Home | History | Annotate | Download | only in src
      1 /*
      2  * written by Colin Plumb in 1993, no copyright is claimed.
      3  * This code is in the public domain; do with it what you wish.
      4  *
      5  * Equivalent code is available from RSA Data Security, Inc.
      6  * This code has been tested against that, and is equivalent,
      7  * except that you don't need to include two pages of legalese
      8  * with every copy.
      9  *
     10  * To compute the message digest of a chunk of bytes, declare an
     11  * MD5Context structure, pass it to MD5Init, call MD5Update as
     12  * needed on buffers full of bytes, and then call MD5Final, which
     13  * will fill a supplied 16-byte array with the digest.
     14  */
     15 
     16 #include <string.h>
     17 
     18 #include "md5.h"
     19 
     20 #ifndef WORDS_BIGENDIAN
     21 #define byteReverse(buf, len)   /* Nothing */
     22 #else
     23 /*
     24  * Note: this code is harmless on little-endian machines.
     25  */
     26 static void byteReverse(unsigned char *buf, unsigned longs)
     27 {
     28   u32 t;
     29   do {
     30     t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
     31       ((unsigned) buf[1] << 8 | buf[0]);
     32     *(u32 *) buf = t;
     33     buf += 4;
     34   } while (--longs);
     35 }
     36 #endif
     37 
     38 static void MD5Transform(u32 buf[4], u32 const in[16]);
     39 
     40 /*
     41  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     42  * initialization constants.
     43  */
     44 void MD5Init(struct MD5Context *ctx)
     45 {
     46   ctx->buf[0] = 0x67452301;
     47   ctx->buf[1] = 0xefcdab89;
     48   ctx->buf[2] = 0x98badcfe;
     49   ctx->buf[3] = 0x10325476;
     50 
     51   ctx->bits[0] = 0;
     52   ctx->bits[1] = 0;
     53 }
     54 
     55 /*
     56  * Update context to reflect the concatenation of another buffer full
     57  * of bytes.
     58  */
     59 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
     60 {
     61   u32 t;
     62 
     63   /* Update bitcount */
     64 
     65   t = ctx->bits[0];
     66   if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
     67     ctx->bits[1]++;         /* Carry from low to high */
     68   ctx->bits[1] += len >> 29;
     69 
     70   t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
     71 
     72   /* Handle any leading odd-sized chunks */
     73 
     74   if (t) {
     75     unsigned char *p = (unsigned char *) ctx->in + t;
     76 
     77     t = 64 - t;
     78     if (len < t) {
     79       memcpy(p, buf, len);
     80       return;
     81     }
     82     memcpy(p, buf, t);
     83     byteReverse(ctx->in, 16);
     84     MD5Transform(ctx->buf, (u32 *) ctx->in);
     85     buf += t;
     86     len -= t;
     87   }
     88   /* Process data in 64-byte chunks */
     89 
     90   while (len >= 64) {
     91     memcpy(ctx->in, buf, 64);
     92     byteReverse(ctx->in, 16);
     93     MD5Transform(ctx->buf, (u32 *) ctx->in);
     94     buf += 64;
     95     len -= 64;
     96   }
     97 
     98   /* Handle any remaining bytes of data. */
     99 
    100   memcpy(ctx->in, buf, len);
    101 }
    102 
    103 /*
    104  * Final wrapup - pad to 64-byte boundary with the bit pattern
    105  * 1 0* (64-bit count of bits processed, MSB-first)
    106  */
    107 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
    108 {
    109   unsigned count;
    110   unsigned char *p;
    111 
    112   /* Compute number of bytes mod 64 */
    113   count = (ctx->bits[0] >> 3) & 0x3F;
    114 
    115   /* Set the first char of padding to 0x80.  This is safe since there is
    116      always at least one byte free */
    117   p = ctx->in + count;
    118   *p++ = 0x80;
    119 
    120   /* Bytes of padding needed to make 64 bytes */
    121   count = 64 - 1 - count;
    122 
    123   /* Pad out to 56 mod 64 */
    124   if (count < 8) {
    125     /* Two lots of padding:  Pad the first block to 64 bytes */
    126     memset(p, 0, count);
    127     byteReverse(ctx->in, 16);
    128     MD5Transform(ctx->buf, (u32 *) ctx->in);
    129 
    130     /* Now fill the next block with 56 bytes */
    131     memset(ctx->in, 0, 56);
    132   } else {
    133     /* Pad block to 56 bytes */
    134     memset(p, 0, count - 8);
    135   }
    136   byteReverse(ctx->in, 14);
    137 
    138   /* Append length in bits and transform */
    139   ((u32 *) ctx->in)[14] = ctx->bits[0];
    140   ((u32 *) ctx->in)[15] = ctx->bits[1];
    141 
    142   MD5Transform(ctx->buf, (u32 *) ctx->in);
    143   byteReverse((unsigned char *) ctx->buf, 4);
    144   memcpy(digest, ctx->buf, 16);
    145   memset(ctx, 0, sizeof(*ctx));        /* In case it's sensitive */
    146 }
    147 
    148 /* The four core functions - F1 is optimized somewhat */
    149 
    150 /* #define F1(x, y, z) (x & y | ~x & z) */
    151 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    152 #define F2(x, y, z) F1(z, x, y)
    153 #define F3(x, y, z) (x ^ y ^ z)
    154 #define F4(x, y, z) (y ^ (x | ~z))
    155 
    156 /* This is the central step in the MD5 algorithm. */
    157 #define MD5STEP(f, w, x, y, z, data, s) \
    158   ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
    159 
    160 /*
    161  * The core of the MD5 algorithm, this alters an existing MD5 hash to
    162  * reflect the addition of 16 longwords of new data.  MD5Update blocks
    163  * the data and converts bytes into longwords for this routine.
    164  */
    165 static void MD5Transform(u32 buf[4], u32 const in[16])
    166 {
    167   u32 a, b, c, d;
    168 
    169   a = buf[0];
    170   b = buf[1];
    171   c = buf[2];
    172   d = buf[3];
    173 
    174   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    175   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    176   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    177   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    178   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    179   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    180   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    181   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    182   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    183   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    184   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    185   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    186   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    187   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    188   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    189   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    190 
    191   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    192   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    193   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    194   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    195   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    196   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    197   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    198   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    199   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    200   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    201   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    202   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    203   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    204   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    205   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    206   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    207 
    208   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    209   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    210   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    211   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    212   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    213   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    214   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    215   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    216   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    217   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    218   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    219   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    220   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    221   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    222   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    223   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    224 
    225   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    226   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    227   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    228   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    229   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    230   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    231   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    232   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    233   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    234   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    235   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    236   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    237   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    238   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    239   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    240   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    241 
    242   buf[0] += a;
    243   buf[1] += b;
    244   buf[2] += c;
    245   buf[3] += d;
    246 }
    247