Home | History | Annotate | Download | only in modes
      1 /* ====================================================================
      2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in
     13  *    the documentation and/or other materials provided with the
     14  *    distribution.
     15  *
     16  * 3. All advertising materials mentioning features or use of this
     17  *    software must display the following acknowledgment:
     18  *    "This product includes software developed by the OpenSSL Project
     19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     20  *
     21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     22  *    endorse or promote products derived from this software without
     23  *    prior written permission. For written permission, please contact
     24  *    openssl-core (at) openssl.org.
     25  *
     26  * 5. Products derived from this software may not be called "OpenSSL"
     27  *    nor may "OpenSSL" appear in their names without prior written
     28  *    permission of the OpenSSL Project.
     29  *
     30  * 6. Redistributions of any form whatsoever must retain the following
     31  *    acknowledgment:
     32  *    "This product includes software developed by the OpenSSL Project
     33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     34  *
     35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     46  * OF THE POSSIBILITY OF SUCH DAMAGE.
     47  * ==================================================================== */
     48 
     49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
     50 #define OPENSSL_HEADER_MODES_INTERNAL_H
     51 
     52 #include <openssl/base.h>
     53 
     54 #include <string.h>
     55 
     56 #include "../../internal.h"
     57 
     58 #if defined(__cplusplus)
     59 extern "C" {
     60 #endif
     61 
     62 
     63 #define STRICT_ALIGNMENT 1
     64 #if defined(OPENSSL_X86_64) || defined(OPENSSL_X86) || defined(OPENSSL_AARCH64)
     65 #undef STRICT_ALIGNMENT
     66 #define STRICT_ALIGNMENT 0
     67 #endif
     68 
     69 static inline uint32_t GETU32(const void *in) {
     70   uint32_t v;
     71   OPENSSL_memcpy(&v, in, sizeof(v));
     72   return CRYPTO_bswap4(v);
     73 }
     74 
     75 static inline void PUTU32(void *out, uint32_t v) {
     76   v = CRYPTO_bswap4(v);
     77   OPENSSL_memcpy(out, &v, sizeof(v));
     78 }
     79 
     80 static inline size_t load_word_le(const void *in) {
     81   size_t v;
     82   OPENSSL_memcpy(&v, in, sizeof(v));
     83   return v;
     84 }
     85 
     86 static inline void store_word_le(void *out, size_t v) {
     87   OPENSSL_memcpy(out, &v, sizeof(v));
     88 }
     89 
     90 // block128_f is the type of a 128-bit, block cipher.
     91 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
     92                            const void *key);
     93 
     94 // GCM definitions
     95 typedef struct { uint64_t hi,lo; } u128;
     96 
     97 // gmult_func multiplies |Xi| by the GCM key and writes the result back to
     98 // |Xi|.
     99 typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
    100 
    101 // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
    102 // |inp|. The result is written back to |Xi| and the |len| argument must be a
    103 // multiple of 16.
    104 typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
    105                            const uint8_t *inp, size_t len);
    106 
    107 // This differs from upstream's |gcm128_context| in that it does not have the
    108 // |key| pointer, in order to make it |memcpy|-friendly. Rather the key is
    109 // passed into each call that needs it.
    110 struct gcm128_context {
    111   // Following 6 names follow names in GCM specification
    112   union {
    113     uint64_t u[2];
    114     uint32_t d[4];
    115     uint8_t c[16];
    116     size_t t[16 / sizeof(size_t)];
    117   } Yi, EKi, EK0, len, Xi;
    118 
    119   // Note that the order of |Xi|, |H| and |Htable| is fixed by the MOVBE-based,
    120   // x86-64, GHASH assembly.
    121   u128 H;
    122   u128 Htable[16];
    123   gmult_func gmult;
    124   ghash_func ghash;
    125 
    126   unsigned int mres, ares;
    127   block128_f block;
    128 
    129   // use_aesni_gcm_crypt is true if this context should use the assembly
    130   // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data.
    131   unsigned use_aesni_gcm_crypt:1;
    132 };
    133 
    134 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
    135 // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
    136 // used.
    137 int crypto_gcm_clmul_enabled(void);
    138 #endif
    139 
    140 
    141 // CTR.
    142 
    143 // ctr128_f is the type of a function that performs CTR-mode encryption.
    144 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
    145                          const void *key, const uint8_t ivec[16]);
    146 
    147 // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
    148 // |len| bytes from |in| to |out| using |block| in counter mode. There's no
    149 // requirement that |len| be a multiple of any value and any partial blocks are
    150 // stored in |ecount_buf| and |*num|, which must be zeroed before the initial
    151 // call. The counter is a 128-bit, big-endian value in |ivec| and is
    152 // incremented by this function.
    153 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
    154                            const void *key, uint8_t ivec[16],
    155                            uint8_t ecount_buf[16], unsigned *num,
    156                            block128_f block);
    157 
    158 // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
    159 // |ctr|, a function that performs CTR mode but only deals with the lower 32
    160 // bits of the counter. This is useful when |ctr| can be an optimised
    161 // function.
    162 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
    163                                  const void *key, uint8_t ivec[16],
    164                                  uint8_t ecount_buf[16], unsigned *num,
    165                                  ctr128_f ctr);
    166 
    167 #if !defined(OPENSSL_NO_ASM) && \
    168     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64))
    169 void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
    170                                 const void *key, const uint8_t *ivec);
    171 #endif
    172 
    173 
    174 // GCM.
    175 //
    176 // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
    177 // not have a |key| pointer that points to the key as upstream's version does.
    178 // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
    179 // can be safely copied.
    180 
    181 typedef struct gcm128_context GCM128_CONTEXT;
    182 
    183 // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
    184 // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
    185 // accelerated) functions for performing operations in the GHASH field. If the
    186 // AVX implementation was used |*out_is_avx| will be true.
    187 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
    188                        u128 *out_key, u128 out_table[16], int *out_is_avx,
    189                        const uint8_t *gcm_key);
    190 
    191 // CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with
    192 // the given key. |is_aesni_encrypt| is one if |block| is |aesni_encrypt|.
    193 OPENSSL_EXPORT void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
    194                                        block128_f block, int is_aesni_encrypt);
    195 
    196 // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
    197 // same key that was passed to |CRYPTO_gcm128_init|.
    198 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
    199                                         const uint8_t *iv, size_t iv_len);
    200 
    201 // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
    202 // This must be called before and data is encrypted. It returns one on success
    203 // and zero otherwise.
    204 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
    205                                      size_t len);
    206 
    207 // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
    208 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
    209 // on success and zero otherwise.
    210 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
    211                                          const uint8_t *in, uint8_t *out,
    212                                          size_t len);
    213 
    214 // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
    215 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
    216 // on success and zero otherwise.
    217 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
    218                                          const uint8_t *in, uint8_t *out,
    219                                          size_t len);
    220 
    221 // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
    222 // a CTR function that only handles the bottom 32 bits of the nonce, like
    223 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
    224 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
    225 // otherwise.
    226 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
    227                                                const void *key,
    228                                                const uint8_t *in, uint8_t *out,
    229                                                size_t len, ctr128_f stream);
    230 
    231 // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
    232 // a CTR function that only handles the bottom 32 bits of the nonce, like
    233 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
    234 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
    235 // otherwise.
    236 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
    237                                                const void *key,
    238                                                const uint8_t *in, uint8_t *out,
    239                                                size_t len, ctr128_f stream);
    240 
    241 // CRYPTO_gcm128_finish calculates the authenticator and compares it against
    242 // |len| bytes of |tag|. It returns one on success and zero otherwise.
    243 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
    244                                         size_t len);
    245 
    246 // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
    247 // The minimum of |len| and 16 bytes are copied into |tag|.
    248 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
    249                                       size_t len);
    250 
    251 
    252 // CBC.
    253 
    254 // cbc128_f is the type of a function that performs CBC-mode encryption.
    255 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
    256                          const void *key, uint8_t ivec[16], int enc);
    257 
    258 // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
    259 // given IV and block cipher in CBC mode. The input need not be a multiple of
    260 // 128 bits long, but the output will round up to the nearest 128 bit multiple,
    261 // zero padding the input if needed. The IV will be updated on return.
    262 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
    263                            const void *key, uint8_t ivec[16], block128_f block);
    264 
    265 // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
    266 // given IV and block cipher in CBC mode. If |len| is not a multiple of 128
    267 // bits then only that many bytes will be written, but a multiple of 128 bits
    268 // is always read from |in|. The IV will be updated on return.
    269 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
    270                            const void *key, uint8_t ivec[16], block128_f block);
    271 
    272 
    273 // OFB.
    274 
    275 // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
    276 // |len| bytes from |in| to |out| using |block| in OFB mode. There's no
    277 // requirement that |len| be a multiple of any value and any partial blocks are
    278 // stored in |ivec| and |*num|, the latter must be zero before the initial
    279 // call.
    280 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out,
    281                            size_t len, const void *key, uint8_t ivec[16],
    282                            unsigned *num, block128_f block);
    283 
    284 
    285 // CFB.
    286 
    287 // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
    288 // from |in| to |out| using |block| in CFB mode. There's no requirement that
    289 // |len| be a multiple of any value and any partial blocks are stored in |ivec|
    290 // and |*num|, the latter must be zero before the initial call.
    291 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
    292                            const void *key, uint8_t ivec[16], unsigned *num,
    293                            int enc, block128_f block);
    294 
    295 // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
    296 // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
    297 // |num| should be set to zero.
    298 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
    299                              const void *key, uint8_t ivec[16], unsigned *num,
    300                              int enc, block128_f block);
    301 
    302 // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
    303 // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
    304 // |num| should be set to zero.
    305 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
    306                              const void *key, uint8_t ivec[16], unsigned *num,
    307                              int enc, block128_f block);
    308 
    309 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
    310                                    const void *key, uint8_t ivec[16],
    311                                    block128_f block);
    312 
    313 
    314 // POLYVAL.
    315 //
    316 // POLYVAL is a polynomial authenticator that operates over a field very
    317 // similar to the one that GHASH uses. See
    318 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3.
    319 
    320 typedef union {
    321   uint64_t u[2];
    322   uint8_t c[16];
    323 } polyval_block;
    324 
    325 struct polyval_ctx {
    326   // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based,
    327   // x86-64, GHASH assembly.
    328   polyval_block S;
    329   u128 H;
    330   u128 Htable[16];
    331   gmult_func gmult;
    332   ghash_func ghash;
    333 };
    334 
    335 // CRYPTO_POLYVAL_init initialises |ctx| using |key|.
    336 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
    337 
    338 // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
    339 // blocks from |in|. Only a whole number of blocks can be processed so |in_len|
    340 // must be a multiple of 16.
    341 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
    342                                   size_t in_len);
    343 
    344 // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
    345 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
    346 
    347 
    348 #if defined(__cplusplus)
    349 }  // extern C
    350 #endif
    351 
    352 #endif  // OPENSSL_HEADER_MODES_INTERNAL_H
    353