Home | History | Annotate | Download | only in cipher_extra
      1 /* Copyright (c) 2017, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 #include <openssl/aead.h>
     16 
     17 #include <assert.h>
     18 
     19 #include <openssl/cipher.h>
     20 #include <openssl/cpu.h>
     21 #include <openssl/crypto.h>
     22 #include <openssl/err.h>
     23 
     24 #include "../fipsmodule/cipher/internal.h"
     25 
     26 
     27 #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12
     28 #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16
     29 
     30 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM)
     31 
     32 // Optimised AES-GCM-SIV
     33 
     34 struct aead_aes_gcm_siv_asm_ctx {
     35   alignas(16) uint8_t key[16*15];
     36   int is_128_bit;
     37   // ptr contains the original pointer from |OPENSSL_malloc|, which may only be
     38   // 8-byte aligned. When freeing this structure, actually call |OPENSSL_free|
     39   // on this pointer.
     40   void *ptr;
     41 };
     42 
     43 // aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
     44 // |out_expanded_key|.
     45 extern void aes128gcmsiv_aes_ks(
     46     const uint8_t key[16], uint8_t out_expanded_key[16*15]);
     47 
     48 // aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
     49 // |out_expanded_key|.
     50 extern void aes256gcmsiv_aes_ks(
     51     const uint8_t key[16], uint8_t out_expanded_key[16*15]);
     52 
     53 static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
     54                                      size_t key_len, size_t tag_len) {
     55   const size_t key_bits = key_len * 8;
     56 
     57   if (key_bits != 128 && key_bits != 256) {
     58     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
     59     return 0;  // EVP_AEAD_CTX_init should catch this.
     60   }
     61 
     62   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
     63     tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
     64   }
     65 
     66   if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
     67     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
     68     return 0;
     69   }
     70 
     71   char *ptr = OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_asm_ctx) + 8);
     72   if (ptr == NULL) {
     73     return 0;
     74   }
     75   assert((((uintptr_t)ptr) & 7) == 0);
     76 
     77   // gcm_siv_ctx needs to be 16-byte aligned in a cross-platform way.
     78   struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx =
     79       (struct aead_aes_gcm_siv_asm_ctx *)(ptr + (((uintptr_t)ptr) & 8));
     80 
     81   assert((((uintptr_t)gcm_siv_ctx) & 15) == 0);
     82   gcm_siv_ctx->ptr = ptr;
     83 
     84   if (key_bits == 128) {
     85     aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
     86     gcm_siv_ctx->is_128_bit = 1;
     87   } else {
     88     aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
     89     gcm_siv_ctx->is_128_bit = 0;
     90   }
     91   ctx->aead_state = gcm_siv_ctx;
     92   ctx->tag_len = tag_len;
     93 
     94   return 1;
     95 }
     96 
     97 static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {
     98   const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = ctx->aead_state;
     99   OPENSSL_free(gcm_siv_ctx->ptr);
    100 }
    101 
    102 // aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to
    103 // include a number (|in_blocks|) of 16-byte blocks of data from |in|, given
    104 // the POLYVAL key in |key|.
    105 extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16],
    106                                      const uint8_t key[16], const uint8_t *in,
    107                                      size_t in_blocks);
    108 
    109 // aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|.
    110 extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8],
    111                                   const uint8_t auth_key[16]);
    112 
    113 // aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|.
    114 extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6],
    115                                    const uint8_t auth_key[16]);
    116 
    117 // aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to
    118 // include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple
    119 // of 16.) It uses the precomputed powers of the key given in |htable|.
    120 extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8],
    121                                      const uint8_t *in, size_t in_len,
    122                                      uint8_t in_out_poly[16]);
    123 
    124 // aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to
    125 // |in|. (The full value of |in_len| is still used to find the authentication
    126 // tag appended to the ciphertext, however, so must not be pre-masked.)
    127 //
    128 // |in| and |out| may be equal, but must not otherwise overlap.
    129 //
    130 // While decrypting, it updates the POLYVAL value found at the beginning of
    131 // |in_out_calculated_tag_and_scratch| and writes the updated value back before
    132 // return. During executation, it may use the whole of this space for other
    133 // purposes. In order to decrypt and update the POLYVAL value, it uses the
    134 // expanded key from |key| and the table of powers in |htable|.
    135 extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out,
    136                              uint8_t in_out_calculated_tag_and_scratch[16 * 8],
    137                              const uint8_t htable[16 * 6],
    138                              const struct aead_aes_gcm_siv_asm_ctx *key,
    139                              size_t in_len);
    140 
    141 // aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256.
    142 extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out,
    143                              uint8_t in_out_calculated_tag_and_scratch[16 * 8],
    144                              const uint8_t htable[16 * 6],
    145                              const struct aead_aes_gcm_siv_asm_ctx *key,
    146                              size_t in_len);
    147 
    148 // aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from
    149 // |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of
    150 // the nonce are used, 16 bytes are read and so the value must be
    151 // right-padded.
    152 extern void aes128gcmsiv_kdf(const uint8_t nonce[16],
    153                              uint64_t out_key_material[8],
    154                              const uint8_t *key_schedule);
    155 
    156 // aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256.
    157 extern void aes256gcmsiv_kdf(const uint8_t nonce[16],
    158                              uint64_t out_key_material[12],
    159                              const uint8_t *key_schedule);
    160 
    161 // aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in
    162 // |key|, writes the expanded key to |out_expanded_key| and encrypts a single
    163 // block from |in| to |out|.
    164 extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
    165                                        uint8_t out_expanded_key[16 * 15],
    166                                        const uint64_t key[2]);
    167 
    168 // aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for
    169 // AES-256.
    170 extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
    171                                        uint8_t out_expanded_key[16 * 15],
    172                                        const uint64_t key[4]);
    173 
    174 // aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using
    175 // the expanded key in |expanded_key|.
    176 extern void aes128gcmsiv_ecb_enc_block(
    177     const uint8_t in[16], uint8_t out[16],
    178     const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
    179 
    180 // aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for
    181 // AES-256.
    182 extern void aes256gcmsiv_ecb_enc_block(
    183     const uint8_t in[16], uint8_t out[16],
    184     const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
    185 
    186 // aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the
    187 // expanded key from |key|. (The value of |in_len| must be a multiple of 16.)
    188 // The |in| and |out| buffers may be equal but must not otherwise overlap. The
    189 // initial counter is constructed from the given |tag| as required by
    190 // AES-GCM-SIV.
    191 extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
    192                                     const uint8_t *tag,
    193                                     const struct aead_aes_gcm_siv_asm_ctx *key,
    194                                     size_t in_len);
    195 
    196 // aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for
    197 // AES-256.
    198 extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
    199                                     const uint8_t *tag,
    200                                     const struct aead_aes_gcm_siv_asm_ctx *key,
    201                                     size_t in_len);
    202 
    203 // aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is
    204 // optimised for longer messages.
    205 extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
    206                                     const uint8_t *tag,
    207                                     const struct aead_aes_gcm_siv_asm_ctx *key,
    208                                     size_t in_len);
    209 
    210 // aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is
    211 // optimised for longer messages.
    212 extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
    213                                     const uint8_t *tag,
    214                                     const struct aead_aes_gcm_siv_asm_ctx *key,
    215                                     size_t in_len);
    216 
    217 // gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext
    218 // and AD. The result is written to |out_tag|.
    219 static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in,
    220                                 size_t in_len, const uint8_t *ad, size_t ad_len,
    221                                 const uint8_t auth_key[16],
    222                                 const uint8_t nonce[12]) {
    223   OPENSSL_memset(out_tag, 0, 16);
    224   const size_t ad_blocks = ad_len / 16;
    225   const size_t in_blocks = in_len / 16;
    226   int htable_init = 0;
    227   alignas(16) uint8_t htable[16*8];
    228 
    229   if (ad_blocks > 8 || in_blocks > 8) {
    230     htable_init = 1;
    231     aesgcmsiv_htable_init(htable, auth_key);
    232   }
    233 
    234   if (htable_init) {
    235     aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag);
    236   } else {
    237     aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks);
    238   }
    239 
    240   uint8_t scratch[16];
    241   if (ad_len & 15) {
    242     OPENSSL_memset(scratch, 0, sizeof(scratch));
    243     OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
    244     aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
    245   }
    246 
    247   if (htable_init) {
    248     aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag);
    249   } else {
    250     aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks);
    251   }
    252 
    253   if (in_len & 15) {
    254     OPENSSL_memset(scratch, 0, sizeof(scratch));
    255     OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
    256     aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
    257   }
    258 
    259   union {
    260     uint8_t c[16];
    261     struct {
    262       uint64_t ad;
    263       uint64_t in;
    264     } bitlens;
    265   } length_block;
    266 
    267   length_block.bitlens.ad = ad_len * 8;
    268   length_block.bitlens.in = in_len * 8;
    269   aesgcmsiv_polyval_horner(out_tag, auth_key, length_block.c, 1);
    270 
    271   for (size_t i = 0; i < 12; i++) {
    272     out_tag[i] ^= nonce[i];
    273   }
    274 
    275   out_tag[15] &= 0x7f;
    276 }
    277 
    278 // aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption
    279 // (same thing in CTR mode) of the final block of a plaintext/ciphertext. It
    280 // writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter
    281 // derived from |tag|.
    282 static void aead_aes_gcm_siv_asm_crypt_last_block(
    283     int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len,
    284     const uint8_t tag[16],
    285     const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) {
    286   alignas(16) union {
    287     uint8_t c[16];
    288     uint32_t u32[4];
    289   } counter;
    290   OPENSSL_memcpy(&counter, tag, sizeof(counter));
    291   counter.c[15] |= 0x80;
    292   counter.u32[0] += in_len / 16;
    293 
    294   if (is_128_bit) {
    295     aes128gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded);
    296   } else {
    297     aes256gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded);
    298   }
    299 
    300   const size_t last_bytes_offset = in_len & ~15;
    301   const size_t last_bytes_len = in_len & 15;
    302   uint8_t *last_bytes_out = &out[last_bytes_offset];
    303   const uint8_t *last_bytes_in = &in[last_bytes_offset];
    304   for (size_t i = 0; i < last_bytes_len; i++) {
    305     last_bytes_out[i] = last_bytes_in[i] ^ counter.c[i];
    306   }
    307 }
    308 
    309 // aead_aes_gcm_siv_kdf calculates the record encryption and authentication
    310 // keys given the |nonce|.
    311 static void aead_aes_gcm_siv_kdf(
    312     int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx,
    313     uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4],
    314     const uint8_t nonce[12]) {
    315   alignas(16) uint8_t padded_nonce[16];
    316   OPENSSL_memcpy(padded_nonce, nonce, 12);
    317 
    318   alignas(16) uint64_t key_material[12];
    319   if (is_128_bit) {
    320     aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
    321     out_record_enc_key[0] = key_material[4];
    322     out_record_enc_key[1] = key_material[6];
    323   } else {
    324     aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
    325     out_record_enc_key[0] = key_material[4];
    326     out_record_enc_key[1] = key_material[6];
    327     out_record_enc_key[2] = key_material[8];
    328     out_record_enc_key[3] = key_material[10];
    329   }
    330 
    331   out_record_auth_key[0] = key_material[0];
    332   out_record_auth_key[1] = key_material[2];
    333 }
    334 
    335 static int aead_aes_gcm_siv_asm_seal_scatter(
    336     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
    337     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
    338     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
    339     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
    340   const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = ctx->aead_state;
    341   const uint64_t in_len_64 = in_len;
    342   const uint64_t ad_len_64 = ad_len;
    343 
    344   if (in_len_64 > (UINT64_C(1) << 36) ||
    345       ad_len_64 >= (UINT64_C(1) << 61)) {
    346     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    347     return 0;
    348   }
    349 
    350   if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
    351     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
    352     return 0;
    353   }
    354 
    355   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
    356     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
    357     return 0;
    358   }
    359 
    360   alignas(16) uint64_t record_auth_key[2];
    361   alignas(16) uint64_t record_enc_key[4];
    362   aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
    363                        record_enc_key, nonce);
    364 
    365   alignas(16) uint8_t tag[16] = {0};
    366   gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len,
    367                       (const uint8_t *)record_auth_key, nonce);
    368 
    369   struct aead_aes_gcm_siv_asm_ctx enc_key_expanded;
    370 
    371   if (gcm_siv_ctx->is_128_bit) {
    372     aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
    373                                record_enc_key);
    374 
    375     if (in_len < 128) {
    376       aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
    377     } else {
    378       aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
    379     }
    380   } else {
    381     aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
    382                                record_enc_key);
    383 
    384     if (in_len < 128) {
    385       aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
    386     } else {
    387       aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
    388     }
    389   }
    390 
    391   if (in_len & 15) {
    392     aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
    393                                           in_len, tag, &enc_key_expanded);
    394   }
    395 
    396   OPENSSL_memcpy(out_tag, tag, sizeof(tag));
    397   *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
    398 
    399   return 1;
    400 }
    401 
    402 // TODO(martinkr): Add aead_aes_gcm_siv_asm_open_gather. N.B. aes128gcmsiv_dec
    403 // expects ciphertext and tag in a contiguous buffer.
    404 
    405 static int aead_aes_gcm_siv_asm_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
    406                                      size_t *out_len, size_t max_out_len,
    407                                      const uint8_t *nonce, size_t nonce_len,
    408                                      const uint8_t *in, size_t in_len,
    409                                      const uint8_t *ad, size_t ad_len) {
    410   const uint64_t ad_len_64 = ad_len;
    411   if (ad_len_64 >= (UINT64_C(1) << 61)) {
    412     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    413     return 0;
    414   }
    415 
    416   const uint64_t in_len_64 = in_len;
    417   if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
    418       in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
    419     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    420     return 0;
    421   }
    422 
    423   const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = ctx->aead_state;
    424   const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN;
    425   const uint8_t *const given_tag = in + plaintext_len;
    426 
    427   if (max_out_len < plaintext_len) {
    428     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
    429     return 0;
    430   }
    431 
    432   alignas(16) uint64_t record_auth_key[2];
    433   alignas(16) uint64_t record_enc_key[4];
    434   aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
    435                        record_enc_key, nonce);
    436 
    437   struct aead_aes_gcm_siv_asm_ctx expanded_key;
    438   if (gcm_siv_ctx->is_128_bit) {
    439     aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
    440   } else {
    441     aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
    442   }
    443   // calculated_tag is 16*8 bytes, rather than 16 bytes, because
    444   // aes[128|256]gcmsiv_dec uses the extra as scratch space.
    445   alignas(16) uint8_t calculated_tag[16 * 8] = {0};
    446 
    447   OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
    448   const size_t ad_blocks = ad_len / 16;
    449   aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad,
    450                            ad_blocks);
    451 
    452   uint8_t scratch[16];
    453   if (ad_len & 15) {
    454     OPENSSL_memset(scratch, 0, sizeof(scratch));
    455     OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
    456     aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
    457                              scratch, 1);
    458   }
    459 
    460   alignas(16) uint8_t htable[16 * 6];
    461   aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key);
    462 
    463   if (gcm_siv_ctx->is_128_bit) {
    464     aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key,
    465                      plaintext_len);
    466   } else {
    467     aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key,
    468                      plaintext_len);
    469   }
    470 
    471   if (plaintext_len & 15) {
    472     aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
    473                                           plaintext_len, given_tag,
    474                                           &expanded_key);
    475     OPENSSL_memset(scratch, 0, sizeof(scratch));
    476     OPENSSL_memcpy(scratch, out + (plaintext_len & ~15), plaintext_len & 15);
    477     aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
    478                              scratch, 1);
    479   }
    480 
    481   union {
    482     uint8_t c[16];
    483     struct {
    484       uint64_t ad;
    485       uint64_t in;
    486     } bitlens;
    487   } length_block;
    488 
    489   length_block.bitlens.ad = ad_len * 8;
    490   length_block.bitlens.in = plaintext_len * 8;
    491   aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
    492                            length_block.c, 1);
    493 
    494   for (size_t i = 0; i < 12; i++) {
    495     calculated_tag[i] ^= nonce[i];
    496   }
    497 
    498   calculated_tag[15] &= 0x7f;
    499 
    500   if (gcm_siv_ctx->is_128_bit) {
    501     aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
    502   } else {
    503     aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
    504   }
    505 
    506   if (CRYPTO_memcmp(calculated_tag, given_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) !=
    507       0) {
    508     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    509     return 0;
    510   }
    511 
    512   *out_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN;
    513   return 1;
    514 }
    515 
    516 static const EVP_AEAD aead_aes_128_gcm_siv_asm = {
    517     16,                              // key length
    518     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
    519     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
    520     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
    521     0,                               // seal_scatter_supports_extra_in
    522 
    523     aead_aes_gcm_siv_asm_init,
    524     NULL /* init_with_direction */,
    525     aead_aes_gcm_siv_asm_cleanup,
    526     aead_aes_gcm_siv_asm_open,
    527     aead_aes_gcm_siv_asm_seal_scatter,
    528     NULL /* open_gather */,
    529     NULL /* get_iv */,
    530     NULL /* tag_len */,
    531 };
    532 
    533 static const EVP_AEAD aead_aes_256_gcm_siv_asm = {
    534     32,                              // key length
    535     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
    536     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
    537     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
    538     0,                               // seal_scatter_supports_extra_in
    539 
    540     aead_aes_gcm_siv_asm_init,
    541     NULL /* init_with_direction */,
    542     aead_aes_gcm_siv_asm_cleanup,
    543     aead_aes_gcm_siv_asm_open,
    544     aead_aes_gcm_siv_asm_seal_scatter,
    545     NULL /* open_gather */,
    546     NULL /* get_iv */,
    547     NULL /* tag_len */,
    548 };
    549 
    550 #endif  // X86_64 && !NO_ASM
    551 
    552 struct aead_aes_gcm_siv_ctx {
    553   union {
    554     double align;
    555     AES_KEY ks;
    556   } ks;
    557   block128_f kgk_block;
    558   unsigned is_256:1;
    559 };
    560 
    561 static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
    562                                  size_t key_len, size_t tag_len) {
    563   const size_t key_bits = key_len * 8;
    564 
    565   if (key_bits != 128 && key_bits != 256) {
    566     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
    567     return 0;  // EVP_AEAD_CTX_init should catch this.
    568   }
    569 
    570   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
    571     tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
    572   }
    573   if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
    574     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
    575     return 0;
    576   }
    577 
    578   struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
    579       OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_ctx));
    580   if (gcm_siv_ctx == NULL) {
    581     return 0;
    582   }
    583   OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx));
    584 
    585   aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key,
    586                   key_len);
    587   gcm_siv_ctx->is_256 = (key_len == 32);
    588   ctx->aead_state = gcm_siv_ctx;
    589   ctx->tag_len = tag_len;
    590 
    591   return 1;
    592 }
    593 
    594 static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {
    595   OPENSSL_free(ctx->aead_state);
    596 }
    597 
    598 // gcm_siv_crypt encrypts (or decryptsit's the same thing) |in_len| bytes from
    599 // |in| to |out|, using the block function |enc_block| with |key| in counter
    600 // mode, starting at |initial_counter|. This differs from the traditional
    601 // counter mode code in that the counter is handled little-endian, only the
    602 // first four bytes are used and the GCM-SIV tweak to the final byte is
    603 // applied. The |in| and |out| pointers may be equal but otherwise must not
    604 // alias.
    605 static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len,
    606                           const uint8_t initial_counter[AES_BLOCK_SIZE],
    607                           block128_f enc_block, const AES_KEY *key) {
    608   union {
    609     uint32_t w[4];
    610     uint8_t c[16];
    611   } counter;
    612 
    613   OPENSSL_memcpy(counter.c, initial_counter, AES_BLOCK_SIZE);
    614   counter.c[15] |= 0x80;
    615 
    616   for (size_t done = 0; done < in_len;) {
    617     uint8_t keystream[AES_BLOCK_SIZE];
    618     enc_block(counter.c, keystream, key);
    619     counter.w[0]++;
    620 
    621     size_t todo = AES_BLOCK_SIZE;
    622     if (in_len - done < todo) {
    623       todo = in_len - done;
    624     }
    625 
    626     for (size_t i = 0; i < todo; i++) {
    627       out[done + i] = keystream[i] ^ in[done + i];
    628     }
    629 
    630     done += todo;
    631   }
    632 }
    633 
    634 // gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and
    635 // AD. The result is written to |out_tag|.
    636 static void gcm_siv_polyval(
    637     uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad,
    638     size_t ad_len, const uint8_t auth_key[16],
    639     const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
    640   struct polyval_ctx polyval_ctx;
    641   CRYPTO_POLYVAL_init(&polyval_ctx, auth_key);
    642 
    643   CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15);
    644 
    645   uint8_t scratch[16];
    646   if (ad_len & 15) {
    647     OPENSSL_memset(scratch, 0, sizeof(scratch));
    648     OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
    649     CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
    650   }
    651 
    652   CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15);
    653   if (in_len & 15) {
    654     OPENSSL_memset(scratch, 0, sizeof(scratch));
    655     OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
    656     CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
    657   }
    658 
    659   union {
    660     uint8_t c[16];
    661     struct {
    662       uint64_t ad;
    663       uint64_t in;
    664     } bitlens;
    665   } length_block;
    666 
    667   length_block.bitlens.ad = ad_len * 8;
    668   length_block.bitlens.in = in_len * 8;
    669   CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c,
    670                                sizeof(length_block));
    671 
    672   CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag);
    673   for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) {
    674     out_tag[i] ^= nonce[i];
    675   }
    676   out_tag[15] &= 0x7f;
    677 }
    678 
    679 // gcm_siv_record_keys contains the keys used for a specific GCM-SIV record.
    680 struct gcm_siv_record_keys {
    681   uint8_t auth_key[16];
    682   union {
    683     double align;
    684     AES_KEY ks;
    685   } enc_key;
    686   block128_f enc_block;
    687 };
    688 
    689 // gcm_siv_keys calculates the keys for a specific GCM-SIV record with the
    690 // given nonce and writes them to |*out_keys|.
    691 static void gcm_siv_keys(
    692     const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx,
    693     struct gcm_siv_record_keys *out_keys,
    694     const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
    695   const AES_KEY *const key = &gcm_siv_ctx->ks.ks;
    696   uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8];
    697   const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4;
    698 
    699   uint8_t counter[AES_BLOCK_SIZE];
    700   OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
    701   OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN,
    702                  nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
    703   for (size_t i = 0; i < blocks_needed; i++) {
    704     counter[0] = i;
    705 
    706     uint8_t ciphertext[AES_BLOCK_SIZE];
    707     gcm_siv_ctx->kgk_block(counter, ciphertext, key);
    708     OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8);
    709   }
    710 
    711   OPENSSL_memcpy(out_keys->auth_key, key_material, 16);
    712   aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block,
    713                   key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16);
    714 }
    715 
    716 static int aead_aes_gcm_siv_seal_scatter(
    717     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
    718     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
    719     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
    720     size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
    721   const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state;
    722   const uint64_t in_len_64 = in_len;
    723   const uint64_t ad_len_64 = ad_len;
    724 
    725   if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len ||
    726       in_len_64 > (UINT64_C(1) << 36) ||
    727       ad_len_64 >= (UINT64_C(1) << 61)) {
    728     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    729     return 0;
    730   }
    731 
    732   if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
    733     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
    734     return 0;
    735   }
    736 
    737   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
    738     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
    739     return 0;
    740   }
    741 
    742   struct gcm_siv_record_keys keys;
    743   gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
    744 
    745   uint8_t tag[16];
    746   gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce);
    747   keys.enc_block(tag, tag, &keys.enc_key.ks);
    748 
    749   gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks);
    750 
    751   OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
    752   *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
    753 
    754   return 1;
    755 }
    756 
    757 static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
    758                                         const uint8_t *nonce, size_t nonce_len,
    759                                         const uint8_t *in, size_t in_len,
    760                                         const uint8_t *in_tag,
    761                                         size_t in_tag_len, const uint8_t *ad,
    762                                         size_t ad_len) {
    763   const uint64_t ad_len_64 = ad_len;
    764   if (ad_len_64 >= (UINT64_C(1) << 61)) {
    765     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
    766     return 0;
    767   }
    768 
    769   const uint64_t in_len_64 = in_len;
    770   if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
    771       in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
    772     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    773     return 0;
    774   }
    775 
    776   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
    777     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
    778     return 0;
    779   }
    780 
    781   const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state;
    782 
    783   struct gcm_siv_record_keys keys;
    784   gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
    785 
    786   gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks);
    787 
    788   uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN];
    789   gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce);
    790   keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks);
    791 
    792   if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) {
    793     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
    794     return 0;
    795   }
    796 
    797   return 1;
    798 }
    799 
    800 static const EVP_AEAD aead_aes_128_gcm_siv = {
    801     16,                              // key length
    802     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
    803     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
    804     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
    805     0,                               // seal_scatter_supports_extra_in
    806 
    807     aead_aes_gcm_siv_init,
    808     NULL /* init_with_direction */,
    809     aead_aes_gcm_siv_cleanup,
    810     NULL /* open */,
    811     aead_aes_gcm_siv_seal_scatter,
    812     aead_aes_gcm_siv_open_gather,
    813     NULL /* get_iv */,
    814     NULL /* tag_len */,
    815 };
    816 
    817 static const EVP_AEAD aead_aes_256_gcm_siv = {
    818     32,                              // key length
    819     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
    820     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
    821     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
    822     0,                               // seal_scatter_supports_extra_in
    823 
    824     aead_aes_gcm_siv_init,
    825     NULL /* init_with_direction */,
    826     aead_aes_gcm_siv_cleanup,
    827     NULL /* open */,
    828     aead_aes_gcm_siv_seal_scatter,
    829     aead_aes_gcm_siv_open_gather,
    830     NULL /* get_iv */,
    831     NULL /* tag_len */,
    832 };
    833 
    834 #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM)
    835 
    836 static char avx_aesni_capable(void) {
    837   const uint32_t ecx = OPENSSL_ia32cap_P[1];
    838 
    839   return (ecx & (1 << (57 - 32))) != 0 /* AESNI */ &&
    840          (ecx & (1 << 28)) != 0 /* AVX */;
    841 }
    842 
    843 const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
    844   if (avx_aesni_capable()) {
    845     return &aead_aes_128_gcm_siv_asm;
    846   }
    847   return &aead_aes_128_gcm_siv;
    848 }
    849 
    850 const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
    851   if (avx_aesni_capable()) {
    852     return &aead_aes_256_gcm_siv_asm;
    853   }
    854   return &aead_aes_256_gcm_siv;
    855 }
    856 
    857 #else
    858 
    859 const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
    860   return &aead_aes_128_gcm_siv;
    861 }
    862 
    863 const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
    864   return &aead_aes_256_gcm_siv;
    865 }
    866 
    867 #endif  // X86_64 && !NO_ASM
    868