Home | History | Annotate | Download | only in bn
      1 /* Copyright 2016 Brian Smith.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 #include <openssl/bn.h>
     16 
     17 #include <assert.h>
     18 
     19 #include "internal.h"
     20 #include "../../internal.h"
     21 
     22 
     23 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
     24 
     25 OPENSSL_COMPILE_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
     26                        BN_MONT_CTX_N0_LIMBS_VALUE_INVALID_2);
     27 OPENSSL_COMPILE_ASSERT(sizeof(uint64_t) ==
     28                        BN_MONT_CTX_N0_LIMBS * sizeof(BN_ULONG),
     29                        BN_MONT_CTX_N0_LIMBS_DOES_NOT_MATCH_UINT64_T);
     30 
     31 // LG_LITTLE_R is log_2(r).
     32 #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
     33 
     34 uint64_t bn_mont_n0(const BIGNUM *n) {
     35   // These conditions are checked by the caller, |BN_MONT_CTX_set|.
     36   assert(!BN_is_zero(n));
     37   assert(!BN_is_negative(n));
     38   assert(BN_is_odd(n));
     39 
     40   // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
     41   // ensures that we can do integer division by |r| by simply ignoring
     42   // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
     43   // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
     44   // what makes Montgomery multiplication efficient.
     45   //
     46   // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
     47   // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
     48   // multi-limb Montgomery multiplication of |a * b (mod n)|, given the
     49   // unreduced product |t == a * b|, we repeatedly calculate:
     50   //
     51   //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
     52   //    t2 := t1*n0*n
     53   //    t3 := t + t2
     54   //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
     55   //
     56   // In the last step, it would only make sense to ignore the lowest limb of
     57   // |t3| if it were zero. The middle steps ensure that this is the case:
     58   //
     59   //                            t3 ==  0 (mod r)
     60   //                        t + t2 ==  0 (mod r)
     61   //                   t + t1*n0*n ==  0 (mod r)
     62   //                       t1*n0*n == -t (mod r)
     63   //                        t*n0*n == -t (mod r)
     64   //                          n0*n == -1 (mod r)
     65   //                            n0 == -1/n (mod r)
     66   //
     67   // Thus, in each iteration of the loop, we multiply by the constant factor
     68   // |n0|, the negative inverse of n (mod r).
     69 
     70   // n_mod_r = n % r. As explained above, this is done by taking the lowest
     71   // |BN_MONT_CTX_N0_LIMBS| limbs of |n|.
     72   uint64_t n_mod_r = n->d[0];
     73 #if BN_MONT_CTX_N0_LIMBS == 2
     74   if (n->top > 1) {
     75     n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
     76   }
     77 #endif
     78 
     79   return bn_neg_inv_mod_r_u64(n_mod_r);
     80 }
     81 
     82 // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
     83 // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
     84 // must be odd.
     85 //
     86 // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
     87 // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
     88 // It is very similar to the MODULAR-INVERSE function in Stephen R. Duss's and
     89 // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
     90 // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
     91 //
     92 // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
     93 // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
     94 // constant-time with respect to |n|. We assume uint64_t additions,
     95 // subtractions, shifts, and bitwise operations are all constant time, which
     96 // may be a large leap of faith on 32-bit targets. We avoid division and
     97 // multiplication, which tend to be the most problematic in terms of timing
     98 // leaks.
     99 //
    100 // Most GCD implementations return values such that |u*r + v*n == 1|, so the
    101 // caller would have to negate the resultant |v| for the purpose of Montgomery
    102 // multiplication. This implementation does the negation implicitly by doing
    103 // the computations as a difference instead of a sum.
    104 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
    105   assert(n % 2 == 1);
    106 
    107   // alpha == 2**(lg r - 1) == r / 2.
    108   static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
    109 
    110   const uint64_t beta = n;
    111 
    112   uint64_t u = 1;
    113   uint64_t v = 0;
    114 
    115   // The invariant maintained from here on is:
    116   // 2**(lg r - i) == u*2*alpha - v*beta.
    117   for (size_t i = 0; i < LG_LITTLE_R; ++i) {
    118 #if BN_BITS2 == 64 && defined(BN_ULLONG)
    119     assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
    120            ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
    121 #endif
    122 
    123     // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
    124     // |u = (u + beta) / 2| and |v = (v / 2) + alpha|.
    125 
    126     uint64_t u_is_odd = UINT64_C(0) - (u & 1);  // Either 0xff..ff or 0.
    127 
    128     // The addition can overflow, so use Dietz's method for it.
    129     //
    130     // Dietz calculates (x+y)/2 by (xy)>>1 + x&y. This is valid for all
    131     // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
    132     // (embedded in 64 bits to so that overflow can be ignored):
    133     //
    134     // (declare-fun x () (_ BitVec 64))
    135     // (declare-fun y () (_ BitVec 64))
    136     // (assert (let (
    137     //    (one (_ bv1 64))
    138     //    (thirtyTwo (_ bv32 64)))
    139     //    (and
    140     //      (bvult x (bvshl one thirtyTwo))
    141     //      (bvult y (bvshl one thirtyTwo))
    142     //      (not (=
    143     //        (bvadd (bvlshr (bvxor x y) one) (bvand x y))
    144     //        (bvlshr (bvadd x y) one)))
    145     // )))
    146     // (check-sat)
    147     uint64_t beta_if_u_is_odd = beta & u_is_odd;  // Either |beta| or 0.
    148     u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
    149 
    150     uint64_t alpha_if_u_is_odd = alpha & u_is_odd;  // Either |alpha| or 0.
    151     v = (v >> 1) + alpha_if_u_is_odd;
    152   }
    153 
    154   // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha.
    155 #if BN_BITS2 == 64 && defined(BN_ULLONG)
    156   assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
    157 #endif
    158 
    159   return v;
    160 }
    161 
    162 // bn_mod_exp_base_2_vartime calculates r = 2**p (mod n). |p| must be larger
    163 // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and
    164 // odd.
    165 int bn_mod_exp_base_2_vartime(BIGNUM *r, unsigned p, const BIGNUM *n) {
    166   assert(!BN_is_zero(n));
    167   assert(!BN_is_negative(n));
    168   assert(BN_is_odd(n));
    169 
    170   BN_zero(r);
    171 
    172   unsigned n_bits = BN_num_bits(n);
    173   assert(n_bits != 0);
    174   if (n_bits == 1) {
    175     return 1;
    176   }
    177 
    178   // Set |r| to the smallest power of two larger than |n|.
    179   assert(p > n_bits);
    180   if (!BN_set_bit(r, n_bits)) {
    181     return 0;
    182   }
    183 
    184   // Unconditionally reduce |r|.
    185   assert(BN_cmp(r, n) > 0);
    186   if (!BN_usub(r, r, n)) {
    187     return 0;
    188   }
    189   assert(BN_cmp(r, n) < 0);
    190 
    191   for (unsigned i = n_bits; i < p; ++i) {
    192     // This is like |BN_mod_lshift1_quick| except using |BN_usub|.
    193     //
    194     // TODO: Replace this with the use of a constant-time variant of
    195     // |BN_mod_lshift1_quick|.
    196     if (!BN_lshift1(r, r)) {
    197       return 0;
    198     }
    199     if (BN_cmp(r, n) >= 0) {
    200       if (!BN_usub(r, r, n)) {
    201         return 0;
    202       }
    203     }
    204   }
    205 
    206   return 1;
    207 }
    208