ) {
   1054 					// don't bother to process decisions within left recursive rules.
   1055 					if ( composite.watchNFAConversion ) {
   1056 						System.out.println("ignoring decision "+decision+
   1057 										   " within left-recursive rule "+decisionStartState.enclosingRule.name);
   1058 					}
   1059 					continue;
   1060 				}
   1061 				if ( !externalAnalysisAbort && decisionStartState.getNumberOfTransitions()>1 ) {
   1062 					Rule r = decisionStartState.enclosingRule;
   1063 					if ( r.isSynPred && !synPredNamesUsedInDFA.contains(r.name) ) {
   1064 						continue;
   1065 					}
   1066 					DFA dfa = null;
   1067 					// if k=* or k=1, try LL(1)
   1068 					if ( getUserMaxLookahead(decision)==0 ||
   1069 						 getUserMaxLookahead(decision)==1 )
   1070 					{
   1071 						dfa = createLL_1_LookaheadDFA(decision);
   1072 					}
   1073 					if ( dfa==null ) {
   1074 						if ( composite.watchNFAConversion ) {
   1075 							System.out.println("decision "+decision+
   1076 											   " not suitable for LL(1)-optimized DFA analysis");
   1077 						}
   1078 						dfa = createLookaheadDFA(decision, wackTempStructures);
   1079 					}
   1080 					if ( dfa.startState==null ) {
   1081 						// something went wrong; wipe out DFA
   1082 						setLookaheadDFA(decision, null);
   1083 					}
   1084 					if ( Tool.internalOption_PrintDFA ) {
   1085 						System.out.println("DFA d="+decision);
   1086 						FASerializer serializer = new FASerializer(nfa.grammar);
   1087 						String result = serializer.serialize(dfa.startState);
   1088 						System.out.println(result);
   1089 					}
   1090 				}
   1091 			}
   1092 		}
   1093 		else {
   1094 			ErrorManager.info("two-threaded DFA conversion");
   1095 			// create a barrier expecting n DFA and this main creation thread
   1096 			Barrier barrier = new Barrier(3);
   1097 			// assume 2 CPU for now
   1098 			int midpoint = numDecisions/2;
   1099 			NFAConversionThread t1 =
   1100 				new NFAConversionThread(this, barrier, 1, midpoint);
   1101 			new Thread(t1).start();
   1102 			if ( midpoint == (numDecisions/2) ) {
   1103 				midpoint++;
   1104 			}
   1105 			NFAConversionThread t2 =
   1106 				new NFAConversionThread(this, barrier, midpoint, numDecisions);
   1107 			new Thread(t2).start();
   1108 			// wait for these two threads to finish
   1109 			try {
   1110 				barrier.waitForRelease();
   1111 			}
   1112 			catch(InterruptedException e) {
   1113 				ErrorManager.internalError("what the hell? DFA interruptus", e);
   1114 			}
   1115 		}
   1116 
   1117 		long stop = System.currentTimeMillis();
   1118 		DFACreationWallClockTimeInMS = stop - start;
   1119 
   1120 		// indicate that we've finished building DFA (even if #decisions==0)
   1121 		allDecisionDFACreated = true;
   1122 	}
   1123 
   1124 	public DFA createLL_1_LookaheadDFA(int decision) {
   1125 		Decision d = getDecision(decision);
   1126 		String enclosingRule = d.startState.enclosingRule.name;
   1127 		Rule r = d.startState.enclosingRule;
   1128 		NFAState decisionStartState = getDecisionNFAStartState(decision);
   1129 
   1130 		if ( composite.watchNFAConversion ) {
   1131 			System.out.println("--------------------\nattempting LL(1) DFA (d="
   1132 							   +decisionStartState.getDecisionNumber()+") for "+
   1133 							   decisionStartState.getDescription());
   1134 		}
   1135 
   1136 		if ( r.isSynPred && !synPredNamesUsedInDFA.contains(enclosingRule) ) {
   1137 			return null;
   1138 		}
   1139 
   1140 		// compute lookahead for each alt
   1141 		int numAlts = getNumberOfAltsForDecisionNFA(decisionStartState);
   1142 		LookaheadSet[] altLook = new LookaheadSet[numAlts+1];
   1143 		for (int alt = 1; alt <= numAlts; alt++) {
   1144 			int walkAlt =
   1145 				decisionStartState.translateDisplayAltToWalkAlt(alt);
   1146 			NFAState altLeftEdge = getNFAStateForAltOfDecision(decisionStartState, walkAlt);
   1147 			NFAState altStartState = (NFAState)altLeftEdge.transition[0].target;
   1148 			//System.out.println("alt "+alt+" start state = "+altStartState.stateNumber);
   1149 			altLook[alt] = ll1Analyzer.LOOK(altStartState);
   1150 			//System.out.println("alt "+alt+": "+altLook[alt].toString(this));
   1151 		}
   1152 
   1153 		// compare alt i with alt j for disjointness
   1154 		boolean decisionIsLL_1 = true;
   1155 outer:
   1156 		for (int i = 1; i <= numAlts; i++) {
   1157 			for (int j = i+1; j <= numAlts; j++) {
   1158 				/*
   1159 				System.out.println("compare "+i+", "+j+": "+
   1160 								   altLook[i].toString(this)+" with "+
   1161 								   altLook[j].toString(this));
   1162 				*/
   1163 				LookaheadSet collision = altLook[i].intersection(altLook[j]);
   1164 				if ( !collision.isNil() ) {
   1165 					//System.out.println("collision (non-LL(1)): "+collision.toString(this));
   1166 					decisionIsLL_1 = false;
   1167 					break outer;
   1168 				}
   1169 			}
   1170 		}
   1171 
   1172 		boolean foundConfoundingPredicate =
   1173 			ll1Analyzer.detectConfoundingPredicates(decisionStartState);
   1174 		if ( decisionIsLL_1 && !foundConfoundingPredicate ) {
   1175 			// build an LL(1) optimized DFA with edge for each altLook[i]
   1176 			if ( NFAToDFAConverter.debug ) {
   1177 				System.out.println("decision "+decision+" is simple LL(1)");
   1178 			}
   1179 			DFA lookaheadDFA = new LL1DFA(decision, decisionStartState, altLook);
   1180 			setLookaheadDFA(decision, lookaheadDFA);
   1181 			updateLineColumnToLookaheadDFAMap(lookaheadDFA);
   1182 			return lookaheadDFA;
   1183 		}
   1184 
   1185 		// not LL(1) but perhaps we can solve with simplified predicate search
   1186 		// even if k=1 set manually, only resolve here if we have preds; i.e.,
   1187 		// don't resolve etc...
   1188 
   1189 		/*
   1190 		SemanticContext visiblePredicates =
   1191 			ll1Analyzer.getPredicates(decisionStartState);
   1192 		boolean foundConfoundingPredicate =
   1193 			ll1Analyzer.detectConfoundingPredicates(decisionStartState);
   1194 			*/
   1195 
   1196 		// exit if not forced k=1 or we found a predicate situation we
   1197 		// can't handle: predicates in rules invoked from this decision.
   1198 		if ( getUserMaxLookahead(decision)!=1 || // not manually set to k=1
   1199 			 !getAutoBacktrackMode(decision) ||
   1200 			 foundConfoundingPredicate )
   1201 		{
   1202 			//System.out.println("trying LL(*)");
   1203 			return null;
   1204 		}
   1205 
   1206 		List<IntervalSet> edges = new ArrayList<IntervalSet>();
   1207 		for (int i = 1; i < altLook.length; i++) {
   1208 			LookaheadSet s = altLook[i];
   1209 			edges.add((IntervalSet)s.tokenTypeSet);
   1210 		}
   1211 		List<IntervalSet> disjoint = makeEdgeSetsDisjoint(edges);
   1212 		//System.out.println("disjoint="+disjoint);
   1213 
   1214 		MultiMap<IntervalSet, Integer> edgeMap = new MultiMap<IntervalSet, Integer>();
   1215 		for (int i = 0; i < disjoint.size(); i++) {
   1216 			IntervalSet ds = (IntervalSet) disjoint.get(i);
   1217 			for (int alt = 1; alt < altLook.length; alt++) {
   1218 				LookaheadSet look = altLook[alt];
   1219 				if ( !ds.and(look.tokenTypeSet).isNil() ) {
   1220 					edgeMap.map(ds, alt);
   1221 				}
   1222 			}
   1223 		}
   1224 		//System.out.println("edge map: "+edgeMap);
   1225 
   1226 		// TODO: how do we know we covered stuff?
   1227 
   1228 		// build an LL(1) optimized DFA with edge for each altLook[i]
   1229 		DFA lookaheadDFA = new LL1DFA(decision, decisionStartState, edgeMap);
   1230 		setLookaheadDFA(decision, lookaheadDFA);
   1231 
   1232 		// create map from line:col to decision DFA (for ANTLRWorks)
   1233 		updateLineColumnToLookaheadDFAMap(lookaheadDFA);
   1234 
   1235 		return lookaheadDFA;
   1236 	}
   1237 
   1238 	private void updateLineColumnToLookaheadDFAMap(DFA lookaheadDFA) {
   1239 		GrammarAST decisionAST = nfa.grammar.getDecisionBlockAST(lookaheadDFA.decisionNumber);
   1240 		int line = decisionAST.getLine();
   1241 		int col = decisionAST.getCharPositionInLine();
   1242 		lineColumnToLookaheadDFAMap.put(new StringBuffer().append(line + ":")
   1243 										.append(col).toString(), lookaheadDFA);
   1244 	}
   1245 
   1246 	protected List<IntervalSet> makeEdgeSetsDisjoint(List<IntervalSet> edges) {
   1247 		OrderedHashSet<IntervalSet> disjointSets = new OrderedHashSet<IntervalSet>();
   1248 		// walk each incoming edge label/set and add to disjoint set
   1249 		int numEdges = edges.size();
   1250 		for (int e = 0; e < numEdges; e++) {
   1251 			IntervalSet t = (IntervalSet) edges.get(e);
   1252 			if ( disjointSets.contains(t) ) { // exact set present
   1253 				continue;
   1254 			}
   1255 
   1256 			// compare t with set i for disjointness
   1257 			IntervalSet remainder = t; // remainder starts out as whole set to add
   1258 			int numDisjointElements = disjointSets.size();
   1259 			for (int i = 0; i < numDisjointElements; i++) {
   1260 				IntervalSet s_i = (IntervalSet)disjointSets.get(i);
   1261 
   1262 				if ( t.and(s_i).isNil() ) { // nothing in common
   1263 					continue;
   1264 				}
   1265 				//System.out.println(label+" collides with "+rl);
   1266 
   1267 				// For any (s_i, t) with s_i&t!=nil replace with (s_i-t, s_i&t)
   1268 				// (ignoring s_i-t if nil; don't put in list)
   1269 
   1270 				// Replace existing s_i with intersection since we
   1271 				// know that will always be a non nil character class
   1272 				IntervalSet intersection = (IntervalSet)s_i.and(t);
   1273 				disjointSets.set(i, intersection);
   1274 
   1275 				// Compute s_i-t to see what is in current set and not in incoming
   1276 				IntSet existingMinusNewElements = s_i.subtract(t);
   1277 				//System.out.println(s_i+"-"+t+"="+existingMinusNewElements);
   1278 				if ( !existingMinusNewElements.isNil() ) {
   1279 					// found a new character class, add to the end (doesn't affect
   1280 					// outer loop duration due to n computation a priori.
   1281 					disjointSets.add(existingMinusNewElements);
   1282 				}
   1283 
   1284 				// anything left to add to the reachableLabels?
   1285 				remainder = (IntervalSet)t.subtract(s_i);
   1286 				if ( remainder.isNil() ) {
   1287 					break; // nothing left to add to set.  done!
   1288 				}
   1289 
   1290 				t = remainder;
   1291 			}
   1292 			if ( !remainder.isNil() ) {
   1293 				disjointSets.add(remainder);
   1294 			}
   1295 		}
   1296 		return disjointSets.elements();
   1297 	}
   1298 
   1299 	public DFA createLookaheadDFA(int decision, boolean wackTempStructures) {
   1300 		Decision d = getDecision(decision);
   1301 		String enclosingRule = d.startState.enclosingRule.name;
   1302 		Rule r = d.startState.enclosingRule;
   1303 
   1304 		//System.out.println("createLookaheadDFA(): "+enclosingRule+" dec "+decision+"; synprednames prev used "+synPredNamesUsedInDFA);
   1305 		NFAState decisionStartState = getDecisionNFAStartState(decision);
   1306 		long startDFA=0,stopDFA=0;
   1307 		if ( composite.watchNFAConversion ) {
   1308 			System.out.println("--------------------\nbuilding lookahead DFA (d="
   1309 							   +decisionStartState.getDecisionNumber()+") for "+
   1310 							   decisionStartState.getDescription());
   1311 			startDFA = System.currentTimeMillis();
   1312 		}
   1313 
   1314 		DFA lookaheadDFA = new DFA(decision, decisionStartState);
   1315 		// Retry to create a simpler DFA if analysis failed (non-LL(*),
   1316 		// recursion overflow, or time out).
   1317 		boolean failed =
   1318 			lookaheadDFA.probe.isNonLLStarDecision() ||
   1319 			lookaheadDFA.probe.analysisOverflowed();
   1320 		if ( failed && lookaheadDFA.okToRetryDFAWithK1() ) {
   1321 			// set k=1 option and try again.
   1322 			// First, clean up tracking stuff
   1323 			decisionsWhoseDFAsUsesSynPreds.remove(lookaheadDFA);
   1324 			// TODO: clean up synPredNamesUsedInDFA also (harder)
   1325 			d.blockAST.setBlockOption(this, "k", Utils.integer(1));
   1326 			if ( composite.watchNFAConversion ) {
   1327 				System.out.print("trying decision "+decision+
   1328 								 " again with k=1; reason: "+
   1329 								 lookaheadDFA.getReasonForFailure());
   1330 			}
   1331 			lookaheadDFA = null; // make sure other memory is "free" before redoing
   1332 			lookaheadDFA = new DFA(decision, decisionStartState);
   1333 		}
   1334 
   1335 		setLookaheadDFA(decision, lookaheadDFA);
   1336 
   1337 		if ( wackTempStructures ) {
   1338 			for (DFAState s : lookaheadDFA.getUniqueStates().values()) {
   1339 				s.reset();
   1340 			}
   1341 		}
   1342 
   1343 		// create map from line:col to decision DFA (for ANTLRWorks)
   1344 		updateLineColumnToLookaheadDFAMap(lookaheadDFA);
   1345 
   1346 		if ( composite.watchNFAConversion ) {
   1347 			stopDFA = System.currentTimeMillis();
   1348 			System.out.println("cost: "+lookaheadDFA.getNumberOfStates()+
   1349 							   " states, "+(int)(stopDFA-startDFA)+" ms");
   1350 		}
   1351 		//System.out.println("after create DFA; synPredNamesUsedInDFA="+synPredNamesUsedInDFA);
   1352 		return lookaheadDFA;
   1353 	}
   1354 
   1355 	/** Terminate DFA creation (grammar analysis).
   1356 	 */
   1357 	public void externallyAbortNFAToDFAConversion() {
   1358 		externalAnalysisAbort = true;
   1359 	}
   1360 
   1361 	public boolean NFAToDFAConversionExternallyAborted() {
   1362 		return externalAnalysisAbort;
   1363 	}
   1364 
   1365 	/** Return a new unique integer in the token type space */
   1366 	public int getNewTokenType() {
   1367 		composite.maxTokenType++;
   1368 		return composite.maxTokenType;
   1369 	}
   1370 
   1371 	/** Define a token at a particular token type value.  Blast an
   1372 	 *  old value with a new one.  This is called normal grammar processsing
   1373 	 *  and during import vocab operations to set tokens with specific values.
   1374 	 */
   1375 	public void defineToken(String text, int tokenType) {
   1376 		//System.out.println("defineToken("+text+", "+tokenType+")");
   1377 		if ( composite.tokenIDToTypeMap.get(text)!=null ) {
   1378 			// already defined?  Must be predefined one like EOF;
   1379 			// do nothing
   1380 			return;
   1381 		}
   1382 		// the index in the typeToTokenList table is actually shifted to
   1383 		// hold faux labels as you cannot have negative indices.
   1384 		if ( text.charAt(0)=='\'' ) {
   1385 			composite.stringLiteralToTypeMap.put(text, Utils.integer(tokenType));
   1386 			// track in reverse index too
   1387 			if ( tokenType>=composite.typeToStringLiteralList.size() ) {
   1388 				composite.typeToStringLiteralList.setSize(tokenType+1);
   1389 			}
   1390 			composite.typeToStringLiteralList.set(tokenType, text);
   1391 		}
   1392 		else { // must be a label like ID
   1393 			composite.tokenIDToTypeMap.put(text, Utils.integer(tokenType));
   1394 		}
   1395 		int index = Label.NUM_FAUX_LABELS+tokenType-1;
   1396 		//System.out.println("defining "+name+" token "+text+" at type="+tokenType+", index="+index);
   1397 		composite.maxTokenType = Math.max(composite.maxTokenType, tokenType);
   1398 		if ( index>=composite.typeToTokenList.size() ) {
   1399 			composite.typeToTokenList.setSize(index+1);
   1400 		}
   1401 		String prevToken = (String)composite.typeToTokenList.get(index);
   1402 		if ( prevToken==null || prevToken.charAt(0)=='\'' ) {
   1403 			// only record if nothing there before or if thing before was a literal
   1404 			composite.typeToTokenList.set(index, text);
   1405 		}
   1406 	}
   1407 
   1408 	/** Define a new rule.  A new rule index is created by incrementing
   1409 	 *  ruleIndex.
   1410 	 */
   1411 	public void defineRule(Token ruleToken,
   1412 						   String modifier,
   1413 						   Map options,
   1414 						   GrammarAST tree,
   1415 						   GrammarAST argActionAST,
   1416 						   int numAlts)
   1417 	{
   1418 		String ruleName = ruleToken.getText();
   1419 		if ( getLocallyDefinedRule(ruleName)!=null ) {
   1420 			ErrorManager.grammarError(ErrorManager.MSG_RULE_REDEFINITION,
   1421 									  this, ruleToken, ruleName);
   1422 			return;
   1423 		}
   1424 
   1425 		if ( (type==Grammar.PARSER||type==Grammar.TREE_PARSER) &&
   1426 			 Character.isUpperCase(ruleName.charAt(0)) )
   1427 		{
   1428 			ErrorManager.grammarError(ErrorManager.MSG_LEXER_RULES_NOT_ALLOWED,
   1429 									  this, ruleToken, ruleName);
   1430 			return;
   1431 		}
   1432 
   1433 		Rule r = new Rule(this, ruleName, composite.ruleIndex, numAlts);
   1434 		/*
   1435 		System.out.println("defineRule("+ruleName+",modifier="+modifier+
   1436 						   "): index="+r.index+", nalts="+numAlts);
   1437 		*/
   1438 		r.modifier = modifier;
   1439 		nameToRuleMap.put(ruleName, r);
   1440 		setRuleAST(ruleName, tree);
   1441 		r.setOptions(options, ruleToken);
   1442 		r.argActionAST = argActionAST;
   1443 		composite.ruleIndexToRuleList.setSize(composite.ruleIndex+1);
   1444 		composite.ruleIndexToRuleList.set(composite.ruleIndex, r);
   1445 		composite.ruleIndex++;
   1446 		if ( ruleName.startsWith(SYNPRED_RULE_PREFIX) ) {
   1447 			r.isSynPred = true;
   1448 		}
   1449 	}
   1450 
   1451 	/** Define a new predicate and get back its name for use in building
   1452 	 *  a semantic predicate reference to the syn pred.
   1453 	 */
   1454 	public String defineSyntacticPredicate(GrammarAST blockAST,
   1455 										   String currentRuleName)
   1456 	{
   1457 		if ( nameToSynpredASTMap==null ) {
   1458 			nameToSynpredASTMap = new LinkedHashMap();
   1459 		}
   1460 		String predName =
   1461 			SYNPRED_RULE_PREFIX+(nameToSynpredASTMap.size() + 1)+"_"+name;
   1462 		blockAST.setTreeEnclosingRuleNameDeeply(predName);
   1463 		nameToSynpredASTMap.put(predName, blockAST);
   1464 		return predName;
   1465 	}
   1466 
   1467 	public LinkedHashMap getSyntacticPredicates() {
   1468 		return nameToSynpredASTMap;
   1469 	}
   1470 
   1471 	public GrammarAST getSyntacticPredicate(String name) {
   1472 		if ( nameToSynpredASTMap==null ) {
   1473 			return null;
   1474 		}
   1475 		return (GrammarAST)nameToSynpredASTMap.get(name);
   1476 	}
   1477 
   1478 	public void synPredUsedInDFA(DFA dfa, SemanticContext semCtx) {
   1479 		decisionsWhoseDFAsUsesSynPreds.add(dfa);
   1480 		semCtx.trackUseOfSyntacticPredicates(this); // walk ctx looking for preds
   1481 	}
   1482 
   1483 	/*
   1484 	public Set<Rule> getRuleNamesVisitedDuringLOOK() {
   1485 		return rulesSensitiveToOtherRules;
   1486 	}
   1487 	*/
   1488 
   1489 	/** Given @scope::name {action} define it for this grammar.  Later,
   1490 	 *  the code generator will ask for the actions table.  For composite
   1491      *  grammars, make sure header action propogates down to all delegates.
   1492 	 */
   1493 	public void defineNamedAction(GrammarAST ampersandAST,
   1494 								  String scope,
   1495 								  GrammarAST nameAST,
   1496 								  GrammarAST actionAST)
   1497 	{
   1498 		if ( scope==null ) {
   1499 			scope = getDefaultActionScope(type);
   1500 		}
   1501 		//System.out.println("Grammar "+name+" define @"+scope+"::"+nameAST.getText()+"{"+actionAST.getText()+"}");
   1502 		String actionName = nameAST.getText();
   1503 		Map<String, Object> scopeActions = getActions().get(scope);
   1504 		if ( scopeActions==null ) {
   1505 			scopeActions = new HashMap<String, Object>();
   1506 			getActions().put(scope, scopeActions);
   1507 		}
   1508 		Object a = scopeActions.get(actionName);
   1509 		if ( a!=null ) {
   1510 			ErrorManager.grammarError(
   1511 				ErrorManager.MSG_ACTION_REDEFINITION,this,
   1512 				nameAST.getToken(),nameAST.getText());
   1513 		}
   1514 		else {
   1515 			scopeActions.put(actionName,actionAST);
   1516 		}
   1517         // propogate header (regardless of scope (lexer, parser, ...) ?
   1518         if ( this==composite.getRootGrammar() && actionName.equals("header") ) {
   1519             List<Grammar> allgrammars = composite.getRootGrammar().getDelegates();
   1520             for (Grammar delegate : allgrammars) {
   1521 				if ( target.isValidActionScope(delegate.type, scope) ) {
   1522 					//System.out.println("propogate to "+delegate.name);
   1523                 	delegate.defineNamedAction(ampersandAST, scope, nameAST, actionAST);
   1524 				}
   1525             }
   1526         }
   1527     }
   1528 
   1529     public void setSynPredGateIfNotAlready(ST gateST) {
   1530         String scope = getDefaultActionScope(type);
   1531         Map<String, Object> actionsForGrammarScope = getActions().get(scope);
   1532         // if no synpredgate action set by user then set
   1533         if ( (actionsForGrammarScope==null ||
   1534              !actionsForGrammarScope.containsKey(Grammar.SYNPREDGATE_ACTION_NAME)) )
   1535         {
   1536             if ( actionsForGrammarScope==null ) {
   1537                 actionsForGrammarScope=new HashMap<String, Object>();
   1538                 getActions().put(scope, actionsForGrammarScope);
   1539             }
   1540             actionsForGrammarScope.put(Grammar.SYNPREDGATE_ACTION_NAME,
   1541                                        gateST);
   1542         }
   1543     }
   1544 
   1545 	public Map<String, Map<String, Object>> getActions() {
   1546 		return actions;
   1547 	}
   1548 
   1549 	/** Given a grammar type, what should be the default action scope?
   1550 	 *  If I say @members in a COMBINED grammar, for example, the
   1551 	 *  default scope should be "parser".
   1552 	 */
   1553 	public String getDefaultActionScope(int grammarType) {
   1554 		switch (grammarType) {
   1555 			case Grammar.LEXER :
   1556 				return "lexer";
   1557 			case Grammar.PARSER :
   1558 			case Grammar.COMBINED :
   1559 				return "parser";
   1560 			case Grammar.TREE_PARSER :
   1561 				return "treeparser";
   1562 		}
   1563 		return null;
   1564 	}
   1565 
   1566 	public void defineLexerRuleFoundInParser(Token ruleToken,
   1567 											 GrammarAST ruleAST)
   1568 	{
   1569 //		System.out.println("rule tree is:\n"+ruleAST.toStringTree());
   1570 		/*
   1571 		String ruleText = tokenBuffer.toOriginalString(ruleAST.ruleStartTokenIndex,
   1572 											   ruleAST.ruleStopTokenIndex);
   1573 		*/
   1574 		// first, create the text of the rule
   1575 		StringBuffer buf = new StringBuffer();
   1576 		buf.append("// $ANTLR src \"");
   1577 		buf.append(getFileName());
   1578 		buf.append("\" ");
   1579 		buf.append(ruleAST.getLine());
   1580 		buf.append("\n");
   1581 		for (int i=ruleAST.getTokenStartIndex();
   1582 			 i<=ruleAST.getTokenStopIndex() && i<tokenBuffer.size();
   1583 			 i++)
   1584 		{
   1585 			CommonToken t = (CommonToken)tokenBuffer.get(i);
   1586 			// undo the text deletions done by the lexer (ugh)
   1587 			if ( t.getType()==ANTLRParser.BLOCK ) {
   1588 				buf.append("(");
   1589 			}
   1590 			else if ( t.getType()==ANTLRParser.ACTION ) {
   1591 				buf.append("{");
   1592 				buf.append(t.getText());
   1593 				buf.append("}");
   1594 			}
   1595 			else if ( t.getType()==ANTLRParser.SEMPRED ||
   1596 					  t.getType()==ANTLRParser.SYN_SEMPRED ||
   1597 					  t.getType()==ANTLRParser.GATED_SEMPRED ||
   1598 					  t.getType()==ANTLRParser.BACKTRACK_SEMPRED )
   1599 			{
   1600 				buf.append("{");
   1601 				buf.append(t.getText());
   1602 				buf.append("}?");
   1603 			}
   1604 			else if ( t.getType()==ANTLRParser.ARG_ACTION ) {
   1605 				buf.append("[");
   1606 				buf.append(t.getText());
   1607 				buf.append("]");
   1608 			}
   1609 			else {
   1610 				buf.append(t.getText());
   1611 			}
   1612 		}
   1613 		String ruleText = buf.toString();
   1614 		//System.out.println("[["+ruleText+"]]");
   1615 		// now put the rule into the lexer grammar template
   1616 		if ( getGrammarIsRoot() ) { // don't build lexers for delegates
   1617 			lexerGrammarST.add("rules", ruleText);
   1618 		}
   1619 		// track this lexer rule's name
   1620 		composite.lexerRules.add(ruleToken.getText());
   1621 	}
   1622 
   1623 	/** If someone does PLUS='+' in the parser, must make sure we get
   1624 	 *  "PLUS : '+' ;" in lexer not "T73 : '+';"
   1625 	 */
   1626 	public void defineLexerRuleForAliasedStringLiteral(String tokenID,
   1627 													   String literal,
   1628 													   int tokenType)
   1629 	{
   1630 		if ( getGrammarIsRoot() ) { // don't build lexers for delegates
   1631 			//System.out.println("defineLexerRuleForAliasedStringLiteral: "+literal+" "+tokenType);
   1632 			lexerGrammarST.addAggr("literals.{ruleName,type,literal}",
   1633 										tokenID,
   1634 										Utils.integer(tokenType),
   1635 										literal);
   1636 		}
   1637 		// track this lexer rule's name
   1638 		composite.lexerRules.add(tokenID);
   1639 	}
   1640 
   1641 	public void defineLexerRuleForStringLiteral(String literal, int tokenType) {
   1642 		//System.out.println("defineLexerRuleForStringLiteral: "+literal+" "+tokenType);
   1643 		// compute new token name like T237 and define it as having tokenType
   1644 		String tokenID = computeTokenNameFromLiteral(tokenType,literal);
   1645 		defineToken(tokenID, tokenType);
   1646 		// tell implicit lexer to define a rule to match the literal
   1647 		if ( getGrammarIsRoot() ) { // don't build lexers for delegates
   1648 			lexerGrammarST.addAggr("literals.{ruleName,type,literal}",
   1649 										tokenID,
   1650 										Utils.integer(tokenType),
   1651 										literal);
   1652 		}
   1653 	}
   1654 
   1655 	public Rule getLocallyDefinedRule(String ruleName) {
   1656 		Rule r = nameToRuleMap.get(ruleName);
   1657 		return r;
   1658 	}
   1659 
   1660 	public Rule getRule(String ruleName) {
   1661 		Rule r = composite.getRule(ruleName);
   1662 		/*
   1663 		if ( r!=null && r.grammar != this ) {
   1664 			System.out.println(name+".getRule("+ruleName+")="+r);
   1665 		}
   1666 		*/
   1667 		return r;
   1668 	}
   1669 
   1670 	public Rule getRule(String scopeName, String ruleName) {
   1671 		if ( scopeName!=null ) { // scope override
   1672 			Grammar scope = composite.getGrammar(scopeName);
   1673 			if ( scope==null ) {
   1674 				return null;
   1675 			}
   1676 			return scope.getLocallyDefinedRule(ruleName);
   1677 		}
   1678 		return getRule(ruleName);
   1679 	}
   1680 
   1681 	public int getRuleIndex(String scopeName, String ruleName) {
   1682 		Rule r = getRule(scopeName, ruleName);
   1683 		if ( r!=null ) {
   1684 			return r.index;
   1685 		}
   1686 		return INVALID_RULE_INDEX;
   1687 	}
   1688 
   1689 	public int getRuleIndex(String ruleName) {
   1690 		return getRuleIndex(null, ruleName);
   1691 	}
   1692 
   1693 	public String getRuleName(int ruleIndex) {
   1694 		Rule r = composite.ruleIndexToRuleList.get(ruleIndex);
   1695 		if ( r!=null ) {
   1696 			return r.name;
   1697 		}
   1698 		return null;
   1699 	}
   1700 
   1701 	/** Should codegen.g gen rule for ruleName?
   1702 	 * 	If synpred, only gen if used in a DFA.
   1703 	 *  If regular rule, only gen if not overridden in delegator
   1704 	 *  Always gen Tokens rule though.
   1705 	 */
   1706 	public boolean generateMethodForRule(String ruleName) {
   1707 		if ( ruleName.equals(ARTIFICIAL_TOKENS_RULENAME) ) {
   1708 			// always generate Tokens rule to satisfy lexer interface
   1709 			// but it may have no alternatives.
   1710 			return true;
   1711 		}
   1712 		if ( overriddenRules.contains(ruleName) ) {
   1713 			// don't generate any overridden rules
   1714 			return false;
   1715 		}
   1716 		// generate if non-synpred or synpred used in a DFA
   1717 		Rule r = getLocallyDefinedRule(ruleName);
   1718 		return !r.isSynPred ||
   1719 			   (r.isSynPred&&synPredNamesUsedInDFA.contains(ruleName));
   1720 	}
   1721 
   1722 	public AttributeScope defineGlobalScope(String name, Token scopeAction) {
   1723 		AttributeScope scope = new AttributeScope(this, name, scopeAction);
   1724 		scopes.put(name,scope);
   1725 		return scope;
   1726 	}
   1727 
   1728 	public AttributeScope createReturnScope(String ruleName, Token retAction) {
   1729 		AttributeScope scope = new AttributeScope(this, ruleName, retAction);
   1730 		scope.isReturnScope = true;
   1731 		return scope;
   1732 	}
   1733 
   1734 	public AttributeScope createRuleScope(String ruleName, Token scopeAction) {
   1735 		AttributeScope scope = new AttributeScope(this, ruleName, scopeAction);
   1736 		scope.isDynamicRuleScope = true;
   1737 		return scope;
   1738 	}
   1739 
   1740 	public AttributeScope createParameterScope(String ruleName, Token argAction) {
   1741 		AttributeScope scope = new AttributeScope(this, ruleName, argAction);
   1742 		scope.isParameterScope = true;
   1743 		return scope;
   1744 	}
   1745 
   1746 	/** Get a global scope */
   1747 	public AttributeScope getGlobalScope(String name) {
   1748 		return (AttributeScope)scopes.get(name);
   1749 	}
   1750 
   1751 	public Map getGlobalScopes() {
   1752 		return scopes;
   1753 	}
   1754 
   1755 	/** Define a label defined in a rule r; check the validity then ask the
   1756 	 *  Rule object to actually define it.
   1757 	 */
   1758 	protected void defineLabel(Rule r, Token label, GrammarAST element, int type) {
   1759 		boolean err = nameSpaceChecker.checkForLabelTypeMismatch(r, label, type);
   1760 		if ( err ) {
   1761 			return;
   1762 		}
   1763 		r.defineLabel(label, element, type);
   1764 	}
   1765 
   1766 	public void defineTokenRefLabel(String ruleName,
   1767 									Token label,
   1768 									GrammarAST tokenRef)
   1769 	{
   1770 		Rule r = getLocallyDefinedRule(ruleName);
   1771 		if ( r!=null ) {
   1772 			if ( type==LEXER &&
   1773 				 (tokenRef.getType()==ANTLRParser.CHAR_LITERAL||
   1774 				  tokenRef.getType()==ANTLRParser.BLOCK||
   1775 				  tokenRef.getType()==ANTLRParser.NOT||
   1776 				  tokenRef.getType()==ANTLRParser.CHAR_RANGE||
   1777 				  tokenRef.getType()==ANTLRParser.WILDCARD))
   1778 			{
   1779 				defineLabel(r, label, tokenRef, CHAR_LABEL);
   1780 			}
   1781             else {
   1782 				defineLabel(r, label, tokenRef, TOKEN_LABEL);
   1783 			}
   1784 		}
   1785 	}
   1786 
   1787     public void defineWildcardTreeLabel(String ruleName,
   1788                                            Token label,
   1789                                            GrammarAST tokenRef)
   1790     {
   1791         Rule r = getLocallyDefinedRule(ruleName);
   1792         if ( r!=null ) {
   1793             defineLabel(r, label, tokenRef, WILDCARD_TREE_LABEL);
   1794         }
   1795     }
   1796 
   1797     public void defineWildcardTreeListLabel(String ruleName,
   1798                                            Token label,
   1799                                            GrammarAST tokenRef)
   1800     {
   1801         Rule r = getLocallyDefinedRule(ruleName);
   1802         if ( r!=null ) {
   1803             defineLabel(r, label, tokenRef, WILDCARD_TREE_LIST_LABEL);
   1804         }
   1805     }
   1806 
   1807     public void defineRuleRefLabel(String ruleName,
   1808 								   Token label,
   1809 								   GrammarAST ruleRef)
   1810 	{
   1811 		Rule r = getLocallyDefinedRule(ruleName);
   1812 		if ( r!=null ) {
   1813 			defineLabel(r, label, ruleRef, RULE_LABEL);
   1814 		}
   1815 	}
   1816 
   1817 	public void defineTokenListLabel(String ruleName,
   1818 									 Token label,
   1819 									 GrammarAST element)
   1820 	{
   1821 		Rule r = getLocallyDefinedRule(ruleName);
   1822 		if ( r!=null ) {
   1823 			defineLabel(r, label, element, TOKEN_LIST_LABEL);
   1824 		}
   1825 	}
   1826 
   1827 	public void defineRuleListLabel(String ruleName,
   1828 									Token label,
   1829 									GrammarAST element)
   1830 	{
   1831 		Rule r = getLocallyDefinedRule(ruleName);
   1832 		if ( r!=null ) {
   1833 			if ( !r.getHasMultipleReturnValues() ) {
   1834 				ErrorManager.grammarError(
   1835 					ErrorManager.MSG_LIST_LABEL_INVALID_UNLESS_RETVAL_STRUCT,this,
   1836 					label,label.getText());
   1837 			}
   1838 			defineLabel(r, label, element, RULE_LIST_LABEL);
   1839 		}
   1840 	}
   1841 
   1842 	/** Given a set of all rewrite elements on right of ->, filter for
   1843 	 *  label types such as Grammar.TOKEN_LABEL, Grammar.TOKEN_LIST_LABEL, ...
   1844 	 *  Return a displayable token type name computed from the GrammarAST.
   1845 	 */
   1846 	public Set<String> getLabels(Set<GrammarAST> rewriteElements, int labelType) {
   1847 		Set<String> labels = new HashSet<String>();
   1848 		for (GrammarAST el : rewriteElements) {
   1849 			if ( el.getType()==ANTLRParser.LABEL ) {
   1850 				String labelName = el.getText();
   1851 				Rule enclosingRule = getLocallyDefinedRule(el.enclosingRuleName);
   1852 				if ( enclosingRule==null ) continue;
   1853 				LabelElementPair pair = enclosingRule.getLabel(labelName);
   1854                 /*
   1855                 // if tree grammar and we have a wildcard, only notice it
   1856                 // when looking for rule labels not token label. x=. should
   1857                 // look like a rule ref since could be subtree.
   1858                 if ( type==TREE_PARSER && pair!=null &&
   1859                      pair.elementRef.getType()==ANTLRParser.WILDCARD )
   1860                 {
   1861                     if ( labelType==WILDCARD_TREE_LABEL ) {
   1862                         labels.add(labelName);
   1863                         continue;
   1864                     }
   1865                     else continue;
   1866                 }
   1867                  */
   1868                 // if valid label and type is what we're looking for
   1869 				// and not ref to old value val $rule, add to list
   1870 				if ( pair!=null && pair.type==labelType &&
   1871 					 !labelName.equals(el.enclosingRuleName) )
   1872 				{
   1873 					labels.add(labelName);
   1874 				}
   1875 			}
   1876 		}
   1877 		return labels;
   1878 	}
   1879 
   1880 	/** Before generating code, we examine all actions that can have
   1881 	 *  $x.y and $y stuff in them because some code generation depends on
   1882 	 *  Rule.referencedPredefinedRuleAttributes.  I need to remove unused
   1883 	 *  rule labels for example.
   1884 	 */
   1885 	protected void examineAllExecutableActions() {
   1886 		Collection rules = getRules();
   1887 		for (Iterator it = rules.iterator(); it.hasNext();) {
   1888 			Rule r = (Rule) it.next();
   1889 			// walk all actions within the rule elements, args, and exceptions
   1890 			List<GrammarAST> actions = r.getInlineActions();
   1891 			for (int i = 0; i < actions.size(); i++) {
   1892 				GrammarAST actionAST = (GrammarAST) actions.get(i);
   1893 				ActionAnalysis sniffer =
   1894 					new ActionAnalysis(this, r.name, actionAST);
   1895 				sniffer.analyze();
   1896 			}
   1897 			// walk any named actions like @init, @after
   1898 			Collection<GrammarAST> namedActions = r.getActions().values();
   1899 			for (Iterator it2 = namedActions.iterator(); it2.hasNext();) {
   1900 				GrammarAST actionAST = (GrammarAST) it2.next();
   1901 				ActionAnalysis sniffer =
   1902 					new ActionAnalysis(this, r.name, actionAST);
   1903 				sniffer.analyze();
   1904 			}
   1905 		}
   1906 	}
   1907 
   1908 	/** Remove all labels on rule refs whose target rules have no return value.
   1909 	 *  Do this for all rules in grammar.
   1910 	 */
   1911 	public void checkAllRulesForUselessLabels() {
   1912 		if ( type==LEXER ) {
   1913 			return;
   1914 		}
   1915 		Set rules = nameToRuleMap.keySet();
   1916 		for (Iterator it = rules.iterator(); it.hasNext();) {
   1917 			String ruleName = (String) it.next();
   1918 			Rule r = getRule(ruleName);
   1919 			removeUselessLabels(r.getRuleLabels());
   1920 			removeUselessLabels(r.getRuleListLabels());
   1921 		}
   1922 	}
   1923 
   1924 	/** A label on a rule is useless if the rule has no return value, no
   1925 	 *  tree or template output, and it is not referenced in an action.
   1926 	 */
   1927 	protected void removeUselessLabels(Map ruleToElementLabelPairMap) {
   1928 		if ( ruleToElementLabelPairMap==null ) {
   1929 			return;
   1930 		}
   1931 		Collection labels = ruleToElementLabelPairMap.values();
   1932 		List kill = new ArrayList();
   1933 		for (Iterator labelit = labels.iterator(); labelit.hasNext();) {
   1934 			LabelElementPair pair = (LabelElementPair) labelit.next();
   1935 			Rule refdRule = getRule(pair.elementRef.getText());
   1936 			if ( refdRule!=null && !refdRule.getHasReturnValue() && !pair.actionReferencesLabel ) {
   1937 				//System.out.println(pair.label.getText()+" is useless");
   1938 				kill.add(pair.label.getText());
   1939 			}
   1940 		}
   1941 		for (int i = 0; i < kill.size(); i++) {
   1942 			String labelToKill = (String) kill.get(i);
   1943 			// System.out.println("kill "+labelToKill);
   1944 			ruleToElementLabelPairMap.remove(labelToKill);
   1945 		}
   1946 	}
   1947 
   1948 	/** Track a rule reference within an outermost alt of a rule.  Used
   1949 	 *  at the moment to decide if $ruleref refers to a unique rule ref in
   1950 	 *  the alt.  Rewrite rules force tracking of all rule AST results.
   1951 	 *
   1952 	 *  This data is also used to verify that all rules have been defined.
   1953 	 */
   1954 	public void altReferencesRule(String enclosingRuleName,
   1955 								  GrammarAST refScopeAST,
   1956 								  GrammarAST refAST,
   1957 								  int outerAltNum)
   1958 	{
   1959 		/* Do nothing for now; not sure need; track S.x as x
   1960 		String scope = null;
   1961 		Grammar scopeG = null;
   1962 		if ( refScopeAST!=null ) {
   1963 			if ( !scopedRuleRefs.contains(refScopeAST) ) {
   1964 				scopedRuleRefs.add(refScopeAST);
   1965 			}
   1966 			scope = refScopeAST.getText();
   1967 		}
   1968 		*/
   1969 		Rule r = getRule(enclosingRuleName);
   1970 		if ( r==null ) {
   1971 			return; // no error here; see NameSpaceChecker
   1972 		}
   1973 		r.trackRuleReferenceInAlt(refAST, outerAltNum);
   1974 		Token refToken = refAST.getToken();
   1975 		if ( !ruleRefs.contains(refAST) ) {
   1976 			ruleRefs.add(refAST);
   1977 		}
   1978 	}
   1979 
   1980 	/** Track a token reference within an outermost alt of a rule.  Used
   1981 	 *  to decide if $tokenref refers to a unique token ref in
   1982 	 *  the alt. Does not track literals!
   1983 	 *
   1984 	 *  Rewrite rules force tracking of all tokens.
   1985 	 */
   1986 	public void altReferencesTokenID(String ruleName, GrammarAST refAST, int outerAltNum) {
   1987 		Rule r = getLocallyDefinedRule(ruleName);
   1988 		if ( r==null ) {
   1989 			return;
   1990 		}
   1991 		r.trackTokenReferenceInAlt(refAST, outerAltNum);
   1992 		if ( !tokenIDRefs.contains(refAST.getToken()) ) {
   1993 			tokenIDRefs.add(refAST.getToken());
   1994 		}
   1995 	}
   1996 
   1997 	/** To yield smaller, more readable code, track which rules have their
   1998 	 *  predefined attributes accessed.  If the rule has no user-defined
   1999 	 *  return values, then don't generate the return value scope classes
   2000 	 *  etc...  Make the rule have void return value.  Don't track for lexer
   2001 	 *  rules.
   2002 	 */
   2003 	public void referenceRuleLabelPredefinedAttribute(String ruleName) {
   2004 		Rule r = getRule(ruleName);
   2005 		if ( r!=null && type!=LEXER ) {
   2006 			// indicate that an action ref'd an attr unless it's in a lexer
   2007 			// so that $ID.text refs don't force lexer rules to define
   2008 			// return values...Token objects are created by the caller instead.
   2009 			r.referencedPredefinedRuleAttributes = true;
   2010 		}
   2011 	}
   2012 
   2013 	public List checkAllRulesForLeftRecursion() {
   2014 		return sanity.checkAllRulesForLeftRecursion();
   2015 	}
   2016 
   2017 	/** Return a list of left-recursive rules; no analysis can be done
   2018 	 *  successfully on these.  Useful to skip these rules then and also
   2019 	 *  for ANTLRWorks to highlight them.
   2020 	 */
   2021 	public Set<Rule> getLeftRecursiveRules() {
   2022 		if ( nfa==null ) {
   2023 			buildNFA();
   2024 		}
   2025 		if ( leftRecursiveRules!=null ) {
   2026 			return leftRecursiveRules;
   2027 		}
   2028 		sanity.checkAllRulesForLeftRecursion();
   2029 		return leftRecursiveRules;
   2030 	}
   2031 
   2032 	public void checkRuleReference(GrammarAST scopeAST,
   2033 								   GrammarAST refAST,
   2034 								   GrammarAST argsAST,
   2035 								   String currentRuleName)
   2036 	{
   2037 		sanity.checkRuleReference(scopeAST, refAST, argsAST, currentRuleName);
   2038 	}
   2039 
   2040 	/** Rules like "a : ;" and "a : {...} ;" should not generate
   2041 	 *  try/catch blocks for RecognitionException.  To detect this
   2042 	 *  it's probably ok to just look for any reference to an atom
   2043 	 *  that can match some input.  W/o that, the rule is unlikey to have
   2044 	 *  any else.
   2045 	 */
   2046 	public boolean isEmptyRule(GrammarAST block) {
   2047 		GrammarAST aTokenRefNode =
   2048 			block.findFirstType(ANTLRParser.TOKEN_REF);
   2049 		GrammarAST aStringLiteralRefNode =
   2050 			block.findFirstType(ANTLRParser.STRING_LITERAL);
   2051 		GrammarAST aCharLiteralRefNode =
   2052 			block.findFirstType(ANTLRParser.CHAR_LITERAL);
   2053 		GrammarAST aWildcardRefNode =
   2054 			block.findFirstType(ANTLRParser.WILDCARD);
   2055 		GrammarAST aRuleRefNode =
   2056 			block.findFirstType(ANTLRParser.RULE_REF);
   2057 		if ( aTokenRefNode==null&&
   2058 			 aStringLiteralRefNode==null&&
   2059 			 aCharLiteralRefNode==null&&
   2060 			 aWildcardRefNode==null&&
   2061 			 aRuleRefNode==null )
   2062 		{
   2063 			return true;
   2064 		}
   2065 		return false;
   2066 	}
   2067 
   2068 	public boolean isAtomTokenType(int ttype) {
   2069 		return ttype == ANTLRParser.WILDCARD||
   2070 			   ttype == ANTLRParser.CHAR_LITERAL||
   2071 			   ttype == ANTLRParser.CHAR_RANGE||
   2072 			   ttype == ANTLRParser.STRING_LITERAL||
   2073 			   ttype == ANTLRParser.NOT||
   2074 			   (type != LEXER && ttype == ANTLRParser.TOKEN_REF);
   2075 	}
   2076 
   2077 	public int getTokenType(String tokenName) {
   2078 		Integer I = null;
   2079 		if ( tokenName.charAt(0)=='\'') {
   2080 			I = (Integer)composite.stringLiteralToTypeMap.get(tokenName);
   2081 		}
   2082 		else { // must be a label like ID
   2083 			I = (Integer)composite.tokenIDToTypeMap.get(tokenName);
   2084 		}
   2085 		int i = (I!=null)?I.intValue():Label.INVALID;
   2086 		//System.out.println("grammar type "+type+" "+tokenName+"->"+i);
   2087 		return i;
   2088 	}
   2089 
   2090 	/** Get the list of tokens that are IDs like BLOCK and LPAREN */
   2091 	public Set getTokenIDs() {
   2092 		return composite.tokenIDToTypeMap.keySet();
   2093 	}
   2094 
   2095 	/** Return an ordered integer list of token types that have no
   2096 	 *  corresponding token ID like INT or KEYWORD_BEGIN; for stuff
   2097 	 *  like 'begin'.
   2098 	 */
   2099 	public Collection getTokenTypesWithoutID() {
   2100 		List types = new ArrayList();
   2101 		for (int t =Label.MIN_TOKEN_TYPE; t<=getMaxTokenType(); t++) {
   2102 			String name = getTokenDisplayName(t);
   2103 			if ( name.charAt(0)=='\'' ) {
   2104 				types.add(Utils.integer(t));
   2105 			}
   2106 		}
   2107 		return types;
   2108 	}
   2109 
   2110 	/** Get a list of all token IDs and literals that have an associated
   2111 	 *  token type.
   2112 	 */
   2113 	public Set<String> getTokenDisplayNames() {
   2114 		Set<String> names = new HashSet<String>();
   2115 		for (int t =Label.MIN_TOKEN_TYPE; t <=getMaxTokenType(); t++) {
   2116 			names.add(getTokenDisplayName(t));
   2117 		}
   2118 		return names;
   2119 	}
   2120 
   2121 	/** Given a literal like (the 3 char sequence with single quotes) 'a',
   2122 	 *  return the int value of 'a'. Convert escape sequences here also.
   2123 	 *  ANTLR's antlr.g parser does not convert escape sequences.
   2124 	 *
   2125 	 *  11/26/2005: I changed literals to always be '...' even for strings.
   2126 	 *  This routine still works though.
   2127 	 */
   2128 	public static int getCharValueFromGrammarCharLiteral(String literal) {
   2129 		switch ( literal.length() ) {
   2130 			case 3 :
   2131 				// 'x'
   2132 				return literal.charAt(1); // no escape char
   2133 			case 4 :
   2134 				// '\x'  (antlr lexer will catch invalid char)
   2135 				if ( Character.isDigit(literal.charAt(2)) ) {
   2136 					ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,
   2137 									   "invalid char literal: "+literal);
   2138 					return -1;
   2139 				}
   2140 				int escChar = literal.charAt(2);
   2141 				int charVal = ANTLRLiteralEscapedCharValue[escChar];
   2142 				if ( charVal==0 ) {
   2143 					// Unnecessary escapes like '\{' should just yield {
   2144 					return escChar;
   2145 				}
   2146 				return charVal;
   2147 			case 8 :
   2148 				// '\u1234'
   2149 				String unicodeChars = literal.substring(3,literal.length()-1);
   2150 				return Integer.parseInt(unicodeChars, 16);
   2151 			default :
   2152 				ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,
   2153 								   "invalid char literal: "+literal);
   2154 				return -1;
   2155 		}
   2156 	}
   2157 
   2158 	/** ANTLR does not convert escape sequences during the parse phase because
   2159 	 *  it could not know how to print String/char literals back out when
   2160 	 *  printing grammars etc...  Someone in China might use the real unicode
   2161 	 *  char in a literal as it will display on their screen; when printing
   2162 	 *  back out, I could not know whether to display or use a unicode escape.
   2163 	 *
   2164 	 *  This routine converts a string literal with possible escape sequences
   2165 	 *  into a pure string of 16-bit char values.  Escapes and unicode \u0000
   2166 	 *  specs are converted to pure chars.  return in a buffer; people may
   2167 	 *  want to walk/manipulate further.
   2168 	 *
   2169 	 *  The NFA construction routine must know the actual char values.
   2170 	 */
   2171 	public static StringBuffer getUnescapedStringFromGrammarStringLiteral(String literal) {
   2172 		//System.out.println("escape: ["+literal+"]");
   2173 		StringBuffer buf = new StringBuffer();
   2174 		int last = literal.length()-1; // skip quotes on outside
   2175 		for (int i=1; i<last; i++) {
   2176 			char c = literal.charAt(i);
   2177 			if ( c=='\\' ) {
   2178 				i++;
   2179 				c = literal.charAt(i);
   2180 				if ( Character.toUpperCase(c)=='U' ) {
   2181 					// \u0000
   2182 					i++;
   2183 					String unicodeChars = literal.substring(i,i+4);
   2184 					// parse the unicode 16 bit hex value
   2185 					int val = Integer.parseInt(unicodeChars, 16);
   2186 					i+=4-1; // loop will inc by 1; only jump 3 then
   2187 					buf.append((char)val);
   2188 				}
   2189 				else if ( Character.isDigit(c) ) {
   2190 					ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,
   2191 									   "invalid char literal: "+literal);
   2192 					buf.append("\\"+(char)c);
   2193 				}
   2194 				else {
   2195 					buf.append((char)ANTLRLiteralEscapedCharValue[c]); // normal \x escape
   2196 				}
   2197 			}
   2198 			else {
   2199 				buf.append(c); // simple char x
   2200 			}
   2201 		}
   2202 		//System.out.println("string: ["+buf.toString()+"]");
   2203 		return buf;
   2204 	}
   2205 
   2206 	/** Pull your token definitions from an existing grammar in memory.
   2207 	 *  You must use Grammar() ctor then this method then setGrammarContent()
   2208 	 *  to make this work.  This was useful primarily for testing and
   2209 	 *  interpreting grammars until I added import grammar functionality.
   2210 	 *  When you import a grammar you implicitly import its vocabulary as well
   2211 	 *  and keep the same token type values.
   2212 	 *
   2213 	 *  Returns the max token type found.
   2214 	 */
   2215 	public int importTokenVocabulary(Grammar importFromGr) {
   2216 		Set importedTokenIDs = importFromGr.getTokenIDs();
   2217 		for (Iterator it = importedTokenIDs.iterator(); it.hasNext();) {
   2218 			String tokenID = (String) it.next();
   2219 			int tokenType = importFromGr.getTokenType(tokenID);
   2220 			composite.maxTokenType = Math.max(composite.maxTokenType,tokenType);
   2221 			if ( tokenType>=Label.MIN_TOKEN_TYPE ) {
   2222 				//System.out.println("import token from grammar "+tokenID+"="+tokenType);
   2223 				defineToken(tokenID, tokenType);
   2224 			}
   2225 		}
   2226 		return composite.maxTokenType; // return max found
   2227 	}
   2228 
   2229 	/** Import the rules/tokens of a delegate grammar. All delegate grammars are
   2230 	 *  read during the ctor of first Grammar created.
   2231 	 *
   2232 	 *  Do not create NFA here because NFA construction needs to hook up with
   2233 	 *  overridden rules in delegation root grammar.
   2234 	 */
   2235 	public void importGrammar(GrammarAST grammarNameAST, String label) {
   2236 		String grammarName = grammarNameAST.getText();
   2237 		//System.out.println("import "+gfile.getName());
   2238 		String gname = grammarName + GRAMMAR_FILE_EXTENSION;
   2239 		BufferedReader br = null;
   2240 		try {
   2241 			String fullName = tool.getLibraryFile(gname);
   2242 			FileReader fr = new FileReader(fullName);
   2243 			br = new BufferedReader(fr);
   2244 			Grammar delegateGrammar = null;
   2245 			delegateGrammar = new Grammar(tool, gname, composite);
   2246 			delegateGrammar.label = label;
   2247 
   2248 			addDelegateGrammar(delegateGrammar);
   2249 
   2250 			delegateGrammar.parseAndBuildAST(br);
   2251 			delegateGrammar.addRulesForSyntacticPredicates();
   2252 			if ( !validImport(delegateGrammar) ) {
   2253 				ErrorManager.grammarError(ErrorManager.MSG_INVALID_IMPORT,
   2254 										  this,
   2255 										  grammarNameAST.token,
   2256 										  this,
   2257 										  delegateGrammar);
   2258 				return;
   2259 			}
   2260 			if ( this.type==COMBINED &&
   2261 				 (delegateGrammar.name.equals(this.name+grammarTypeToFileNameSuffix[LEXER])||
   2262 				  delegateGrammar.name.equals(this.name+grammarTypeToFileNameSuffix[PARSER])) )
   2263 			{
   2264 				ErrorManager.grammarError(ErrorManager.MSG_IMPORT_NAME_CLASH,
   2265 										  this,
   2266 										  grammarNameAST.token,
   2267 										  this,
   2268 										  delegateGrammar);
   2269 				return;
   2270 			}
   2271 			if ( delegateGrammar.grammarTree!=null ) {
   2272 				// we have a valid grammar
   2273 				// deal with combined grammars
   2274 				if ( delegateGrammar.type == LEXER && this.type == COMBINED ) {
   2275 					// ooops, we wasted some effort; tell lexer to read it in
   2276 					// later
   2277 					lexerGrammarST.add("imports", grammarName);
   2278 					// but, this parser grammar will need the vocab
   2279 					// so add to composite anyway so we suck in the tokens later
   2280 				}
   2281 			}
   2282 			//System.out.println("Got grammar:\n"+delegateGrammar);
   2283 		}
   2284 		catch (IOException ioe) {
   2285 			ErrorManager.error(ErrorManager.MSG_CANNOT_OPEN_FILE,
   2286 							   gname,
   2287 							   ioe);
   2288 		}
   2289 		finally {
   2290 			if ( br!=null ) {
   2291 				try {
   2292 					br.close();
   2293 				}
   2294 				catch (IOException ioe) {
   2295 					ErrorManager.error(ErrorManager.MSG_CANNOT_CLOSE_FILE,
   2296 									   gname,
   2297 									   ioe);
   2298 				}
   2299 			}
   2300 		}
   2301 	}
   2302 
   2303 	/** add new delegate to composite tree */
   2304 	protected void addDelegateGrammar(Grammar delegateGrammar) {
   2305 		CompositeGrammarTree t = composite.delegateGrammarTreeRoot.findNode(this);
   2306 		t.addChild(new CompositeGrammarTree(delegateGrammar));
   2307 		// make sure new grammar shares this composite
   2308 		delegateGrammar.composite = this.composite;
   2309 	}
   2310 
   2311 	/** Load a vocab file <vocabName>.tokens and return max token type found. */
   2312 	public int importTokenVocabulary(GrammarAST tokenVocabOptionAST,
   2313 									 String vocabName)
   2314 	{
   2315 		if ( !getGrammarIsRoot() ) {
   2316 			ErrorManager.grammarWarning(ErrorManager.MSG_TOKEN_VOCAB_IN_DELEGATE,
   2317 										this,
   2318 										tokenVocabOptionAST.token,
   2319 										name);
   2320 			return composite.maxTokenType;
   2321 		}
   2322 
   2323 		File fullFile = tool.getImportedVocabFile(vocabName);
   2324 		try {
   2325 			FileReader fr = new FileReader(fullFile);
   2326 			BufferedReader br = new BufferedReader(fr);
   2327 			StreamTokenizer tokenizer = new StreamTokenizer(br);
   2328 			tokenizer.parseNumbers();
   2329 			tokenizer.wordChars('_', '_');
   2330 			tokenizer.eolIsSignificant(true);
   2331 			tokenizer.slashSlashComments(true);
   2332 			tokenizer.slashStarComments(true);
   2333 			tokenizer.ordinaryChar('=');
   2334 			tokenizer.quoteChar('\'');
   2335 			tokenizer.whitespaceChars(' ',' ');
   2336 			tokenizer.whitespaceChars('\t','\t');
   2337 			int lineNum = 1;
   2338 			int token = tokenizer.nextToken();
   2339 			while (token != StreamTokenizer.TT_EOF) {
   2340 				String tokenID;
   2341 				if ( token == StreamTokenizer.TT_WORD ) {
   2342 					tokenID = tokenizer.sval;
   2343 				}
   2344 				else if ( token == '\'' ) {
   2345 					tokenID = "'"+tokenizer.sval+"'";
   2346 				}
   2347 				else {
   2348 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2349 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2350 									   Utils.integer(lineNum));
   2351 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {;}
   2352 					token = tokenizer.nextToken();
   2353 					continue;
   2354 				}
   2355 				token = tokenizer.nextToken();
   2356 				if ( token != '=' ) {
   2357 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2358 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2359 									   Utils.integer(lineNum));
   2360 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {;}
   2361 					token = tokenizer.nextToken();
   2362 					continue;
   2363 				}
   2364 				token = tokenizer.nextToken(); // skip '='
   2365 				if ( token != StreamTokenizer.TT_NUMBER ) {
   2366 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2367 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2368 									   Utils.integer(lineNum));
   2369 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {;}
   2370 					token = tokenizer.nextToken();
   2371 					continue;
   2372 				}
   2373 				int tokenType = (int)tokenizer.nval;
   2374 				token = tokenizer.nextToken();
   2375 				//System.out.println("import "+tokenID+"="+tokenType);
   2376 				composite.maxTokenType = Math.max(composite.maxTokenType,tokenType);
   2377 				defineToken(tokenID, tokenType);
   2378 				lineNum++;
   2379 				if ( token != StreamTokenizer.TT_EOL ) {
   2380 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2381 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2382 									   Utils.integer(lineNum));
   2383 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {;}
   2384 					token = tokenizer.nextToken();
   2385 					continue;
   2386 				}
   2387 				token = tokenizer.nextToken(); // skip newline
   2388 			}
   2389 			br.close();
   2390 		}
   2391 		catch (FileNotFoundException fnfe) {
   2392 			ErrorManager.error(ErrorManager.MSG_CANNOT_FIND_TOKENS_FILE,
   2393 							   fullFile);
   2394 		}
   2395 		catch (IOException ioe) {
   2396 			ErrorManager.error(ErrorManager.MSG_ERROR_READING_TOKENS_FILE,
   2397 							   fullFile,
   2398 							   ioe);
   2399 		}
   2400 		catch (Exception e) {
   2401 			ErrorManager.error(ErrorManager.MSG_ERROR_READING_TOKENS_FILE,
   2402 							   fullFile,
   2403 							   e);
   2404 		}
   2405 		return composite.maxTokenType;
   2406 	}
   2407 
   2408 	/** Given a token type, get a meaningful name for it such as the ID
   2409 	 *  or string literal.  If this is a lexer and the ttype is in the
   2410 	 *  char vocabulary, compute an ANTLR-valid (possibly escaped) char literal.
   2411 	 */
   2412 	public String getTokenDisplayName(int ttype) {
   2413 		String tokenName = null;
   2414 		int index=0;
   2415 		// inside any target's char range and is lexer grammar?
   2416 		if ( this.type==LEXER &&
   2417 			 ttype >= Label.MIN_CHAR_VALUE && ttype <= Label.MAX_CHAR_VALUE )
   2418 		{
   2419 			return getANTLRCharLiteralForChar(ttype);
   2420 		}
   2421 		// faux label?
   2422 		else if ( ttype<0 ) {
   2423 			tokenName = (String)composite.typeToTokenList.get(Label.NUM_FAUX_LABELS+ttype);
   2424 		}
   2425 		else {
   2426 			// compute index in typeToTokenList for ttype
   2427 			index = ttype-1; // normalize to 0..n-1
   2428 			index += Label.NUM_FAUX_LABELS;     // jump over faux tokens
   2429 
   2430 			if ( index<composite.typeToTokenList.size() ) {
   2431 				tokenName = (String)composite.typeToTokenList.get(index);
   2432 				if ( tokenName!=null &&
   2433 					 tokenName.startsWith(AUTO_GENERATED_TOKEN_NAME_PREFIX) )
   2434 				{
   2435 					tokenName = composite.typeToStringLiteralList.get(ttype);
   2436 				}
   2437 			}
   2438 			else {
   2439 				tokenName = String.valueOf(ttype);
   2440 			}
   2441 		}
   2442 		//System.out.println("getTokenDisplayName ttype="+ttype+", index="+index+", name="+tokenName);
   2443 		return tokenName;
   2444 	}
   2445 
   2446 	/** Get the list of ANTLR String literals */
   2447 	public Set<String> getStringLiterals() {
   2448 		return composite.stringLiteralToTypeMap.keySet();
   2449 	}
   2450 
   2451 	public String getGrammarTypeString() {
   2452 		return grammarTypeToString[type];
   2453 	}
   2454 
   2455 	public int getGrammarMaxLookahead() {
   2456 		if ( global_k>=0 ) {
   2457 			return global_k;
   2458 		}
   2459 		Object k = getOption("k");
   2460 		if ( k==null ) {
   2461 			global_k = 0;
   2462 		}
   2463 		else if (k instanceof Integer) {
   2464 			Integer kI = (Integer)k;
   2465 			global_k = kI.intValue();
   2466 		}
   2467 		else {
   2468 			// must be String "*"
   2469 			if ( k.equals("*") ) {  // this the default anyway
   2470 				global_k = 0;
   2471 			}
   2472 		}
   2473 		return global_k;
   2474 	}
   2475 
   2476 	/** Save the option key/value pair and process it; return the key
   2477 	 *  or null if invalid option.
   2478 	 */
   2479 	public String setOption(String key, Object value, Token optionsStartToken) {
   2480 		if ( legalOption(key) ) {
   2481 			ErrorManager.grammarError(ErrorManager.MSG_ILLEGAL_OPTION,
   2482 									  this,
   2483 									  optionsStartToken,
   2484 									  key);
   2485 			return null;
   2486 		}
   2487 		if ( !optionIsValid(key, value) ) {
   2488 			return null;
   2489 		}
   2490         if ( key.equals("backtrack") && value.toString().equals("true") ) {
   2491             composite.getRootGrammar().atLeastOneBacktrackOption = true;
   2492         }
   2493         if ( options==null ) {
   2494 			options = new HashMap();
   2495 		}
   2496 		options.put(key, value);
   2497 		return key;
   2498 	}
   2499 
   2500 	public boolean legalOption(String key) {
   2501 		switch ( type ) {
   2502 			case LEXER :
   2503 				return !legalLexerOptions.contains(key);
   2504 			case PARSER :
   2505 				return !legalParserOptions.contains(key);
   2506 			case TREE_PARSER :
   2507 				return !legalTreeParserOptions.contains(key);
   2508 			default :
   2509 				return !legalParserOptions.contains(key);
   2510 		}
   2511 	}
   2512 
   2513 	public void setOptions(Map options, Token optionsStartToken) {
   2514 		if ( options==null ) {
   2515 			this.options = null;
   2516 			return;
   2517 		}
   2518 		Set keys = options.keySet();
   2519 		for (Iterator it = keys.iterator(); it.hasNext();) {
   2520 			String optionName = (String) it.next();
   2521 			Object optionValue = options.get(optionName);
   2522 			String stored=setOption(optionName, optionValue, optionsStartToken);
   2523 			if ( stored==null ) {
   2524 				it.remove();
   2525 			}
   2526 		}
   2527 	}
   2528 
   2529 	public Object getOption(String key) {
   2530 		return composite.getOption(key);
   2531 	}
   2532 
   2533 	public Object getLocallyDefinedOption(String key) {
   2534 		Object value = null;
   2535 		if ( options!=null ) {
   2536 			value = options.get(key);
   2537 		}
   2538 		if ( value==null ) {
   2539 			value = defaultOptions.get(key);
   2540 		}
   2541 		return value;
   2542 	}
   2543 
   2544 	public Object getBlockOption(GrammarAST blockAST, String key) {
   2545 		String v = (String)blockAST.getBlockOption(key);
   2546 		if ( v!=null ) {
   2547 			return v;
   2548 		}
   2549 		if ( type==Grammar.LEXER ) {
   2550 			return defaultLexerBlockOptions.get(key);
   2551 		}
   2552 		return defaultBlockOptions.get(key);
   2553 	}
   2554 
   2555 	public int getUserMaxLookahead(int decision) {
   2556 		int user_k = 0;
   2557 		GrammarAST blockAST = nfa.grammar.getDecisionBlockAST(decision);
   2558 		Object k = blockAST.getBlockOption("k");
   2559 		if ( k==null ) {
   2560 			user_k = nfa.grammar.getGrammarMaxLookahead();
   2561 			return user_k;
   2562 		}
   2563 		if (k instanceof Integer) {
   2564 			Integer kI = (Integer)k;
   2565 			user_k = kI.intValue();
   2566 		}
   2567 		else {
   2568 			// must be String "*"
   2569 			if ( k.equals("*") ) {
   2570 				user_k = 0;
   2571 			}
   2572 		}
   2573 		return user_k;
   2574 	}
   2575 
   2576 	public boolean getAutoBacktrackMode(int decision) {
   2577 		NFAState decisionNFAStartState = getDecisionNFAStartState(decision);
   2578 		String autoBacktrack =
   2579 			(String)getBlockOption(decisionNFAStartState.associatedASTNode, "backtrack");
   2580 
   2581 		if ( autoBacktrack==null ) {
   2582 			autoBacktrack = (String)nfa.grammar.getOption("backtrack");
   2583 		}
   2584 		return autoBacktrack!=null&&autoBacktrack.equals("true");
   2585 	}
   2586 
   2587 	public boolean optionIsValid(String key, Object value) {
   2588 		return true;
   2589 	}
   2590 
   2591 	public boolean buildAST() {
   2592 		String outputType = (String)getOption("output");
   2593 		if ( outputType!=null ) {
   2594 			return outputType.toString().equals("AST");
   2595 		}
   2596 		return false;
   2597 	}
   2598 
   2599 	public boolean rewriteMode() {
   2600 		Object outputType = getOption("rewrite");
   2601 		if ( outputType!=null ) {
   2602 			return outputType.toString().equals("true");
   2603 		}
   2604 		return false;
   2605 	}
   2606 
   2607 	public boolean isBuiltFromString() {
   2608 		return builtFromString;
   2609 	}
   2610 
   2611 	public boolean buildTemplate() {
   2612 		String outputType = (String)getOption("output");
   2613 		if ( outputType!=null ) {
   2614 			return outputType.toString().equals("template");
   2615 		}
   2616 		return false;
   2617 	}
   2618 
   2619 	public Collection<Rule> getRules() {
   2620 		return nameToRuleMap.values();
   2621 	}
   2622 
   2623 	/** Get the set of Rules that need to have manual delegations
   2624 	 *  like "void rule() { importedGrammar.rule(); }"
   2625 	 *
   2626 	 *  If this grammar is master, get list of all rule definitions from all
   2627 	 *  delegate grammars.  Only master has complete interface from combined
   2628 	 *  grammars...we will generated delegates as helper objects.
   2629 	 *
   2630 	 *  Composite grammars that are not the root/master do not have complete
   2631 	 *  interfaces.  It is not my intention that people use subcomposites.
   2632 	 *  Only the outermost grammar should be used from outside code.  The
   2633 	 *  other grammar components are specifically generated to work only
   2634 	 *  with the master/root.
   2635 	 *
   2636 	 *  delegatedRules = imported - overridden
   2637 	 */
   2638 	public Set<Rule> getDelegatedRules() {
   2639 		return composite.getDelegatedRules(this);
   2640 	}
   2641 
   2642 	/** Get set of all rules imported from all delegate grammars even if
   2643 	 *  indirectly delegated.
   2644 	 */
   2645 	public Set<Rule> getAllImportedRules() {
   2646 		return composite.getAllImportedRules(this);
   2647 	}
   2648 
   2649 	/** Get list of all delegates from all grammars directly or indirectly
   2650 	 *  imported into this grammar.
   2651 	 */
   2652 	public List<Grammar> getDelegates() {
   2653 		return composite.getDelegates(this);
   2654 	}
   2655 
   2656 	public boolean getHasDelegates() {
   2657 	   return !getDelegates().isEmpty();
   2658 	}
   2659 
   2660 	public List<String> getDelegateNames() {
   2661 		// compute delegates:{Grammar g | return g.name;}
   2662 		List<String> names = new ArrayList<String>();
   2663 		List<Grammar> delegates = composite.getDelegates(this);
   2664 		if ( delegates!=null ) {
   2665 			for (Grammar g : delegates) {
   2666 				names.add(g.name);
   2667 			}
   2668 		}
   2669 		return names;
   2670 	}
   2671 
   2672 	public List<Grammar> getDirectDelegates() {
   2673 		return composite.getDirectDelegates(this);
   2674 	}
   2675 
   2676 	/** Get delegates below direct delegates */
   2677 	public List<Grammar> getIndirectDelegates() {
   2678 		return composite.getIndirectDelegates(this);
   2679 	}
   2680 
   2681 	/** Get list of all delegators.  This amounts to the grammars on the path
   2682 	 *  to the root of the delegation tree.
   2683 	 */
   2684 	public List<Grammar> getDelegators() {
   2685 		return composite.getDelegators(this);
   2686 	}
   2687 
   2688 	/** Who's my direct parent grammar? */
   2689 	public Grammar getDelegator() {
   2690 		return composite.getDelegator(this);
   2691 	}
   2692 
   2693 	public Set<Rule> getDelegatedRuleReferences() {
   2694 		return delegatedRuleReferences;
   2695 	}
   2696 
   2697 	public boolean getGrammarIsRoot() {
   2698 		return composite.delegateGrammarTreeRoot.grammar == this;
   2699 	}
   2700 
   2701 	public void setRuleAST(String ruleName, GrammarAST t) {
   2702 		Rule r = getLocallyDefinedRule(ruleName);
   2703 		if ( r!=null ) {
   2704 			r.tree = t;
   2705 			r.EORNode = t.getLastChild();
   2706 		}
   2707 	}
   2708 
   2709 	public NFAState getRuleStartState(String ruleName) {
   2710 		return getRuleStartState(null, ruleName);
   2711 	}
   2712 
   2713 	public NFAState getRuleStartState(String scopeName, String ruleName) {
   2714 		Rule r = getRule(scopeName, ruleName);
   2715 		if ( r!=null ) {
   2716 			//System.out.println("getRuleStartState("+scopeName+", "+ruleName+")="+r.startState);
   2717 			return r.startState;
   2718 		}
   2719 		//System.out.println("getRuleStartState("+scopeName+", "+ruleName+")=null");
   2720 		return null;
   2721 	}
   2722 
   2723 	public String getRuleModifier(String ruleName) {
   2724 		Rule r = getRule(ruleName);
   2725 		if ( r!=null ) {
   2726 			return r.modifier;
   2727 		}
   2728 		return null;
   2729 	}
   2730 
   2731 	public NFAState getRuleStopState(String ruleName) {
   2732 		Rule r = getRule(ruleName);
   2733 		if ( r!=null ) {
   2734 			return r.stopState;
   2735 		}
   2736 		return null;
   2737 	}
   2738 
   2739 	public int assignDecisionNumber(NFAState state) {
   2740 		decisionCount++;
   2741 		state.setDecisionNumber(decisionCount);
   2742 		return decisionCount;
   2743 	}
   2744 
   2745 	protected Decision getDecision(int decision) {
   2746 		int index = decision-1;
   2747 		if ( index >= indexToDecision.size() ) {
   2748 			return null;
   2749 		}
   2750 		Decision d = indexToDecision.get(index);
   2751 		return d;
   2752 	}
   2753 
   2754 	public List<Decision> getDecisions() {
   2755 		return indexToDecision;
   2756 	}
   2757 
   2758 	protected Decision createDecision(int decision) {
   2759 		int index = decision-1;
   2760 		if ( index < indexToDecision.size() ) {
   2761 			return getDecision(decision); // don't recreate
   2762 		}
   2763 		Decision d = new Decision();
   2764 		d.decision = decision;
   2765 		d.grammar = this;
   2766 		indexToDecision.setSize(getNumberOfDecisions());
   2767 		indexToDecision.set(index, d);
   2768 		return d;
   2769 	}
   2770 
   2771 	public List getDecisionNFAStartStateList() {
   2772 		List states = new ArrayList(100);
   2773 		for (int d = 0; d < indexToDecision.size(); d++) {
   2774 			Decision dec = (Decision) indexToDecision.get(d);
   2775 			states.add(dec.startState);
   2776 		}
   2777 		return states;
   2778 	}
   2779 
   2780 	public NFAState getDecisionNFAStartState(int decision) {
   2781 		Decision d = getDecision(decision);
   2782 		if ( d==null ) {
   2783 			return null;
   2784 		}
   2785 		return d.startState;
   2786 	}
   2787 
   2788 	public DFA getLookaheadDFA(int decision) {
   2789 		Decision d = getDecision(decision);
   2790 		if ( d==null ) {
   2791 			return null;
   2792 		}
   2793 		return d.dfa;
   2794 	}
   2795 
   2796 	public GrammarAST getDecisionBlockAST(int decision) {
   2797 		Decision d = getDecision(decision);
   2798 		if ( d==null ) {
   2799 			return null;
   2800 		}
   2801 		return d.blockAST;
   2802 	}
   2803 
   2804 	/** returns a list of column numbers for all decisions
   2805 	 *  on a particular line so ANTLRWorks choose the decision
   2806 	 *  depending on the location of the cursor (otherwise,
   2807 	 *  ANTLRWorks has to give the *exact* location which
   2808 	 *  is not easy from the user point of view).
   2809 	 *
   2810 	 *  This is not particularly fast as it walks entire line:col->DFA map
   2811 	 *  looking for a prefix of "line:".
   2812 	 */
   2813 	public List getLookaheadDFAColumnsForLineInFile(int line) {
   2814 		String prefix = line+":";
   2815 		List columns = new ArrayList();
   2816 		for(Iterator iter = lineColumnToLookaheadDFAMap.keySet().iterator();
   2817 			iter.hasNext(); ) {
   2818 			String key = (String)iter.next();
   2819 			if(key.startsWith(prefix)) {
   2820 				columns.add(Integer.valueOf(key.substring(prefix.length())));
   2821 			}
   2822 		}
   2823 		return columns;
   2824 	}
   2825 
   2826 	/** Useful for ANTLRWorks to map position in file to the DFA for display */
   2827 	public DFA getLookaheadDFAFromPositionInFile(int line, int col) {
   2828 		return (DFA)lineColumnToLookaheadDFAMap.get(
   2829 			new StringBuffer().append(line + ":").append(col).toString());
   2830 	}
   2831 
   2832 	public Map getLineColumnToLookaheadDFAMap() {
   2833 		return lineColumnToLookaheadDFAMap;
   2834 	}
   2835 
   2836 	/*
   2837 	public void setDecisionOptions(int decision, Map options) {
   2838 		Decision d = createDecision(decision);
   2839 		d.options = options;
   2840 	}
   2841 
   2842 	public void setDecisionOption(int decision, String name, Object value) {
   2843 		Decision d = getDecision(decision);
   2844 		if ( d!=null ) {
   2845 			if ( d.options==null ) {
   2846 				d.options = new HashMap();
   2847 			}
   2848 			d.options.put(name,value);
   2849 		}
   2850 	}
   2851 
   2852 	public Map getDecisionOptions(int decision) {
   2853 		Decision d = getDecision(decision);
   2854 		if ( d==null ) {
   2855 			return null;
   2856 		}
   2857 		return d.options;
   2858     }
   2859     */
   2860 
   2861 	public int getNumberOfDecisions() {
   2862 		return decisionCount;
   2863 	}
   2864 
   2865 	public int getNumberOfCyclicDecisions() {
   2866 		int n = 0;
   2867 		for (int i=1; i<=getNumberOfDecisions(); i++) {
   2868 			Decision d = getDecision(i);
   2869 			if ( d.dfa!=null && d.dfa.isCyclic() ) {
   2870 				n++;
   2871 			}
   2872 		}
   2873 		return n;
   2874 	}
   2875 
   2876 	/** Set the lookahead DFA for a particular decision.  This means
   2877 	 *  that the appropriate AST node must updated to have the new lookahead
   2878 	 *  DFA.  This method could be used to properly set the DFAs without
   2879 	 *  using the createLookaheadDFAs() method.  You could do this
   2880 	 *
   2881 	 *    Grammar g = new Grammar("...");
   2882 	 *    g.setLookahead(1, dfa1);
   2883 	 *    g.setLookahead(2, dfa2);
   2884 	 *    ...
   2885 	 */
   2886 	public void setLookaheadDFA(int decision, DFA lookaheadDFA) {
   2887 		Decision d = createDecision(decision);
   2888 		d.dfa = lookaheadDFA;
   2889 		GrammarAST ast = d.startState.associatedASTNode;
   2890 		ast.setLookaheadDFA(lookaheadDFA);
   2891 	}
   2892 
   2893 	public void setDecisionNFA(int decision, NFAState state) {
   2894 		Decision d = createDecision(decision);
   2895 		d.startState = state;
   2896 	}
   2897 
   2898 	public void setDecisionBlockAST(int decision, GrammarAST blockAST) {
   2899 		//System.out.println("setDecisionBlockAST("+decision+", "+blockAST.token);
   2900 		Decision d = createDecision(decision);
   2901 		d.blockAST = blockAST;
   2902 	}
   2903 
   2904 	public boolean allDecisionDFAHaveBeenCreated() {
   2905 		return allDecisionDFACreated;
   2906 	}
   2907 
   2908 	/** How many token types have been allocated so far? */
   2909 	public int getMaxTokenType() {
   2910 		return composite.maxTokenType;
   2911 	}
   2912 
   2913 	/** What is the max char value possible for this grammar's target?  Use
   2914 	 *  unicode max if no target defined.
   2915 	 */
   2916 	public int getMaxCharValue() {
   2917 		if ( generator!=null ) {
   2918 			return generator.target.getMaxCharValue(generator);
   2919 		}
   2920 		else {
   2921 			return Label.MAX_CHAR_VALUE;
   2922 		}
   2923 	}
   2924 
   2925 	/** Return a set of all possible token or char types for this grammar */
   2926 	public IntSet getTokenTypes() {
   2927 		if ( type==LEXER ) {
   2928 			return getAllCharValues();
   2929 		}
   2930 		return IntervalSet.of(Label.MIN_TOKEN_TYPE, getMaxTokenType());
   2931 	}
   2932 
   2933 	/** If there is a char vocabulary, use it; else return min to max char
   2934 	 *  as defined by the target.  If no target, use max unicode char value.
   2935 	 */
   2936 	public IntSet getAllCharValues() {
   2937 		if ( charVocabulary!=null ) {
   2938 			return charVocabulary;
   2939 		}
   2940 		IntSet allChar = IntervalSet.of(Label.MIN_CHAR_VALUE, getMaxCharValue());
   2941 		return allChar;
   2942 	}
   2943 
   2944 	/** Return a string representing the escaped char for code c.  E.g., If c
   2945 	 *  has value 0x100, you will get "\u0100".  ASCII gets the usual
   2946 	 *  char (non-hex) representation.  Control characters are spit out
   2947 	 *  as unicode.  While this is specially set up for returning Java strings,
   2948 	 *  it can be used by any language target that has the same syntax. :)
   2949 	 *
   2950 	 *  11/26/2005: I changed this to use double quotes, consistent with antlr.g
   2951 	 *  12/09/2005: I changed so everything is single quotes
   2952 	 */
   2953 	public static String getANTLRCharLiteralForChar(int c) {
   2954 		if ( c<Label.MIN_CHAR_VALUE ) {
   2955 			ErrorManager.internalError("invalid char value "+c);
   2956 			return "'<INVALID>'";
   2957 		}
   2958 		if ( c<ANTLRLiteralCharValueEscape.length && ANTLRLiteralCharValueEscape[c]!=null ) {
   2959 			return '\''+ANTLRLiteralCharValueEscape[c]+'\'';
   2960 		}
   2961 		if ( Character.UnicodeBlock.of((char)c)==Character.UnicodeBlock.BASIC_LATIN &&
   2962 			 !Character.isISOControl((char)c) ) {
   2963 			if ( c=='\\' ) {
   2964 				return "'\\\\'";
   2965 			}
   2966 			if ( c=='\'') {
   2967 				return "'\\''";
   2968 			}
   2969 			return '\''+Character.toString((char)c)+'\'';
   2970 		}
   2971 		// turn on the bit above max "\uFFFF" value so that we pad with zeros
   2972 		// then only take last 4 digits
   2973 		String hex = Integer.toHexString(c|0x10000).toUpperCase().substring(1,5);
   2974 		String unicodeStr = "'\\u"+hex+"'";
   2975 		return unicodeStr;
   2976 	}
   2977 
   2978 	/** For lexer grammars, return everything in unicode not in set.
   2979 	 *  For parser and tree grammars, return everything in token space
   2980 	 *  from MIN_TOKEN_TYPE to last valid token type or char value.
   2981 	 */
   2982 	public IntSet complement(IntSet set) {
   2983 		//System.out.println("complement "+set.toString(this));
   2984 		//System.out.println("vocabulary "+getTokenTypes().toString(this));
   2985 		IntSet c = set.complement(getTokenTypes());
   2986 		//System.out.println("result="+c.toString(this));
   2987 		return c;
   2988 	}
   2989 
   2990 	public IntSet complement(int atom) {
   2991 		return complement(IntervalSet.of(atom));
   2992 	}
   2993 
   2994 	/** Given set tree like ( SET A B ), check that A and B
   2995 	 *  are both valid sets themselves, else we must tree like a BLOCK
   2996 	 */
   2997 	public boolean isValidSet(TreeToNFAConverter nfabuilder, GrammarAST t) {
   2998 		boolean valid = true;
   2999 		try {
   3000 			//System.out.println("parse BLOCK as set tree: "+t.toStringTree());
   3001 			int alts = nfabuilder.testBlockAsSet(t);
   3002 			valid = alts > 1;
   3003 		}
   3004 		catch (RecognitionException re) {
   3005 			// The rule did not parse as a set, return null; ignore exception
   3006 			valid = false;
   3007 		}
   3008 		//System.out.println("valid? "+valid);
   3009 		return valid;
   3010 	}
   3011 
   3012 	/** Get the set equivalent (if any) of the indicated rule from this
   3013 	 *  grammar.  Mostly used in the lexer to do ~T for some fragment rule
   3014 	 *  T.  If the rule AST has a SET use that.  If the rule is a single char
   3015 	 *  convert it to a set and return.  If rule is not a simple set (w/o actions)
   3016 	 *  then return null.
   3017 	 *  Rules have AST form:
   3018 	 *
   3019 	 *		^( RULE ID modifier ARG RET SCOPE block EOR )
   3020 	 */
   3021 	public IntSet getSetFromRule(TreeToNFAConverter nfabuilder, String ruleName)
   3022 		throws RecognitionException
   3023 	{
   3024 		Rule r = getRule(ruleName);
   3025 		if ( r==null ) {
   3026 			return null;
   3027 		}
   3028 		IntSet elements = null;
   3029 		//System.out.println("parsed tree: "+r.tree.toStringTree());
   3030 		elements = nfabuilder.setRule(r.tree);
   3031 		//System.out.println("elements="+elements);
   3032 		return elements;
   3033 	}
   3034 
   3035 	/** Decisions are linked together with transition(1).  Count how
   3036 	 *  many there are.  This is here rather than in NFAState because
   3037 	 *  a grammar decides how NFAs are put together to form a decision.
   3038 	 */
   3039 	public int getNumberOfAltsForDecisionNFA(NFAState decisionState) {
   3040 		if ( decisionState==null ) {
   3041 			return 0;
   3042 		}
   3043 		int n = 1;
   3044 		NFAState p = decisionState;
   3045 		while ( p.transition[1] !=null ) {
   3046 			n++;
   3047 			p = (NFAState)p.transition[1].target;
   3048 		}
   3049 		return n;
   3050 	}
   3051 
   3052 	/** Get the ith alternative (1..n) from a decision; return null when
   3053 	 *  an invalid alt is requested.  I must count in to find the right
   3054 	 *  alternative number.  For (A|B), you get NFA structure (roughly):
   3055 	 *
   3056 	 *  o->o-A->o
   3057 	 *  |
   3058 	 *  o->o-B->o
   3059 	 *
   3060 	 *  This routine returns the leftmost state for each alt.  So alt=1, returns
   3061 	 *  the upperleft most state in this structure.
   3062 	 */
   3063 	public NFAState getNFAStateForAltOfDecision(NFAState decisionState, int alt) {
   3064 		if ( decisionState==null || alt<=0 ) {
   3065 			return null;
   3066 		}
   3067 		int n = 1;
   3068 		NFAState p = decisionState;
   3069 		while ( p!=null ) {
   3070 			if ( n==alt ) {
   3071 				return p;
   3072 			}
   3073 			n++;
   3074 			Transition next = p.transition[1];
   3075 			p = null;
   3076 			if ( next!=null ) {
   3077 				p = (NFAState)next.target;
   3078 			}
   3079 		}
   3080 		return null;
   3081 	}
   3082 
   3083 	/*
   3084 	public void computeRuleFOLLOWSets() {
   3085 		if ( getNumberOfDecisions()==0 ) {
   3086 			createNFAs();
   3087 		}
   3088 		for (Iterator it = getRules().iterator(); it.hasNext();) {
   3089 			Rule r = (Rule)it.next();
   3090 			if ( r.isSynPred ) {
   3091 				continue;
   3092 			}
   3093 			LookaheadSet s = ll1Analyzer.FOLLOW(r);
   3094 			System.out.println("FOLLOW("+r.name+")="+s);
   3095 		}
   3096 	}
   3097 	*/
   3098 
   3099 	public LookaheadSet FIRST(NFAState s) {
   3100 		return ll1Analyzer.FIRST(s);
   3101 	}
   3102 
   3103 	public LookaheadSet LOOK(NFAState s) {
   3104 		return ll1Analyzer.LOOK(s);
   3105 	}
   3106 
   3107 	public void setCodeGenerator(CodeGenerator generator) {
   3108 		this.generator = generator;
   3109 	}
   3110 
   3111 	public CodeGenerator getCodeGenerator() {
   3112 		return generator;
   3113 	}
   3114 
   3115 	public GrammarAST getGrammarTree() {
   3116 		return grammarTree;
   3117 	}
   3118 
   3119 	public void setGrammarTree(GrammarAST value) {
   3120 		grammarTree = value;
   3121 	}
   3122 
   3123 	public Tool getTool() {
   3124 		return tool;
   3125 	}
   3126 
   3127 	public void setTool(Tool tool) {
   3128 		this.tool = tool;
   3129 	}
   3130 
   3131 	/** given a token type and the text of the literal, come up with a
   3132 	 *  decent token type label.  For now it's just T<type>.  Actually,
   3133 	 *  if there is an aliased name from tokens like PLUS='+', use it.
   3134 	 */
   3135 	public String computeTokenNameFromLiteral(int tokenType, String literal) {
   3136 		return AUTO_GENERATED_TOKEN_NAME_PREFIX +tokenType;
   3137 	}
   3138 
   3139 	public String toString() {
   3140 	//	return "FFFFFFFFFFFFFF";
   3141 		return grammarTreeToString(grammarTree);
   3142 	}
   3143 
   3144 	public String grammarTreeToString(GrammarAST t) {
   3145 		return grammarTreeToString(t, true);
   3146 	}
   3147 
   3148 	public String grammarTreeToString(GrammarAST t, boolean showActions) {
   3149 		String s = null;
   3150 		try {
   3151 			s = t.getLine()+":"+(t.getCharPositionInLine()+1)+": ";
   3152 			s += new ANTLRTreePrinter(new CommonTreeNodeStream(t)).toString(this, showActions);
   3153 		}
   3154 		catch (Exception e) {
   3155 			s = "<invalid or missing tree structure>";
   3156 		}
   3157 		return s;
   3158 	}
   3159 
   3160 	public void printGrammar(PrintStream output) {
   3161 		ANTLRTreePrinter printer = new ANTLRTreePrinter(new CommonTreeNodeStream(getGrammarTree()));
   3162 		try {
   3163 			String g = printer.toString(this, false);
   3164 			output.println(g);
   3165 		}
   3166 		catch (RecognitionException re) {
   3167 			ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,re);
   3168 		}
   3169 	}
   3170 
   3171 }
   3172