Home | History | Annotate | Download | only in bn
      1 /* Written by Lenka Fibikova <fibikova (at) exp-math.uni-essen.de>
      2  * and Bodo Moeller for the OpenSSL project. */
      3 /* ====================================================================
      4  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  *
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  *
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * 3. All advertising materials mentioning features or use of this
     19  *    software must display the following acknowledgment:
     20  *    "This product includes software developed by the OpenSSL Project
     21  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     22  *
     23  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     24  *    endorse or promote products derived from this software without
     25  *    prior written permission. For written permission, please contact
     26  *    openssl-core (at) openssl.org.
     27  *
     28  * 5. Products derived from this software may not be called "OpenSSL"
     29  *    nor may "OpenSSL" appear in their names without prior written
     30  *    permission of the OpenSSL Project.
     31  *
     32  * 6. Redistributions of any form whatsoever must retain the following
     33  *    acknowledgment:
     34  *    "This product includes software developed by the OpenSSL Project
     35  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     36  *
     37  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     38  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     40  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     41  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     43  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     44  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     45  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     46  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     47  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     48  * OF THE POSSIBILITY OF SUCH DAMAGE.
     49  * ====================================================================
     50  *
     51  * This product includes cryptographic software written by Eric Young
     52  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     53  * Hudson (tjh (at) cryptsoft.com). */
     54 
     55 #include <openssl/bn.h>
     56 
     57 #include <openssl/err.h>
     58 
     59 #include "internal.h"
     60 
     61 
     62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
     63   // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
     64   // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
     65   // algorithm 1.5.1). |p| is assumed to be a prime.
     66 
     67   BIGNUM *ret = in;
     68   int err = 1;
     69   int r;
     70   BIGNUM *A, *b, *q, *t, *x, *y;
     71   int e, i, j;
     72 
     73   if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
     74     if (BN_abs_is_word(p, 2)) {
     75       if (ret == NULL) {
     76         ret = BN_new();
     77       }
     78       if (ret == NULL) {
     79         goto end;
     80       }
     81       if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
     82         if (ret != in) {
     83           BN_free(ret);
     84         }
     85         return NULL;
     86       }
     87       return ret;
     88     }
     89 
     90     OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
     91     return (NULL);
     92   }
     93 
     94   if (BN_is_zero(a) || BN_is_one(a)) {
     95     if (ret == NULL) {
     96       ret = BN_new();
     97     }
     98     if (ret == NULL) {
     99       goto end;
    100     }
    101     if (!BN_set_word(ret, BN_is_one(a))) {
    102       if (ret != in) {
    103         BN_free(ret);
    104       }
    105       return NULL;
    106     }
    107     return ret;
    108   }
    109 
    110   BN_CTX_start(ctx);
    111   A = BN_CTX_get(ctx);
    112   b = BN_CTX_get(ctx);
    113   q = BN_CTX_get(ctx);
    114   t = BN_CTX_get(ctx);
    115   x = BN_CTX_get(ctx);
    116   y = BN_CTX_get(ctx);
    117   if (y == NULL) {
    118     goto end;
    119   }
    120 
    121   if (ret == NULL) {
    122     ret = BN_new();
    123   }
    124   if (ret == NULL) {
    125     goto end;
    126   }
    127 
    128   // A = a mod p
    129   if (!BN_nnmod(A, a, p, ctx)) {
    130     goto end;
    131   }
    132 
    133   // now write  |p| - 1  as  2^e*q  where  q  is odd
    134   e = 1;
    135   while (!BN_is_bit_set(p, e)) {
    136     e++;
    137   }
    138   // we'll set  q  later (if needed)
    139 
    140   if (e == 1) {
    141     // The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
    142     // modulo  (|p|-1)/2,  and square roots can be computed
    143     // directly by modular exponentiation.
    144     // We have
    145     //     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
    146     // so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
    147     if (!BN_rshift(q, p, 2)) {
    148       goto end;
    149     }
    150     q->neg = 0;
    151     if (!BN_add_word(q, 1) ||
    152         !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
    153       goto end;
    154     }
    155     err = 0;
    156     goto vrfy;
    157   }
    158 
    159   if (e == 2) {
    160     // |p| == 5  (mod 8)
    161     //
    162     // In this case  2  is always a non-square since
    163     // Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
    164     // So if  a  really is a square, then  2*a  is a non-square.
    165     // Thus for
    166     //      b := (2*a)^((|p|-5)/8),
    167     //      i := (2*a)*b^2
    168     // we have
    169     //     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
    170     //         = (2*a)^((p-1)/2)
    171     //         = -1;
    172     // so if we set
    173     //      x := a*b*(i-1),
    174     // then
    175     //     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
    176     //         = a^2 * b^2 * (-2*i)
    177     //         = a*(-i)*(2*a*b^2)
    178     //         = a*(-i)*i
    179     //         = a.
    180     //
    181     // (This is due to A.O.L. Atkin,
    182     // <URL:
    183     //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
    184     // November 1992.)
    185 
    186     // t := 2*a
    187     if (!BN_mod_lshift1_quick(t, A, p)) {
    188       goto end;
    189     }
    190 
    191     // b := (2*a)^((|p|-5)/8)
    192     if (!BN_rshift(q, p, 3)) {
    193       goto end;
    194     }
    195     q->neg = 0;
    196     if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) {
    197       goto end;
    198     }
    199 
    200     // y := b^2
    201     if (!BN_mod_sqr(y, b, p, ctx)) {
    202       goto end;
    203     }
    204 
    205     // t := (2*a)*b^2 - 1
    206     if (!BN_mod_mul(t, t, y, p, ctx) ||
    207         !BN_sub_word(t, 1)) {
    208       goto end;
    209     }
    210 
    211     // x = a*b*t
    212     if (!BN_mod_mul(x, A, b, p, ctx) ||
    213         !BN_mod_mul(x, x, t, p, ctx)) {
    214       goto end;
    215     }
    216 
    217     if (!BN_copy(ret, x)) {
    218       goto end;
    219     }
    220     err = 0;
    221     goto vrfy;
    222   }
    223 
    224   // e > 2, so we really have to use the Tonelli/Shanks algorithm.
    225   // First, find some  y  that is not a square.
    226   if (!BN_copy(q, p)) {
    227     goto end;  // use 'q' as temp
    228   }
    229   q->neg = 0;
    230   i = 2;
    231   do {
    232     // For efficiency, try small numbers first;
    233     // if this fails, try random numbers.
    234     if (i < 22) {
    235       if (!BN_set_word(y, i)) {
    236         goto end;
    237       }
    238     } else {
    239       if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
    240         goto end;
    241       }
    242       if (BN_ucmp(y, p) >= 0) {
    243         if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
    244           goto end;
    245         }
    246       }
    247       // now 0 <= y < |p|
    248       if (BN_is_zero(y)) {
    249         if (!BN_set_word(y, i)) {
    250           goto end;
    251         }
    252       }
    253     }
    254 
    255     r = bn_jacobi(y, q, ctx);  // here 'q' is |p|
    256     if (r < -1) {
    257       goto end;
    258     }
    259     if (r == 0) {
    260       // m divides p
    261       OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    262       goto end;
    263     }
    264   } while (r == 1 && ++i < 82);
    265 
    266   if (r != -1) {
    267     // Many rounds and still no non-square -- this is more likely
    268     // a bug than just bad luck.
    269     // Even if  p  is not prime, we should have found some  y
    270     // such that r == -1.
    271     OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS);
    272     goto end;
    273   }
    274 
    275   // Here's our actual 'q':
    276   if (!BN_rshift(q, q, e)) {
    277     goto end;
    278   }
    279 
    280   // Now that we have some non-square, we can find an element
    281   // of order  2^e  by computing its q'th power.
    282   if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) {
    283     goto end;
    284   }
    285   if (BN_is_one(y)) {
    286     OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    287     goto end;
    288   }
    289 
    290   // Now we know that (if  p  is indeed prime) there is an integer
    291   // k,  0 <= k < 2^e,  such that
    292   //
    293   //      a^q * y^k == 1   (mod p).
    294   //
    295   // As  a^q  is a square and  y  is not,  k  must be even.
    296   // q+1  is even, too, so there is an element
    297   //
    298   //     X := a^((q+1)/2) * y^(k/2),
    299   //
    300   // and it satisfies
    301   //
    302   //     X^2 = a^q * a     * y^k
    303   //         = a,
    304   //
    305   // so it is the square root that we are looking for.
    306 
    307   // t := (q-1)/2  (note that  q  is odd)
    308   if (!BN_rshift1(t, q)) {
    309     goto end;
    310   }
    311 
    312   // x := a^((q-1)/2)
    313   if (BN_is_zero(t))  // special case: p = 2^e + 1
    314   {
    315     if (!BN_nnmod(t, A, p, ctx)) {
    316       goto end;
    317     }
    318     if (BN_is_zero(t)) {
    319       // special case: a == 0  (mod p)
    320       BN_zero(ret);
    321       err = 0;
    322       goto end;
    323     } else if (!BN_one(x)) {
    324       goto end;
    325     }
    326   } else {
    327     if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
    328       goto end;
    329     }
    330     if (BN_is_zero(x)) {
    331       // special case: a == 0  (mod p)
    332       BN_zero(ret);
    333       err = 0;
    334       goto end;
    335     }
    336   }
    337 
    338   // b := a*x^2  (= a^q)
    339   if (!BN_mod_sqr(b, x, p, ctx) ||
    340       !BN_mod_mul(b, b, A, p, ctx)) {
    341     goto end;
    342   }
    343 
    344   // x := a*x    (= a^((q+1)/2))
    345   if (!BN_mod_mul(x, x, A, p, ctx)) {
    346     goto end;
    347   }
    348 
    349   while (1) {
    350     // Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
    351     // where  E  refers to the original value of  e,  which we
    352     // don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
    353     //
    354     // We have  a*b = x^2,
    355     //    y^2^(e-1) = -1,
    356     //    b^2^(e-1) = 1.
    357 
    358     if (BN_is_one(b)) {
    359       if (!BN_copy(ret, x)) {
    360         goto end;
    361       }
    362       err = 0;
    363       goto vrfy;
    364     }
    365 
    366 
    367     // find smallest  i  such that  b^(2^i) = 1
    368     i = 1;
    369     if (!BN_mod_sqr(t, b, p, ctx)) {
    370       goto end;
    371     }
    372     while (!BN_is_one(t)) {
    373       i++;
    374       if (i == e) {
    375         OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
    376         goto end;
    377       }
    378       if (!BN_mod_mul(t, t, t, p, ctx)) {
    379         goto end;
    380       }
    381     }
    382 
    383 
    384     // t := y^2^(e - i - 1)
    385     if (!BN_copy(t, y)) {
    386       goto end;
    387     }
    388     for (j = e - i - 1; j > 0; j--) {
    389       if (!BN_mod_sqr(t, t, p, ctx)) {
    390         goto end;
    391       }
    392     }
    393     if (!BN_mod_mul(y, t, t, p, ctx) ||
    394         !BN_mod_mul(x, x, t, p, ctx) ||
    395         !BN_mod_mul(b, b, y, p, ctx)) {
    396       goto end;
    397     }
    398     e = i;
    399   }
    400 
    401 vrfy:
    402   if (!err) {
    403     // verify the result -- the input might have been not a square
    404     // (test added in 0.9.8)
    405 
    406     if (!BN_mod_sqr(x, ret, p, ctx)) {
    407       err = 1;
    408     }
    409 
    410     if (!err && 0 != BN_cmp(x, A)) {
    411       OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
    412       err = 1;
    413     }
    414   }
    415 
    416 end:
    417   if (err) {
    418     if (ret != in) {
    419       BN_clear_free(ret);
    420     }
    421     ret = NULL;
    422   }
    423   BN_CTX_end(ctx);
    424   return ret;
    425 }
    426 
    427 int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) {
    428   BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2;
    429   int ok = 0, last_delta_valid = 0;
    430 
    431   if (in->neg) {
    432     OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
    433     return 0;
    434   }
    435   if (BN_is_zero(in)) {
    436     BN_zero(out_sqrt);
    437     return 1;
    438   }
    439 
    440   BN_CTX_start(ctx);
    441   if (out_sqrt == in) {
    442     estimate = BN_CTX_get(ctx);
    443   } else {
    444     estimate = out_sqrt;
    445   }
    446   tmp = BN_CTX_get(ctx);
    447   last_delta = BN_CTX_get(ctx);
    448   delta = BN_CTX_get(ctx);
    449   if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) {
    450     OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
    451     goto err;
    452   }
    453 
    454   // We estimate that the square root of an n-bit number is 2^{n/2}.
    455   if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) {
    456     goto err;
    457   }
    458 
    459   // This is Newton's method for finding a root of the equation |estimate|^2 -
    460   // |in| = 0.
    461   for (;;) {
    462     // |estimate| = 1/2 * (|estimate| + |in|/|estimate|)
    463     if (!BN_div(tmp, NULL, in, estimate, ctx) ||
    464         !BN_add(tmp, tmp, estimate) ||
    465         !BN_rshift1(estimate, tmp) ||
    466         // |tmp| = |estimate|^2
    467         !BN_sqr(tmp, estimate, ctx) ||
    468         // |delta| = |in| - |tmp|
    469         !BN_sub(delta, in, tmp)) {
    470       OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
    471       goto err;
    472     }
    473 
    474     delta->neg = 0;
    475     // The difference between |in| and |estimate| squared is required to always
    476     // decrease. This ensures that the loop always terminates, but I don't have
    477     // a proof that it always finds the square root for a given square.
    478     if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) {
    479       break;
    480     }
    481 
    482     last_delta_valid = 1;
    483 
    484     tmp2 = last_delta;
    485     last_delta = delta;
    486     delta = tmp2;
    487   }
    488 
    489   if (BN_cmp(tmp, in) != 0) {
    490     OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
    491     goto err;
    492   }
    493 
    494   ok = 1;
    495 
    496 err:
    497   if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) {
    498     ok = 0;
    499   }
    500   BN_CTX_end(ctx);
    501   return ok;
    502 }
    503