Home | History | Annotate | Download | only in ssl
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com). */
    108 
    109 #include <openssl/ssl.h>
    110 
    111 #include <assert.h>
    112 #include <string.h>
    113 
    114 #include <openssl/bytestring.h>
    115 #include <openssl/err.h>
    116 #include <openssl/mem.h>
    117 
    118 #include "internal.h"
    119 #include "../crypto/internal.h"
    120 
    121 
    122 namespace bssl {
    123 
    124 // kMaxEmptyRecords is the number of consecutive, empty records that will be
    125 // processed. Without this limit an attacker could send empty records at a
    126 // faster rate than we can process and cause record processing to loop
    127 // forever.
    128 static const uint8_t kMaxEmptyRecords = 32;
    129 
    130 // kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that
    131 // will be skipped. Without this limit an attacker could send records at a
    132 // faster rate than we can process and cause trial decryption to loop forever.
    133 // This value should be slightly above kMaxEarlyDataAccepted, which is measured
    134 // in plaintext.
    135 static const size_t kMaxEarlyDataSkipped = 16384;
    136 
    137 // kMaxWarningAlerts is the number of consecutive warning alerts that will be
    138 // processed.
    139 static const uint8_t kMaxWarningAlerts = 4;
    140 
    141 // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
    142 // state needs record-splitting and zero otherwise.
    143 static int ssl_needs_record_splitting(const SSL *ssl) {
    144 #if !defined(BORINGSSL_UNSAFE_FUZZER_MODE)
    145   return !ssl->s3->aead_write_ctx->is_null_cipher() &&
    146          ssl->s3->aead_write_ctx->ProtocolVersion() < TLS1_1_VERSION &&
    147          (ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 &&
    148          SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher());
    149 #else
    150   return 0;
    151 #endif
    152 }
    153 
    154 int ssl_record_sequence_update(uint8_t *seq, size_t seq_len) {
    155   for (size_t i = seq_len - 1; i < seq_len; i--) {
    156     ++seq[i];
    157     if (seq[i] != 0) {
    158       return 1;
    159     }
    160   }
    161   OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
    162   return 0;
    163 }
    164 
    165 size_t ssl_record_prefix_len(const SSL *ssl) {
    166   size_t header_len;
    167   if (SSL_is_dtls(ssl)) {
    168     header_len = DTLS1_RT_HEADER_LENGTH;
    169   } else {
    170     header_len = SSL3_RT_HEADER_LENGTH;
    171   }
    172 
    173   return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen();
    174 }
    175 
    176 size_t ssl_seal_align_prefix_len(const SSL *ssl) {
    177   if (SSL_is_dtls(ssl)) {
    178     return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
    179   }
    180 
    181   size_t ret =
    182       SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
    183   if (ssl_needs_record_splitting(ssl)) {
    184     ret += SSL3_RT_HEADER_LENGTH;
    185     ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
    186   }
    187   return ret;
    188 }
    189 
    190 static ssl_open_record_t skip_early_data(SSL *ssl, uint8_t *out_alert,
    191                                          size_t consumed) {
    192   ssl->s3->early_data_skipped += consumed;
    193   if (ssl->s3->early_data_skipped < consumed) {
    194     ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1;
    195   }
    196 
    197   if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) {
    198     OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA);
    199     *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    200     return ssl_open_record_error;
    201   }
    202 
    203   return ssl_open_record_discard;
    204 }
    205 
    206 ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
    207                                   Span<uint8_t> *out, size_t *out_consumed,
    208                                   uint8_t *out_alert, Span<uint8_t> in) {
    209   *out_consumed = 0;
    210   if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) {
    211     return ssl_open_record_close_notify;
    212   }
    213 
    214   // If there is an unprocessed handshake message or we are already buffering
    215   // too much, stop before decrypting another handshake record.
    216   if (!tls_can_accept_handshake_data(ssl, out_alert)) {
    217     return ssl_open_record_error;
    218   }
    219 
    220   CBS cbs = CBS(in);
    221 
    222   // Decode the record header.
    223   uint8_t type;
    224   uint16_t version, ciphertext_len;
    225   if (!CBS_get_u8(&cbs, &type) ||
    226       !CBS_get_u16(&cbs, &version) ||
    227       !CBS_get_u16(&cbs, &ciphertext_len)) {
    228     *out_consumed = SSL3_RT_HEADER_LENGTH;
    229     return ssl_open_record_partial;
    230   }
    231 
    232   bool version_ok;
    233   if (ssl->s3->aead_read_ctx->is_null_cipher()) {
    234     // Only check the first byte. Enforcing beyond that can prevent decoding
    235     // version negotiation failure alerts.
    236     version_ok = (version >> 8) == SSL3_VERSION_MAJOR;
    237   } else {
    238     version_ok = version == ssl->s3->aead_read_ctx->RecordVersion();
    239   }
    240 
    241   if (!version_ok) {
    242     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
    243     *out_alert = SSL_AD_PROTOCOL_VERSION;
    244     return ssl_open_record_error;
    245   }
    246 
    247   // Check the ciphertext length.
    248   if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
    249     OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
    250     *out_alert = SSL_AD_RECORD_OVERFLOW;
    251     return ssl_open_record_error;
    252   }
    253 
    254   // Extract the body.
    255   CBS body;
    256   if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) {
    257     *out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len;
    258     return ssl_open_record_partial;
    259   }
    260 
    261   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER,
    262                       in.subspan(0, SSL3_RT_HEADER_LENGTH));
    263 
    264   *out_consumed = in.size() - CBS_len(&cbs);
    265 
    266   if (ssl->s3->have_version &&
    267       ssl_protocol_version(ssl) >= TLS1_3_VERSION &&
    268       SSL_in_init(ssl) &&
    269       type == SSL3_RT_CHANGE_CIPHER_SPEC &&
    270       ciphertext_len == 1 &&
    271       CBS_data(&body)[0] == 1) {
    272     ssl->s3->empty_record_count++;
    273     if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
    274       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
    275       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    276       return ssl_open_record_error;
    277     }
    278     return ssl_open_record_discard;
    279   }
    280 
    281   // Skip early data received when expecting a second ClientHello if we rejected
    282   // 0RTT.
    283   if (ssl->s3->skip_early_data &&
    284       ssl->s3->aead_read_ctx->is_null_cipher() &&
    285       type == SSL3_RT_APPLICATION_DATA) {
    286     return skip_early_data(ssl, out_alert, *out_consumed);
    287   }
    288 
    289   // Decrypt the body in-place.
    290   if (!ssl->s3->aead_read_ctx->Open(
    291           out, type, version, ssl->s3->read_sequence,
    292           MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) {
    293     if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) {
    294       ERR_clear_error();
    295       return skip_early_data(ssl, out_alert, *out_consumed);
    296     }
    297 
    298     OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
    299     *out_alert = SSL_AD_BAD_RECORD_MAC;
    300     return ssl_open_record_error;
    301   }
    302 
    303   ssl->s3->skip_early_data = false;
    304 
    305   if (!ssl_record_sequence_update(ssl->s3->read_sequence, 8)) {
    306     *out_alert = SSL_AD_INTERNAL_ERROR;
    307     return ssl_open_record_error;
    308   }
    309 
    310   // TLS 1.3 hides the record type inside the encrypted data.
    311   bool has_padding =
    312       !ssl->s3->aead_read_ctx->is_null_cipher() &&
    313       ssl->s3->aead_read_ctx->ProtocolVersion() >= TLS1_3_VERSION;
    314 
    315   // If there is padding, the plaintext limit includes the padding, but includes
    316   // extra room for the inner content type.
    317   size_t plaintext_limit =
    318       has_padding ? SSL3_RT_MAX_PLAIN_LENGTH + 1 : SSL3_RT_MAX_PLAIN_LENGTH;
    319   if (out->size() > plaintext_limit) {
    320     OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
    321     *out_alert = SSL_AD_RECORD_OVERFLOW;
    322     return ssl_open_record_error;
    323   }
    324 
    325   if (has_padding) {
    326     // The outer record type is always application_data.
    327     if (type != SSL3_RT_APPLICATION_DATA) {
    328       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE);
    329       *out_alert = SSL_AD_DECODE_ERROR;
    330       return ssl_open_record_error;
    331     }
    332 
    333     do {
    334       if (out->empty()) {
    335         OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
    336         *out_alert = SSL_AD_DECRYPT_ERROR;
    337         return ssl_open_record_error;
    338       }
    339       type = out->back();
    340       *out = out->subspan(0, out->size() - 1);
    341     } while (type == 0);
    342   }
    343 
    344   // Limit the number of consecutive empty records.
    345   if (out->empty()) {
    346     ssl->s3->empty_record_count++;
    347     if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
    348       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
    349       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    350       return ssl_open_record_error;
    351     }
    352     // Apart from the limit, empty records are returned up to the caller. This
    353     // allows the caller to reject records of the wrong type.
    354   } else {
    355     ssl->s3->empty_record_count = 0;
    356   }
    357 
    358   if (type == SSL3_RT_ALERT) {
    359     return ssl_process_alert(ssl, out_alert, *out);
    360   }
    361 
    362   // Handshake messages may not interleave with any other record type.
    363   if (type != SSL3_RT_HANDSHAKE &&
    364       tls_has_unprocessed_handshake_data(ssl)) {
    365     OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
    366     *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    367     return ssl_open_record_error;
    368   }
    369 
    370   ssl->s3->warning_alert_count = 0;
    371 
    372   *out_type = type;
    373   return ssl_open_record_success;
    374 }
    375 
    376 static int do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
    377                           uint8_t *out_suffix, uint8_t type, const uint8_t *in,
    378                           const size_t in_len) {
    379   uint8_t *extra_in = NULL;
    380   size_t extra_in_len = 0;
    381   if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
    382       ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
    383     // TLS 1.3 hides the actual record type inside the encrypted data.
    384     extra_in = &type;
    385     extra_in_len = 1;
    386   }
    387 
    388   size_t suffix_len;
    389   if (!ssl->s3->aead_write_ctx->SuffixLen(&suffix_len, in_len, extra_in_len)) {
    390     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
    391     return 0;
    392   }
    393   size_t ciphertext_len =
    394       ssl->s3->aead_write_ctx->ExplicitNonceLen() + suffix_len;
    395   if (ciphertext_len + in_len < ciphertext_len) {
    396     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
    397     return 0;
    398   }
    399   ciphertext_len += in_len;
    400 
    401   assert(in == out || !buffers_alias(in, in_len, out, in_len));
    402   assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl)));
    403   assert(!buffers_alias(in, in_len, out_suffix, suffix_len));
    404 
    405   if (extra_in_len) {
    406     out_prefix[0] = SSL3_RT_APPLICATION_DATA;
    407   } else {
    408     out_prefix[0] = type;
    409   }
    410 
    411   uint16_t record_version = ssl->s3->aead_write_ctx->RecordVersion();
    412 
    413   out_prefix[1] = record_version >> 8;
    414   out_prefix[2] = record_version & 0xff;
    415   out_prefix[3] = ciphertext_len >> 8;
    416   out_prefix[4] = ciphertext_len & 0xff;
    417 
    418   if (!ssl->s3->aead_write_ctx->SealScatter(
    419           out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix, type,
    420           record_version, ssl->s3->write_sequence, in, in_len, extra_in,
    421           extra_in_len) ||
    422       !ssl_record_sequence_update(ssl->s3->write_sequence, 8)) {
    423     return 0;
    424   }
    425 
    426   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER,
    427                       MakeSpan(out_prefix, SSL3_RT_HEADER_LENGTH));
    428   return 1;
    429 }
    430 
    431 static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type,
    432                                    size_t in_len) {
    433   size_t ret = SSL3_RT_HEADER_LENGTH;
    434   if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
    435       ssl_needs_record_splitting(ssl)) {
    436     // In the case of record splitting, the 1-byte record (of the 1/n-1 split)
    437     // will be placed in the prefix, as will four of the five bytes of the
    438     // record header for the main record. The final byte will replace the first
    439     // byte of the plaintext that was used in the small record.
    440     ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
    441     ret += SSL3_RT_HEADER_LENGTH - 1;
    442   } else {
    443     ret += ssl->s3->aead_write_ctx->ExplicitNonceLen();
    444   }
    445   return ret;
    446 }
    447 
    448 static bool tls_seal_scatter_suffix_len(const SSL *ssl, size_t *out_suffix_len,
    449                                         uint8_t type, size_t in_len) {
    450   size_t extra_in_len = 0;
    451   if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
    452       ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
    453     // TLS 1.3 adds an extra byte for encrypted record type.
    454     extra_in_len = 1;
    455   }
    456   if (type == SSL3_RT_APPLICATION_DATA &&  // clang-format off
    457       in_len > 1 &&
    458       ssl_needs_record_splitting(ssl)) {
    459     // With record splitting enabled, the first byte gets sealed into a separate
    460     // record which is written into the prefix.
    461     in_len -= 1;
    462   }
    463   return ssl->s3->aead_write_ctx->SuffixLen(out_suffix_len, in_len, extra_in_len);
    464 }
    465 
    466 // tls_seal_scatter_record seals a new record of type |type| and body |in| and
    467 // splits it between |out_prefix|, |out|, and |out_suffix|. Exactly
    468 // |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len|
    469 // bytes to |out|, and |tls_seal_scatter_suffix_len| bytes to |out_suffix|. It
    470 // returns one on success and zero on error. If enabled,
    471 // |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and
    472 // may write two records concatenated.
    473 static int tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
    474                                    uint8_t *out_suffix, uint8_t type,
    475                                    const uint8_t *in, size_t in_len) {
    476   if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
    477       ssl_needs_record_splitting(ssl)) {
    478     assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0);
    479     const size_t prefix_len = SSL3_RT_HEADER_LENGTH;
    480 
    481     // Write the 1-byte fragment into |out_prefix|.
    482     uint8_t *split_body = out_prefix + prefix_len;
    483     uint8_t *split_suffix = split_body + 1;
    484 
    485     if (!do_seal_record(ssl, out_prefix, split_body, split_suffix, type, in,
    486                         1)) {
    487       return 0;
    488     }
    489 
    490     size_t split_record_suffix_len;
    491     if (!ssl->s3->aead_write_ctx->SuffixLen(&split_record_suffix_len, 1, 0)) {
    492       assert(false);
    493       return 0;
    494     }
    495     const size_t split_record_len = prefix_len + 1 + split_record_suffix_len;
    496     assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len(
    497                                        ssl->s3->aead_write_ctx->cipher()) ==
    498            split_record_len);
    499 
    500     // Write the n-1-byte fragment. The header gets split between |out_prefix|
    501     // (header[:-1]) and |out| (header[-1:]).
    502     uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH];
    503     if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, type, in + 1,
    504                         in_len - 1)) {
    505       return 0;
    506     }
    507     assert(tls_seal_scatter_prefix_len(ssl, type, in_len) ==
    508            split_record_len + SSL3_RT_HEADER_LENGTH - 1);
    509     OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix,
    510                    SSL3_RT_HEADER_LENGTH - 1);
    511     OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1);
    512     return 1;
    513   }
    514 
    515   return do_seal_record(ssl, out_prefix, out, out_suffix, type, in, in_len);
    516 }
    517 
    518 int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
    519                     uint8_t type, const uint8_t *in, size_t in_len) {
    520   if (buffers_alias(in, in_len, out, max_out_len)) {
    521     OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
    522     return 0;
    523   }
    524 
    525   const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len);
    526   size_t suffix_len;
    527   if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, type, in_len)) {
    528     return false;
    529   }
    530   if (in_len + prefix_len < in_len ||
    531       prefix_len + in_len + suffix_len < prefix_len + in_len) {
    532     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
    533     return 0;
    534   }
    535   if (max_out_len < in_len + prefix_len + suffix_len) {
    536     OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
    537     return 0;
    538   }
    539 
    540   uint8_t *prefix = out;
    541   uint8_t *body = out + prefix_len;
    542   uint8_t *suffix = body + in_len;
    543   if (!tls_seal_scatter_record(ssl, prefix, body, suffix, type, in, in_len)) {
    544     return 0;
    545   }
    546 
    547   *out_len = prefix_len + in_len + suffix_len;
    548   return 1;
    549 }
    550 
    551 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
    552                                          Span<const uint8_t> in) {
    553   // Alerts records may not contain fragmented or multiple alerts.
    554   if (in.size() != 2) {
    555     *out_alert = SSL_AD_DECODE_ERROR;
    556     OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
    557     return ssl_open_record_error;
    558   }
    559 
    560   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in);
    561 
    562   const uint8_t alert_level = in[0];
    563   const uint8_t alert_descr = in[1];
    564 
    565   uint16_t alert = (alert_level << 8) | alert_descr;
    566   ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert);
    567 
    568   if (alert_level == SSL3_AL_WARNING) {
    569     if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
    570       ssl->s3->read_shutdown = ssl_shutdown_close_notify;
    571       return ssl_open_record_close_notify;
    572     }
    573 
    574     // Warning alerts do not exist in TLS 1.3.
    575     if (ssl->s3->have_version &&
    576         ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
    577       *out_alert = SSL_AD_DECODE_ERROR;
    578       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
    579       return ssl_open_record_error;
    580     }
    581 
    582     ssl->s3->warning_alert_count++;
    583     if (ssl->s3->warning_alert_count > kMaxWarningAlerts) {
    584       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    585       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS);
    586       return ssl_open_record_error;
    587     }
    588     return ssl_open_record_discard;
    589   }
    590 
    591   if (alert_level == SSL3_AL_FATAL) {
    592     OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr);
    593     ERR_add_error_dataf("SSL alert number %d", alert_descr);
    594     *out_alert = 0;  // No alert to send back to the peer.
    595     return ssl_open_record_error;
    596   }
    597 
    598   *out_alert = SSL_AD_ILLEGAL_PARAMETER;
    599   OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE);
    600   return ssl_open_record_error;
    601 }
    602 
    603 OpenRecordResult OpenRecord(SSL *ssl, Span<uint8_t> *out,
    604                             size_t *out_record_len, uint8_t *out_alert,
    605                             const Span<uint8_t> in) {
    606   // This API is a work in progress and currently only works for TLS 1.2 servers
    607   // and below.
    608   if (SSL_in_init(ssl) ||
    609       SSL_is_dtls(ssl) ||
    610       ssl_protocol_version(ssl) > TLS1_2_VERSION) {
    611     assert(false);
    612     *out_alert = SSL_AD_INTERNAL_ERROR;
    613     return OpenRecordResult::kError;
    614   }
    615 
    616   Span<uint8_t> plaintext;
    617   uint8_t type = 0;
    618   const ssl_open_record_t result = tls_open_record(
    619       ssl, &type, &plaintext, out_record_len, out_alert, in);
    620 
    621   switch (result) {
    622     case ssl_open_record_success:
    623       if (type != SSL3_RT_APPLICATION_DATA && type != SSL3_RT_ALERT) {
    624         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    625         return OpenRecordResult::kError;
    626       }
    627       *out = plaintext;
    628       return OpenRecordResult::kOK;
    629     case ssl_open_record_discard:
    630       return OpenRecordResult::kDiscard;
    631     case ssl_open_record_partial:
    632       return OpenRecordResult::kIncompleteRecord;
    633     case ssl_open_record_close_notify:
    634       return OpenRecordResult::kAlertCloseNotify;
    635     case ssl_open_record_error:
    636       return OpenRecordResult::kError;
    637   }
    638   assert(false);
    639   return OpenRecordResult::kError;
    640 }
    641 
    642 size_t SealRecordPrefixLen(const SSL *ssl, const size_t record_len) {
    643   return tls_seal_scatter_prefix_len(ssl, SSL3_RT_APPLICATION_DATA, record_len);
    644 }
    645 
    646 size_t SealRecordSuffixLen(const SSL *ssl, const size_t plaintext_len) {
    647   assert(plaintext_len <= SSL3_RT_MAX_PLAIN_LENGTH);
    648   size_t suffix_len;
    649   if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, SSL3_RT_APPLICATION_DATA,
    650                                    plaintext_len)) {
    651     assert(false);
    652     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    653     return 0;
    654   }
    655   assert(suffix_len <= SSL3_RT_MAX_ENCRYPTED_OVERHEAD);
    656   return suffix_len;
    657 }
    658 
    659 bool SealRecord(SSL *ssl, const Span<uint8_t> out_prefix,
    660                 const Span<uint8_t> out, Span<uint8_t> out_suffix,
    661                 const Span<const uint8_t> in) {
    662   // This API is a work in progress and currently only works for TLS 1.2 servers
    663   // and below.
    664   if (SSL_in_init(ssl) ||
    665       SSL_is_dtls(ssl) ||
    666       ssl_protocol_version(ssl) > TLS1_2_VERSION) {
    667     assert(false);
    668     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    669     return false;
    670   }
    671 
    672   if (out_prefix.size() != SealRecordPrefixLen(ssl, in.size()) ||
    673       out.size() != in.size() ||
    674       out_suffix.size() != SealRecordSuffixLen(ssl, in.size())) {
    675     OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
    676     return false;
    677   }
    678   return tls_seal_scatter_record(ssl, out_prefix.data(), out.data(),
    679                                  out_suffix.data(), SSL3_RT_APPLICATION_DATA,
    680                                  in.data(), in.size());
    681 }
    682 
    683 }  // namespace bssl
    684 
    685 using namespace bssl;
    686 
    687 size_t SSL_max_seal_overhead(const SSL *ssl) {
    688   if (SSL_is_dtls(ssl)) {
    689     return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch);
    690   }
    691 
    692   size_t ret = SSL3_RT_HEADER_LENGTH;
    693   ret += ssl->s3->aead_write_ctx->MaxOverhead();
    694   // TLS 1.3 needs an extra byte for the encrypted record type.
    695   if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
    696       ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
    697     ret += 1;
    698   }
    699   if (ssl_needs_record_splitting(ssl)) {
    700     ret *= 2;
    701   }
    702   return ret;
    703 }
    704