1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // We have a implementation in amd64 assembly so this code is only run on 6 // non-amd64 platforms. The amd64 assembly does not support gccgo. 7 // +build !amd64 gccgo appengine 8 9 package curve25519 10 11 // This code is a port of the public domain, "ref10" implementation of 12 // curve25519 from SUPERCOP 20130419 by D. J. Bernstein. 13 14 // fieldElement represents an element of the field GF(2^255 - 19). An element 15 // t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 16 // t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on 17 // context. 18 type fieldElement [10]int32 19 20 func feZero(fe *fieldElement) { 21 for i := range fe { 22 fe[i] = 0 23 } 24 } 25 26 func feOne(fe *fieldElement) { 27 feZero(fe) 28 fe[0] = 1 29 } 30 31 func feAdd(dst, a, b *fieldElement) { 32 for i := range dst { 33 dst[i] = a[i] + b[i] 34 } 35 } 36 37 func feSub(dst, a, b *fieldElement) { 38 for i := range dst { 39 dst[i] = a[i] - b[i] 40 } 41 } 42 43 func feCopy(dst, src *fieldElement) { 44 for i := range dst { 45 dst[i] = src[i] 46 } 47 } 48 49 // feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0. 50 // 51 // Preconditions: b in {0,1}. 52 func feCSwap(f, g *fieldElement, b int32) { 53 var x fieldElement 54 b = -b 55 for i := range x { 56 x[i] = b & (f[i] ^ g[i]) 57 } 58 59 for i := range f { 60 f[i] ^= x[i] 61 } 62 for i := range g { 63 g[i] ^= x[i] 64 } 65 } 66 67 // load3 reads a 24-bit, little-endian value from in. 68 func load3(in []byte) int64 { 69 var r int64 70 r = int64(in[0]) 71 r |= int64(in[1]) << 8 72 r |= int64(in[2]) << 16 73 return r 74 } 75 76 // load4 reads a 32-bit, little-endian value from in. 77 func load4(in []byte) int64 { 78 var r int64 79 r = int64(in[0]) 80 r |= int64(in[1]) << 8 81 r |= int64(in[2]) << 16 82 r |= int64(in[3]) << 24 83 return r 84 } 85 86 func feFromBytes(dst *fieldElement, src *[32]byte) { 87 h0 := load4(src[:]) 88 h1 := load3(src[4:]) << 6 89 h2 := load3(src[7:]) << 5 90 h3 := load3(src[10:]) << 3 91 h4 := load3(src[13:]) << 2 92 h5 := load4(src[16:]) 93 h6 := load3(src[20:]) << 7 94 h7 := load3(src[23:]) << 5 95 h8 := load3(src[26:]) << 4 96 h9 := load3(src[29:]) << 2 97 98 var carry [10]int64 99 carry[9] = (h9 + 1<<24) >> 25 100 h0 += carry[9] * 19 101 h9 -= carry[9] << 25 102 carry[1] = (h1 + 1<<24) >> 25 103 h2 += carry[1] 104 h1 -= carry[1] << 25 105 carry[3] = (h3 + 1<<24) >> 25 106 h4 += carry[3] 107 h3 -= carry[3] << 25 108 carry[5] = (h5 + 1<<24) >> 25 109 h6 += carry[5] 110 h5 -= carry[5] << 25 111 carry[7] = (h7 + 1<<24) >> 25 112 h8 += carry[7] 113 h7 -= carry[7] << 25 114 115 carry[0] = (h0 + 1<<25) >> 26 116 h1 += carry[0] 117 h0 -= carry[0] << 26 118 carry[2] = (h2 + 1<<25) >> 26 119 h3 += carry[2] 120 h2 -= carry[2] << 26 121 carry[4] = (h4 + 1<<25) >> 26 122 h5 += carry[4] 123 h4 -= carry[4] << 26 124 carry[6] = (h6 + 1<<25) >> 26 125 h7 += carry[6] 126 h6 -= carry[6] << 26 127 carry[8] = (h8 + 1<<25) >> 26 128 h9 += carry[8] 129 h8 -= carry[8] << 26 130 131 dst[0] = int32(h0) 132 dst[1] = int32(h1) 133 dst[2] = int32(h2) 134 dst[3] = int32(h3) 135 dst[4] = int32(h4) 136 dst[5] = int32(h5) 137 dst[6] = int32(h6) 138 dst[7] = int32(h7) 139 dst[8] = int32(h8) 140 dst[9] = int32(h9) 141 } 142 143 // feToBytes marshals h to s. 144 // Preconditions: 145 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 146 // 147 // Write p=2^255-19; q=floor(h/p). 148 // Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))). 149 // 150 // Proof: 151 // Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4. 152 // Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4. 153 // 154 // Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9). 155 // Then 0<y<1. 156 // 157 // Write r=h-pq. 158 // Have 0<=r<=p-1=2^255-20. 159 // Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1. 160 // 161 // Write x=r+19(2^-255)r+y. 162 // Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q. 163 // 164 // Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1)) 165 // so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q. 166 func feToBytes(s *[32]byte, h *fieldElement) { 167 var carry [10]int32 168 169 q := (19*h[9] + (1 << 24)) >> 25 170 q = (h[0] + q) >> 26 171 q = (h[1] + q) >> 25 172 q = (h[2] + q) >> 26 173 q = (h[3] + q) >> 25 174 q = (h[4] + q) >> 26 175 q = (h[5] + q) >> 25 176 q = (h[6] + q) >> 26 177 q = (h[7] + q) >> 25 178 q = (h[8] + q) >> 26 179 q = (h[9] + q) >> 25 180 181 // Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. 182 h[0] += 19 * q 183 // Goal: Output h-2^255 q, which is between 0 and 2^255-20. 184 185 carry[0] = h[0] >> 26 186 h[1] += carry[0] 187 h[0] -= carry[0] << 26 188 carry[1] = h[1] >> 25 189 h[2] += carry[1] 190 h[1] -= carry[1] << 25 191 carry[2] = h[2] >> 26 192 h[3] += carry[2] 193 h[2] -= carry[2] << 26 194 carry[3] = h[3] >> 25 195 h[4] += carry[3] 196 h[3] -= carry[3] << 25 197 carry[4] = h[4] >> 26 198 h[5] += carry[4] 199 h[4] -= carry[4] << 26 200 carry[5] = h[5] >> 25 201 h[6] += carry[5] 202 h[5] -= carry[5] << 25 203 carry[6] = h[6] >> 26 204 h[7] += carry[6] 205 h[6] -= carry[6] << 26 206 carry[7] = h[7] >> 25 207 h[8] += carry[7] 208 h[7] -= carry[7] << 25 209 carry[8] = h[8] >> 26 210 h[9] += carry[8] 211 h[8] -= carry[8] << 26 212 carry[9] = h[9] >> 25 213 h[9] -= carry[9] << 25 214 // h10 = carry9 215 216 // Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20. 217 // Have h[0]+...+2^230 h[9] between 0 and 2^255-1; 218 // evidently 2^255 h10-2^255 q = 0. 219 // Goal: Output h[0]+...+2^230 h[9]. 220 221 s[0] = byte(h[0] >> 0) 222 s[1] = byte(h[0] >> 8) 223 s[2] = byte(h[0] >> 16) 224 s[3] = byte((h[0] >> 24) | (h[1] << 2)) 225 s[4] = byte(h[1] >> 6) 226 s[5] = byte(h[1] >> 14) 227 s[6] = byte((h[1] >> 22) | (h[2] << 3)) 228 s[7] = byte(h[2] >> 5) 229 s[8] = byte(h[2] >> 13) 230 s[9] = byte((h[2] >> 21) | (h[3] << 5)) 231 s[10] = byte(h[3] >> 3) 232 s[11] = byte(h[3] >> 11) 233 s[12] = byte((h[3] >> 19) | (h[4] << 6)) 234 s[13] = byte(h[4] >> 2) 235 s[14] = byte(h[4] >> 10) 236 s[15] = byte(h[4] >> 18) 237 s[16] = byte(h[5] >> 0) 238 s[17] = byte(h[5] >> 8) 239 s[18] = byte(h[5] >> 16) 240 s[19] = byte((h[5] >> 24) | (h[6] << 1)) 241 s[20] = byte(h[6] >> 7) 242 s[21] = byte(h[6] >> 15) 243 s[22] = byte((h[6] >> 23) | (h[7] << 3)) 244 s[23] = byte(h[7] >> 5) 245 s[24] = byte(h[7] >> 13) 246 s[25] = byte((h[7] >> 21) | (h[8] << 4)) 247 s[26] = byte(h[8] >> 4) 248 s[27] = byte(h[8] >> 12) 249 s[28] = byte((h[8] >> 20) | (h[9] << 6)) 250 s[29] = byte(h[9] >> 2) 251 s[30] = byte(h[9] >> 10) 252 s[31] = byte(h[9] >> 18) 253 } 254 255 // feMul calculates h = f * g 256 // Can overlap h with f or g. 257 // 258 // Preconditions: 259 // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 260 // |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 261 // 262 // Postconditions: 263 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 264 // 265 // Notes on implementation strategy: 266 // 267 // Using schoolbook multiplication. 268 // Karatsuba would save a little in some cost models. 269 // 270 // Most multiplications by 2 and 19 are 32-bit precomputations; 271 // cheaper than 64-bit postcomputations. 272 // 273 // There is one remaining multiplication by 19 in the carry chain; 274 // one *19 precomputation can be merged into this, 275 // but the resulting data flow is considerably less clean. 276 // 277 // There are 12 carries below. 278 // 10 of them are 2-way parallelizable and vectorizable. 279 // Can get away with 11 carries, but then data flow is much deeper. 280 // 281 // With tighter constraints on inputs can squeeze carries into int32. 282 func feMul(h, f, g *fieldElement) { 283 f0 := f[0] 284 f1 := f[1] 285 f2 := f[2] 286 f3 := f[3] 287 f4 := f[4] 288 f5 := f[5] 289 f6 := f[6] 290 f7 := f[7] 291 f8 := f[8] 292 f9 := f[9] 293 g0 := g[0] 294 g1 := g[1] 295 g2 := g[2] 296 g3 := g[3] 297 g4 := g[4] 298 g5 := g[5] 299 g6 := g[6] 300 g7 := g[7] 301 g8 := g[8] 302 g9 := g[9] 303 g1_19 := 19 * g1 // 1.4*2^29 304 g2_19 := 19 * g2 // 1.4*2^30; still ok 305 g3_19 := 19 * g3 306 g4_19 := 19 * g4 307 g5_19 := 19 * g5 308 g6_19 := 19 * g6 309 g7_19 := 19 * g7 310 g8_19 := 19 * g8 311 g9_19 := 19 * g9 312 f1_2 := 2 * f1 313 f3_2 := 2 * f3 314 f5_2 := 2 * f5 315 f7_2 := 2 * f7 316 f9_2 := 2 * f9 317 f0g0 := int64(f0) * int64(g0) 318 f0g1 := int64(f0) * int64(g1) 319 f0g2 := int64(f0) * int64(g2) 320 f0g3 := int64(f0) * int64(g3) 321 f0g4 := int64(f0) * int64(g4) 322 f0g5 := int64(f0) * int64(g5) 323 f0g6 := int64(f0) * int64(g6) 324 f0g7 := int64(f0) * int64(g7) 325 f0g8 := int64(f0) * int64(g8) 326 f0g9 := int64(f0) * int64(g9) 327 f1g0 := int64(f1) * int64(g0) 328 f1g1_2 := int64(f1_2) * int64(g1) 329 f1g2 := int64(f1) * int64(g2) 330 f1g3_2 := int64(f1_2) * int64(g3) 331 f1g4 := int64(f1) * int64(g4) 332 f1g5_2 := int64(f1_2) * int64(g5) 333 f1g6 := int64(f1) * int64(g6) 334 f1g7_2 := int64(f1_2) * int64(g7) 335 f1g8 := int64(f1) * int64(g8) 336 f1g9_38 := int64(f1_2) * int64(g9_19) 337 f2g0 := int64(f2) * int64(g0) 338 f2g1 := int64(f2) * int64(g1) 339 f2g2 := int64(f2) * int64(g2) 340 f2g3 := int64(f2) * int64(g3) 341 f2g4 := int64(f2) * int64(g4) 342 f2g5 := int64(f2) * int64(g5) 343 f2g6 := int64(f2) * int64(g6) 344 f2g7 := int64(f2) * int64(g7) 345 f2g8_19 := int64(f2) * int64(g8_19) 346 f2g9_19 := int64(f2) * int64(g9_19) 347 f3g0 := int64(f3) * int64(g0) 348 f3g1_2 := int64(f3_2) * int64(g1) 349 f3g2 := int64(f3) * int64(g2) 350 f3g3_2 := int64(f3_2) * int64(g3) 351 f3g4 := int64(f3) * int64(g4) 352 f3g5_2 := int64(f3_2) * int64(g5) 353 f3g6 := int64(f3) * int64(g6) 354 f3g7_38 := int64(f3_2) * int64(g7_19) 355 f3g8_19 := int64(f3) * int64(g8_19) 356 f3g9_38 := int64(f3_2) * int64(g9_19) 357 f4g0 := int64(f4) * int64(g0) 358 f4g1 := int64(f4) * int64(g1) 359 f4g2 := int64(f4) * int64(g2) 360 f4g3 := int64(f4) * int64(g3) 361 f4g4 := int64(f4) * int64(g4) 362 f4g5 := int64(f4) * int64(g5) 363 f4g6_19 := int64(f4) * int64(g6_19) 364 f4g7_19 := int64(f4) * int64(g7_19) 365 f4g8_19 := int64(f4) * int64(g8_19) 366 f4g9_19 := int64(f4) * int64(g9_19) 367 f5g0 := int64(f5) * int64(g0) 368 f5g1_2 := int64(f5_2) * int64(g1) 369 f5g2 := int64(f5) * int64(g2) 370 f5g3_2 := int64(f5_2) * int64(g3) 371 f5g4 := int64(f5) * int64(g4) 372 f5g5_38 := int64(f5_2) * int64(g5_19) 373 f5g6_19 := int64(f5) * int64(g6_19) 374 f5g7_38 := int64(f5_2) * int64(g7_19) 375 f5g8_19 := int64(f5) * int64(g8_19) 376 f5g9_38 := int64(f5_2) * int64(g9_19) 377 f6g0 := int64(f6) * int64(g0) 378 f6g1 := int64(f6) * int64(g1) 379 f6g2 := int64(f6) * int64(g2) 380 f6g3 := int64(f6) * int64(g3) 381 f6g4_19 := int64(f6) * int64(g4_19) 382 f6g5_19 := int64(f6) * int64(g5_19) 383 f6g6_19 := int64(f6) * int64(g6_19) 384 f6g7_19 := int64(f6) * int64(g7_19) 385 f6g8_19 := int64(f6) * int64(g8_19) 386 f6g9_19 := int64(f6) * int64(g9_19) 387 f7g0 := int64(f7) * int64(g0) 388 f7g1_2 := int64(f7_2) * int64(g1) 389 f7g2 := int64(f7) * int64(g2) 390 f7g3_38 := int64(f7_2) * int64(g3_19) 391 f7g4_19 := int64(f7) * int64(g4_19) 392 f7g5_38 := int64(f7_2) * int64(g5_19) 393 f7g6_19 := int64(f7) * int64(g6_19) 394 f7g7_38 := int64(f7_2) * int64(g7_19) 395 f7g8_19 := int64(f7) * int64(g8_19) 396 f7g9_38 := int64(f7_2) * int64(g9_19) 397 f8g0 := int64(f8) * int64(g0) 398 f8g1 := int64(f8) * int64(g1) 399 f8g2_19 := int64(f8) * int64(g2_19) 400 f8g3_19 := int64(f8) * int64(g3_19) 401 f8g4_19 := int64(f8) * int64(g4_19) 402 f8g5_19 := int64(f8) * int64(g5_19) 403 f8g6_19 := int64(f8) * int64(g6_19) 404 f8g7_19 := int64(f8) * int64(g7_19) 405 f8g8_19 := int64(f8) * int64(g8_19) 406 f8g9_19 := int64(f8) * int64(g9_19) 407 f9g0 := int64(f9) * int64(g0) 408 f9g1_38 := int64(f9_2) * int64(g1_19) 409 f9g2_19 := int64(f9) * int64(g2_19) 410 f9g3_38 := int64(f9_2) * int64(g3_19) 411 f9g4_19 := int64(f9) * int64(g4_19) 412 f9g5_38 := int64(f9_2) * int64(g5_19) 413 f9g6_19 := int64(f9) * int64(g6_19) 414 f9g7_38 := int64(f9_2) * int64(g7_19) 415 f9g8_19 := int64(f9) * int64(g8_19) 416 f9g9_38 := int64(f9_2) * int64(g9_19) 417 h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38 418 h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19 419 h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38 420 h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19 421 h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38 422 h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19 423 h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38 424 h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19 425 h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38 426 h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0 427 var carry [10]int64 428 429 // |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38)) 430 // i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8 431 // |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19)) 432 // i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9 433 434 carry[0] = (h0 + (1 << 25)) >> 26 435 h1 += carry[0] 436 h0 -= carry[0] << 26 437 carry[4] = (h4 + (1 << 25)) >> 26 438 h5 += carry[4] 439 h4 -= carry[4] << 26 440 // |h0| <= 2^25 441 // |h4| <= 2^25 442 // |h1| <= 1.51*2^58 443 // |h5| <= 1.51*2^58 444 445 carry[1] = (h1 + (1 << 24)) >> 25 446 h2 += carry[1] 447 h1 -= carry[1] << 25 448 carry[5] = (h5 + (1 << 24)) >> 25 449 h6 += carry[5] 450 h5 -= carry[5] << 25 451 // |h1| <= 2^24; from now on fits into int32 452 // |h5| <= 2^24; from now on fits into int32 453 // |h2| <= 1.21*2^59 454 // |h6| <= 1.21*2^59 455 456 carry[2] = (h2 + (1 << 25)) >> 26 457 h3 += carry[2] 458 h2 -= carry[2] << 26 459 carry[6] = (h6 + (1 << 25)) >> 26 460 h7 += carry[6] 461 h6 -= carry[6] << 26 462 // |h2| <= 2^25; from now on fits into int32 unchanged 463 // |h6| <= 2^25; from now on fits into int32 unchanged 464 // |h3| <= 1.51*2^58 465 // |h7| <= 1.51*2^58 466 467 carry[3] = (h3 + (1 << 24)) >> 25 468 h4 += carry[3] 469 h3 -= carry[3] << 25 470 carry[7] = (h7 + (1 << 24)) >> 25 471 h8 += carry[7] 472 h7 -= carry[7] << 25 473 // |h3| <= 2^24; from now on fits into int32 unchanged 474 // |h7| <= 2^24; from now on fits into int32 unchanged 475 // |h4| <= 1.52*2^33 476 // |h8| <= 1.52*2^33 477 478 carry[4] = (h4 + (1 << 25)) >> 26 479 h5 += carry[4] 480 h4 -= carry[4] << 26 481 carry[8] = (h8 + (1 << 25)) >> 26 482 h9 += carry[8] 483 h8 -= carry[8] << 26 484 // |h4| <= 2^25; from now on fits into int32 unchanged 485 // |h8| <= 2^25; from now on fits into int32 unchanged 486 // |h5| <= 1.01*2^24 487 // |h9| <= 1.51*2^58 488 489 carry[9] = (h9 + (1 << 24)) >> 25 490 h0 += carry[9] * 19 491 h9 -= carry[9] << 25 492 // |h9| <= 2^24; from now on fits into int32 unchanged 493 // |h0| <= 1.8*2^37 494 495 carry[0] = (h0 + (1 << 25)) >> 26 496 h1 += carry[0] 497 h0 -= carry[0] << 26 498 // |h0| <= 2^25; from now on fits into int32 unchanged 499 // |h1| <= 1.01*2^24 500 501 h[0] = int32(h0) 502 h[1] = int32(h1) 503 h[2] = int32(h2) 504 h[3] = int32(h3) 505 h[4] = int32(h4) 506 h[5] = int32(h5) 507 h[6] = int32(h6) 508 h[7] = int32(h7) 509 h[8] = int32(h8) 510 h[9] = int32(h9) 511 } 512 513 // feSquare calculates h = f*f. Can overlap h with f. 514 // 515 // Preconditions: 516 // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 517 // 518 // Postconditions: 519 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 520 func feSquare(h, f *fieldElement) { 521 f0 := f[0] 522 f1 := f[1] 523 f2 := f[2] 524 f3 := f[3] 525 f4 := f[4] 526 f5 := f[5] 527 f6 := f[6] 528 f7 := f[7] 529 f8 := f[8] 530 f9 := f[9] 531 f0_2 := 2 * f0 532 f1_2 := 2 * f1 533 f2_2 := 2 * f2 534 f3_2 := 2 * f3 535 f4_2 := 2 * f4 536 f5_2 := 2 * f5 537 f6_2 := 2 * f6 538 f7_2 := 2 * f7 539 f5_38 := 38 * f5 // 1.31*2^30 540 f6_19 := 19 * f6 // 1.31*2^30 541 f7_38 := 38 * f7 // 1.31*2^30 542 f8_19 := 19 * f8 // 1.31*2^30 543 f9_38 := 38 * f9 // 1.31*2^30 544 f0f0 := int64(f0) * int64(f0) 545 f0f1_2 := int64(f0_2) * int64(f1) 546 f0f2_2 := int64(f0_2) * int64(f2) 547 f0f3_2 := int64(f0_2) * int64(f3) 548 f0f4_2 := int64(f0_2) * int64(f4) 549 f0f5_2 := int64(f0_2) * int64(f5) 550 f0f6_2 := int64(f0_2) * int64(f6) 551 f0f7_2 := int64(f0_2) * int64(f7) 552 f0f8_2 := int64(f0_2) * int64(f8) 553 f0f9_2 := int64(f0_2) * int64(f9) 554 f1f1_2 := int64(f1_2) * int64(f1) 555 f1f2_2 := int64(f1_2) * int64(f2) 556 f1f3_4 := int64(f1_2) * int64(f3_2) 557 f1f4_2 := int64(f1_2) * int64(f4) 558 f1f5_4 := int64(f1_2) * int64(f5_2) 559 f1f6_2 := int64(f1_2) * int64(f6) 560 f1f7_4 := int64(f1_2) * int64(f7_2) 561 f1f8_2 := int64(f1_2) * int64(f8) 562 f1f9_76 := int64(f1_2) * int64(f9_38) 563 f2f2 := int64(f2) * int64(f2) 564 f2f3_2 := int64(f2_2) * int64(f3) 565 f2f4_2 := int64(f2_2) * int64(f4) 566 f2f5_2 := int64(f2_2) * int64(f5) 567 f2f6_2 := int64(f2_2) * int64(f6) 568 f2f7_2 := int64(f2_2) * int64(f7) 569 f2f8_38 := int64(f2_2) * int64(f8_19) 570 f2f9_38 := int64(f2) * int64(f9_38) 571 f3f3_2 := int64(f3_2) * int64(f3) 572 f3f4_2 := int64(f3_2) * int64(f4) 573 f3f5_4 := int64(f3_2) * int64(f5_2) 574 f3f6_2 := int64(f3_2) * int64(f6) 575 f3f7_76 := int64(f3_2) * int64(f7_38) 576 f3f8_38 := int64(f3_2) * int64(f8_19) 577 f3f9_76 := int64(f3_2) * int64(f9_38) 578 f4f4 := int64(f4) * int64(f4) 579 f4f5_2 := int64(f4_2) * int64(f5) 580 f4f6_38 := int64(f4_2) * int64(f6_19) 581 f4f7_38 := int64(f4) * int64(f7_38) 582 f4f8_38 := int64(f4_2) * int64(f8_19) 583 f4f9_38 := int64(f4) * int64(f9_38) 584 f5f5_38 := int64(f5) * int64(f5_38) 585 f5f6_38 := int64(f5_2) * int64(f6_19) 586 f5f7_76 := int64(f5_2) * int64(f7_38) 587 f5f8_38 := int64(f5_2) * int64(f8_19) 588 f5f9_76 := int64(f5_2) * int64(f9_38) 589 f6f6_19 := int64(f6) * int64(f6_19) 590 f6f7_38 := int64(f6) * int64(f7_38) 591 f6f8_38 := int64(f6_2) * int64(f8_19) 592 f6f9_38 := int64(f6) * int64(f9_38) 593 f7f7_38 := int64(f7) * int64(f7_38) 594 f7f8_38 := int64(f7_2) * int64(f8_19) 595 f7f9_76 := int64(f7_2) * int64(f9_38) 596 f8f8_19 := int64(f8) * int64(f8_19) 597 f8f9_38 := int64(f8) * int64(f9_38) 598 f9f9_38 := int64(f9) * int64(f9_38) 599 h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38 600 h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38 601 h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19 602 h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38 603 h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38 604 h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38 605 h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19 606 h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38 607 h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38 608 h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2 609 var carry [10]int64 610 611 carry[0] = (h0 + (1 << 25)) >> 26 612 h1 += carry[0] 613 h0 -= carry[0] << 26 614 carry[4] = (h4 + (1 << 25)) >> 26 615 h5 += carry[4] 616 h4 -= carry[4] << 26 617 618 carry[1] = (h1 + (1 << 24)) >> 25 619 h2 += carry[1] 620 h1 -= carry[1] << 25 621 carry[5] = (h5 + (1 << 24)) >> 25 622 h6 += carry[5] 623 h5 -= carry[5] << 25 624 625 carry[2] = (h2 + (1 << 25)) >> 26 626 h3 += carry[2] 627 h2 -= carry[2] << 26 628 carry[6] = (h6 + (1 << 25)) >> 26 629 h7 += carry[6] 630 h6 -= carry[6] << 26 631 632 carry[3] = (h3 + (1 << 24)) >> 25 633 h4 += carry[3] 634 h3 -= carry[3] << 25 635 carry[7] = (h7 + (1 << 24)) >> 25 636 h8 += carry[7] 637 h7 -= carry[7] << 25 638 639 carry[4] = (h4 + (1 << 25)) >> 26 640 h5 += carry[4] 641 h4 -= carry[4] << 26 642 carry[8] = (h8 + (1 << 25)) >> 26 643 h9 += carry[8] 644 h8 -= carry[8] << 26 645 646 carry[9] = (h9 + (1 << 24)) >> 25 647 h0 += carry[9] * 19 648 h9 -= carry[9] << 25 649 650 carry[0] = (h0 + (1 << 25)) >> 26 651 h1 += carry[0] 652 h0 -= carry[0] << 26 653 654 h[0] = int32(h0) 655 h[1] = int32(h1) 656 h[2] = int32(h2) 657 h[3] = int32(h3) 658 h[4] = int32(h4) 659 h[5] = int32(h5) 660 h[6] = int32(h6) 661 h[7] = int32(h7) 662 h[8] = int32(h8) 663 h[9] = int32(h9) 664 } 665 666 // feMul121666 calculates h = f * 121666. Can overlap h with f. 667 // 668 // Preconditions: 669 // |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. 670 // 671 // Postconditions: 672 // |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. 673 func feMul121666(h, f *fieldElement) { 674 h0 := int64(f[0]) * 121666 675 h1 := int64(f[1]) * 121666 676 h2 := int64(f[2]) * 121666 677 h3 := int64(f[3]) * 121666 678 h4 := int64(f[4]) * 121666 679 h5 := int64(f[5]) * 121666 680 h6 := int64(f[6]) * 121666 681 h7 := int64(f[7]) * 121666 682 h8 := int64(f[8]) * 121666 683 h9 := int64(f[9]) * 121666 684 var carry [10]int64 685 686 carry[9] = (h9 + (1 << 24)) >> 25 687 h0 += carry[9] * 19 688 h9 -= carry[9] << 25 689 carry[1] = (h1 + (1 << 24)) >> 25 690 h2 += carry[1] 691 h1 -= carry[1] << 25 692 carry[3] = (h3 + (1 << 24)) >> 25 693 h4 += carry[3] 694 h3 -= carry[3] << 25 695 carry[5] = (h5 + (1 << 24)) >> 25 696 h6 += carry[5] 697 h5 -= carry[5] << 25 698 carry[7] = (h7 + (1 << 24)) >> 25 699 h8 += carry[7] 700 h7 -= carry[7] << 25 701 702 carry[0] = (h0 + (1 << 25)) >> 26 703 h1 += carry[0] 704 h0 -= carry[0] << 26 705 carry[2] = (h2 + (1 << 25)) >> 26 706 h3 += carry[2] 707 h2 -= carry[2] << 26 708 carry[4] = (h4 + (1 << 25)) >> 26 709 h5 += carry[4] 710 h4 -= carry[4] << 26 711 carry[6] = (h6 + (1 << 25)) >> 26 712 h7 += carry[6] 713 h6 -= carry[6] << 26 714 carry[8] = (h8 + (1 << 25)) >> 26 715 h9 += carry[8] 716 h8 -= carry[8] << 26 717 718 h[0] = int32(h0) 719 h[1] = int32(h1) 720 h[2] = int32(h2) 721 h[3] = int32(h3) 722 h[4] = int32(h4) 723 h[5] = int32(h5) 724 h[6] = int32(h6) 725 h[7] = int32(h7) 726 h[8] = int32(h8) 727 h[9] = int32(h9) 728 } 729 730 // feInvert sets out = z^-1. 731 func feInvert(out, z *fieldElement) { 732 var t0, t1, t2, t3 fieldElement 733 var i int 734 735 feSquare(&t0, z) 736 for i = 1; i < 1; i++ { 737 feSquare(&t0, &t0) 738 } 739 feSquare(&t1, &t0) 740 for i = 1; i < 2; i++ { 741 feSquare(&t1, &t1) 742 } 743 feMul(&t1, z, &t1) 744 feMul(&t0, &t0, &t1) 745 feSquare(&t2, &t0) 746 for i = 1; i < 1; i++ { 747 feSquare(&t2, &t2) 748 } 749 feMul(&t1, &t1, &t2) 750 feSquare(&t2, &t1) 751 for i = 1; i < 5; i++ { 752 feSquare(&t2, &t2) 753 } 754 feMul(&t1, &t2, &t1) 755 feSquare(&t2, &t1) 756 for i = 1; i < 10; i++ { 757 feSquare(&t2, &t2) 758 } 759 feMul(&t2, &t2, &t1) 760 feSquare(&t3, &t2) 761 for i = 1; i < 20; i++ { 762 feSquare(&t3, &t3) 763 } 764 feMul(&t2, &t3, &t2) 765 feSquare(&t2, &t2) 766 for i = 1; i < 10; i++ { 767 feSquare(&t2, &t2) 768 } 769 feMul(&t1, &t2, &t1) 770 feSquare(&t2, &t1) 771 for i = 1; i < 50; i++ { 772 feSquare(&t2, &t2) 773 } 774 feMul(&t2, &t2, &t1) 775 feSquare(&t3, &t2) 776 for i = 1; i < 100; i++ { 777 feSquare(&t3, &t3) 778 } 779 feMul(&t2, &t3, &t2) 780 feSquare(&t2, &t2) 781 for i = 1; i < 50; i++ { 782 feSquare(&t2, &t2) 783 } 784 feMul(&t1, &t2, &t1) 785 feSquare(&t1, &t1) 786 for i = 1; i < 5; i++ { 787 feSquare(&t1, &t1) 788 } 789 feMul(out, &t1, &t0) 790 } 791 792 func scalarMult(out, in, base *[32]byte) { 793 var e [32]byte 794 795 copy(e[:], in[:]) 796 e[0] &= 248 797 e[31] &= 127 798 e[31] |= 64 799 800 var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement 801 feFromBytes(&x1, base) 802 feOne(&x2) 803 feCopy(&x3, &x1) 804 feOne(&z3) 805 806 swap := int32(0) 807 for pos := 254; pos >= 0; pos-- { 808 b := e[pos/8] >> uint(pos&7) 809 b &= 1 810 swap ^= int32(b) 811 feCSwap(&x2, &x3, swap) 812 feCSwap(&z2, &z3, swap) 813 swap = int32(b) 814 815 feSub(&tmp0, &x3, &z3) 816 feSub(&tmp1, &x2, &z2) 817 feAdd(&x2, &x2, &z2) 818 feAdd(&z2, &x3, &z3) 819 feMul(&z3, &tmp0, &x2) 820 feMul(&z2, &z2, &tmp1) 821 feSquare(&tmp0, &tmp1) 822 feSquare(&tmp1, &x2) 823 feAdd(&x3, &z3, &z2) 824 feSub(&z2, &z3, &z2) 825 feMul(&x2, &tmp1, &tmp0) 826 feSub(&tmp1, &tmp1, &tmp0) 827 feSquare(&z2, &z2) 828 feMul121666(&z3, &tmp1) 829 feSquare(&x3, &x3) 830 feAdd(&tmp0, &tmp0, &z3) 831 feMul(&z3, &x1, &z2) 832 feMul(&z2, &tmp1, &tmp0) 833 } 834 835 feCSwap(&x2, &x3, swap) 836 feCSwap(&z2, &z3, swap) 837 838 feInvert(&z2, &z2) 839 feMul(&x2, &x2, &z2) 840 feToBytes(out, &x2) 841 } 842