Home | History | Annotate | Download | only in AST
      1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the C++ related Decl classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/AST/DeclCXX.h"
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/ASTLambda.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/TypeLoc.h"
     22 #include "clang/Basic/IdentifierTable.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 using namespace clang;
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Decl Allocation/Deallocation Method Implementations
     29 //===----------------------------------------------------------------------===//
     30 
     31 void AccessSpecDecl::anchor() { }
     32 
     33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
     34   return new (C, ID) AccessSpecDecl(EmptyShell());
     35 }
     36 
     37 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
     38   ExternalASTSource *Source = C.getExternalSource();
     39   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
     40   assert(Source && "getFromExternalSource with no external source");
     41 
     42   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
     43     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
     44         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
     45   Impl.Decls.setLazy(false);
     46 }
     47 
     48 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
     49     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
     50       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
     51       Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
     52       HasPrivateFields(false), HasProtectedFields(false),
     53       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
     54       HasOnlyCMembers(true), HasInClassInitializer(false),
     55       HasUninitializedReferenceMember(false), HasUninitializedFields(false),
     56       HasInheritedConstructor(false), HasInheritedAssignment(false),
     57       NeedOverloadResolutionForMoveConstructor(false),
     58       NeedOverloadResolutionForMoveAssignment(false),
     59       NeedOverloadResolutionForDestructor(false),
     60       DefaultedMoveConstructorIsDeleted(false),
     61       DefaultedMoveAssignmentIsDeleted(false),
     62       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
     63       DeclaredNonTrivialSpecialMembers(0), HasIrrelevantDestructor(true),
     64       HasConstexprNonCopyMoveConstructor(false),
     65       HasDefaultedDefaultConstructor(false),
     66       DefaultedDefaultConstructorIsConstexpr(true),
     67       HasConstexprDefaultConstructor(false),
     68       HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
     69       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
     70       ImplicitCopyConstructorHasConstParam(true),
     71       ImplicitCopyAssignmentHasConstParam(true),
     72       HasDeclaredCopyConstructorWithConstParam(false),
     73       HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
     74       IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0), Bases(),
     75       VBases(), Definition(D), FirstFriend() {}
     76 
     77 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
     78   return Bases.get(Definition->getASTContext().getExternalSource());
     79 }
     80 
     81 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
     82   return VBases.get(Definition->getASTContext().getExternalSource());
     83 }
     84 
     85 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
     86                              DeclContext *DC, SourceLocation StartLoc,
     87                              SourceLocation IdLoc, IdentifierInfo *Id,
     88                              CXXRecordDecl *PrevDecl)
     89     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
     90       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
     91                               : nullptr),
     92       TemplateOrInstantiation() {}
     93 
     94 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
     95                                      DeclContext *DC, SourceLocation StartLoc,
     96                                      SourceLocation IdLoc, IdentifierInfo *Id,
     97                                      CXXRecordDecl* PrevDecl,
     98                                      bool DelayTypeCreation) {
     99   CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
    100                                                IdLoc, Id, PrevDecl);
    101   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
    102 
    103   // FIXME: DelayTypeCreation seems like such a hack
    104   if (!DelayTypeCreation)
    105     C.getTypeDeclType(R, PrevDecl);
    106   return R;
    107 }
    108 
    109 CXXRecordDecl *
    110 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
    111                             TypeSourceInfo *Info, SourceLocation Loc,
    112                             bool Dependent, bool IsGeneric,
    113                             LambdaCaptureDefault CaptureDefault) {
    114   CXXRecordDecl *R =
    115       new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
    116                                 nullptr, nullptr);
    117   R->IsBeingDefined = true;
    118   R->DefinitionData =
    119       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
    120                                           CaptureDefault);
    121   R->MayHaveOutOfDateDef = false;
    122   R->setImplicit(true);
    123   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
    124   return R;
    125 }
    126 
    127 CXXRecordDecl *
    128 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
    129   CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
    130       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
    131       nullptr, nullptr);
    132   R->MayHaveOutOfDateDef = false;
    133   return R;
    134 }
    135 
    136 void
    137 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
    138                         unsigned NumBases) {
    139   ASTContext &C = getASTContext();
    140 
    141   if (!data().Bases.isOffset() && data().NumBases > 0)
    142     C.Deallocate(data().getBases());
    143 
    144   if (NumBases) {
    145     if (!C.getLangOpts().CPlusPlus1z) {
    146       // C++ [dcl.init.aggr]p1:
    147       //   An aggregate is [...] a class with [...] no base classes [...].
    148       data().Aggregate = false;
    149     }
    150 
    151     // C++ [class]p4:
    152     //   A POD-struct is an aggregate class...
    153     data().PlainOldData = false;
    154   }
    155 
    156   // The set of seen virtual base types.
    157   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
    158 
    159   // The virtual bases of this class.
    160   SmallVector<const CXXBaseSpecifier *, 8> VBases;
    161 
    162   data().Bases = new(C) CXXBaseSpecifier [NumBases];
    163   data().NumBases = NumBases;
    164   for (unsigned i = 0; i < NumBases; ++i) {
    165     data().getBases()[i] = *Bases[i];
    166     // Keep track of inherited vbases for this base class.
    167     const CXXBaseSpecifier *Base = Bases[i];
    168     QualType BaseType = Base->getType();
    169     // Skip dependent types; we can't do any checking on them now.
    170     if (BaseType->isDependentType())
    171       continue;
    172     CXXRecordDecl *BaseClassDecl
    173       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    174 
    175     if (!BaseClassDecl->isEmpty()) {
    176       if (!data().Empty) {
    177         // C++0x [class]p7:
    178         //   A standard-layout class is a class that:
    179         //    [...]
    180         //    -- either has no non-static data members in the most derived
    181         //       class and at most one base class with non-static data members,
    182         //       or has no base classes with non-static data members, and
    183         // If this is the second non-empty base, then neither of these two
    184         // clauses can be true.
    185         data().IsStandardLayout = false;
    186       }
    187 
    188       // C++14 [meta.unary.prop]p4:
    189       //   T is a class type [...] with [...] no base class B for which
    190       //   is_empty<B>::value is false.
    191       data().Empty = false;
    192       data().HasNoNonEmptyBases = false;
    193     }
    194 
    195     // C++1z [dcl.init.agg]p1:
    196     //   An aggregate is a class with [...] no private or protected base classes
    197     if (Base->getAccessSpecifier() != AS_public)
    198       data().Aggregate = false;
    199 
    200     // C++ [class.virtual]p1:
    201     //   A class that declares or inherits a virtual function is called a
    202     //   polymorphic class.
    203     if (BaseClassDecl->isPolymorphic())
    204       data().Polymorphic = true;
    205 
    206     // C++0x [class]p7:
    207     //   A standard-layout class is a class that: [...]
    208     //    -- has no non-standard-layout base classes
    209     if (!BaseClassDecl->isStandardLayout())
    210       data().IsStandardLayout = false;
    211 
    212     // Record if this base is the first non-literal field or base.
    213     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
    214       data().HasNonLiteralTypeFieldsOrBases = true;
    215 
    216     // Now go through all virtual bases of this base and add them.
    217     for (const auto &VBase : BaseClassDecl->vbases()) {
    218       // Add this base if it's not already in the list.
    219       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
    220         VBases.push_back(&VBase);
    221 
    222         // C++11 [class.copy]p8:
    223         //   The implicitly-declared copy constructor for a class X will have
    224         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
    225         //   has a copy constructor whose first parameter is of type
    226         //   'const B&' or 'const volatile B&' [...]
    227         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
    228           if (!VBaseDecl->hasCopyConstructorWithConstParam())
    229             data().ImplicitCopyConstructorHasConstParam = false;
    230 
    231         // C++1z [dcl.init.agg]p1:
    232         //   An aggregate is a class with [...] no virtual base classes
    233         data().Aggregate = false;
    234       }
    235     }
    236 
    237     if (Base->isVirtual()) {
    238       // Add this base if it's not already in the list.
    239       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
    240         VBases.push_back(Base);
    241 
    242       // C++14 [meta.unary.prop] is_empty:
    243       //   T is a class type, but not a union type, with ... no virtual base
    244       //   classes
    245       data().Empty = false;
    246 
    247       // C++1z [dcl.init.agg]p1:
    248       //   An aggregate is a class with [...] no virtual base classes
    249       data().Aggregate = false;
    250 
    251       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
    252       //   A [default constructor, copy/move constructor, or copy/move assignment
    253       //   operator for a class X] is trivial [...] if:
    254       //    -- class X has [...] no virtual base classes
    255       data().HasTrivialSpecialMembers &= SMF_Destructor;
    256 
    257       // C++0x [class]p7:
    258       //   A standard-layout class is a class that: [...]
    259       //    -- has [...] no virtual base classes
    260       data().IsStandardLayout = false;
    261 
    262       // C++11 [dcl.constexpr]p4:
    263       //   In the definition of a constexpr constructor [...]
    264       //    -- the class shall not have any virtual base classes
    265       data().DefaultedDefaultConstructorIsConstexpr = false;
    266     } else {
    267       // C++ [class.ctor]p5:
    268       //   A default constructor is trivial [...] if:
    269       //    -- all the direct base classes of its class have trivial default
    270       //       constructors.
    271       if (!BaseClassDecl->hasTrivialDefaultConstructor())
    272         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    273 
    274       // C++0x [class.copy]p13:
    275       //   A copy/move constructor for class X is trivial if [...]
    276       //    [...]
    277       //    -- the constructor selected to copy/move each direct base class
    278       //       subobject is trivial, and
    279       if (!BaseClassDecl->hasTrivialCopyConstructor())
    280         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
    281       // If the base class doesn't have a simple move constructor, we'll eagerly
    282       // declare it and perform overload resolution to determine which function
    283       // it actually calls. If it does have a simple move constructor, this
    284       // check is correct.
    285       if (!BaseClassDecl->hasTrivialMoveConstructor())
    286         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
    287 
    288       // C++0x [class.copy]p27:
    289       //   A copy/move assignment operator for class X is trivial if [...]
    290       //    [...]
    291       //    -- the assignment operator selected to copy/move each direct base
    292       //       class subobject is trivial, and
    293       if (!BaseClassDecl->hasTrivialCopyAssignment())
    294         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
    295       // If the base class doesn't have a simple move assignment, we'll eagerly
    296       // declare it and perform overload resolution to determine which function
    297       // it actually calls. If it does have a simple move assignment, this
    298       // check is correct.
    299       if (!BaseClassDecl->hasTrivialMoveAssignment())
    300         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
    301 
    302       // C++11 [class.ctor]p6:
    303       //   If that user-written default constructor would satisfy the
    304       //   requirements of a constexpr constructor, the implicitly-defined
    305       //   default constructor is constexpr.
    306       if (!BaseClassDecl->hasConstexprDefaultConstructor())
    307         data().DefaultedDefaultConstructorIsConstexpr = false;
    308     }
    309 
    310     // C++ [class.ctor]p3:
    311     //   A destructor is trivial if all the direct base classes of its class
    312     //   have trivial destructors.
    313     if (!BaseClassDecl->hasTrivialDestructor())
    314       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    315 
    316     if (!BaseClassDecl->hasIrrelevantDestructor())
    317       data().HasIrrelevantDestructor = false;
    318 
    319     // C++11 [class.copy]p18:
    320     //   The implicitly-declared copy assignment oeprator for a class X will
    321     //   have the form 'X& X::operator=(const X&)' if each direct base class B
    322     //   of X has a copy assignment operator whose parameter is of type 'const
    323     //   B&', 'const volatile B&', or 'B' [...]
    324     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
    325       data().ImplicitCopyAssignmentHasConstParam = false;
    326 
    327     // C++11 [class.copy]p8:
    328     //   The implicitly-declared copy constructor for a class X will have
    329     //   the form 'X::X(const X&)' if each direct [...] base class B of X
    330     //   has a copy constructor whose first parameter is of type
    331     //   'const B&' or 'const volatile B&' [...]
    332     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
    333       data().ImplicitCopyConstructorHasConstParam = false;
    334 
    335     // A class has an Objective-C object member if... or any of its bases
    336     // has an Objective-C object member.
    337     if (BaseClassDecl->hasObjectMember())
    338       setHasObjectMember(true);
    339 
    340     if (BaseClassDecl->hasVolatileMember())
    341       setHasVolatileMember(true);
    342 
    343     // Keep track of the presence of mutable fields.
    344     if (BaseClassDecl->hasMutableFields())
    345       data().HasMutableFields = true;
    346 
    347     if (BaseClassDecl->hasUninitializedReferenceMember())
    348       data().HasUninitializedReferenceMember = true;
    349 
    350     if (!BaseClassDecl->allowConstDefaultInit())
    351       data().HasUninitializedFields = true;
    352 
    353     addedClassSubobject(BaseClassDecl);
    354   }
    355 
    356   if (VBases.empty()) {
    357     data().IsParsingBaseSpecifiers = false;
    358     return;
    359   }
    360 
    361   // Create base specifier for any direct or indirect virtual bases.
    362   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
    363   data().NumVBases = VBases.size();
    364   for (int I = 0, E = VBases.size(); I != E; ++I) {
    365     QualType Type = VBases[I]->getType();
    366     if (!Type->isDependentType())
    367       addedClassSubobject(Type->getAsCXXRecordDecl());
    368     data().getVBases()[I] = *VBases[I];
    369   }
    370 
    371   data().IsParsingBaseSpecifiers = false;
    372 }
    373 
    374 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
    375   // C++11 [class.copy]p11:
    376   //   A defaulted copy/move constructor for a class X is defined as
    377   //   deleted if X has:
    378   //    -- a direct or virtual base class B that cannot be copied/moved [...]
    379   //    -- a non-static data member of class type M (or array thereof)
    380   //       that cannot be copied or moved [...]
    381   if (!Subobj->hasSimpleMoveConstructor())
    382     data().NeedOverloadResolutionForMoveConstructor = true;
    383 
    384   // C++11 [class.copy]p23:
    385   //   A defaulted copy/move assignment operator for a class X is defined as
    386   //   deleted if X has:
    387   //    -- a direct or virtual base class B that cannot be copied/moved [...]
    388   //    -- a non-static data member of class type M (or array thereof)
    389   //        that cannot be copied or moved [...]
    390   if (!Subobj->hasSimpleMoveAssignment())
    391     data().NeedOverloadResolutionForMoveAssignment = true;
    392 
    393   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
    394   //   A defaulted [ctor or dtor] for a class X is defined as
    395   //   deleted if X has:
    396   //    -- any direct or virtual base class [...] has a type with a destructor
    397   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
    398   //    -- any non-static data member has a type with a destructor
    399   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
    400   if (!Subobj->hasSimpleDestructor()) {
    401     data().NeedOverloadResolutionForMoveConstructor = true;
    402     data().NeedOverloadResolutionForDestructor = true;
    403   }
    404 }
    405 
    406 bool CXXRecordDecl::hasAnyDependentBases() const {
    407   if (!isDependentContext())
    408     return false;
    409 
    410   return !forallBases([](const CXXRecordDecl *) { return true; });
    411 }
    412 
    413 bool CXXRecordDecl::isTriviallyCopyable() const {
    414   // C++0x [class]p5:
    415   //   A trivially copyable class is a class that:
    416   //   -- has no non-trivial copy constructors,
    417   if (hasNonTrivialCopyConstructor()) return false;
    418   //   -- has no non-trivial move constructors,
    419   if (hasNonTrivialMoveConstructor()) return false;
    420   //   -- has no non-trivial copy assignment operators,
    421   if (hasNonTrivialCopyAssignment()) return false;
    422   //   -- has no non-trivial move assignment operators, and
    423   if (hasNonTrivialMoveAssignment()) return false;
    424   //   -- has a trivial destructor.
    425   if (!hasTrivialDestructor()) return false;
    426 
    427   return true;
    428 }
    429 
    430 void CXXRecordDecl::markedVirtualFunctionPure() {
    431   // C++ [class.abstract]p2:
    432   //   A class is abstract if it has at least one pure virtual function.
    433   data().Abstract = true;
    434 }
    435 
    436 void CXXRecordDecl::addedMember(Decl *D) {
    437   if (!D->isImplicit() &&
    438       !isa<FieldDecl>(D) &&
    439       !isa<IndirectFieldDecl>(D) &&
    440       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
    441         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
    442     data().HasOnlyCMembers = false;
    443 
    444   // Ignore friends and invalid declarations.
    445   if (D->getFriendObjectKind() || D->isInvalidDecl())
    446     return;
    447 
    448   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
    449   if (FunTmpl)
    450     D = FunTmpl->getTemplatedDecl();
    451 
    452   // FIXME: Pass NamedDecl* to addedMember?
    453   Decl *DUnderlying = D;
    454   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
    455     DUnderlying = ND->getUnderlyingDecl();
    456     if (FunctionTemplateDecl *UnderlyingFunTmpl =
    457             dyn_cast<FunctionTemplateDecl>(DUnderlying))
    458       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
    459   }
    460 
    461   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    462     if (Method->isVirtual()) {
    463       // C++ [dcl.init.aggr]p1:
    464       //   An aggregate is an array or a class with [...] no virtual functions.
    465       data().Aggregate = false;
    466 
    467       // C++ [class]p4:
    468       //   A POD-struct is an aggregate class...
    469       data().PlainOldData = false;
    470 
    471       // C++14 [meta.unary.prop]p4:
    472       //   T is a class type [...] with [...] no virtual member functions...
    473       data().Empty = false;
    474 
    475       // C++ [class.virtual]p1:
    476       //   A class that declares or inherits a virtual function is called a
    477       //   polymorphic class.
    478       data().Polymorphic = true;
    479 
    480       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
    481       //   A [default constructor, copy/move constructor, or copy/move
    482       //   assignment operator for a class X] is trivial [...] if:
    483       //    -- class X has no virtual functions [...]
    484       data().HasTrivialSpecialMembers &= SMF_Destructor;
    485 
    486       // C++0x [class]p7:
    487       //   A standard-layout class is a class that: [...]
    488       //    -- has no virtual functions
    489       data().IsStandardLayout = false;
    490     }
    491   }
    492 
    493   // Notify the listener if an implicit member was added after the definition
    494   // was completed.
    495   if (!isBeingDefined() && D->isImplicit())
    496     if (ASTMutationListener *L = getASTMutationListener())
    497       L->AddedCXXImplicitMember(data().Definition, D);
    498 
    499   // The kind of special member this declaration is, if any.
    500   unsigned SMKind = 0;
    501 
    502   // Handle constructors.
    503   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    504     if (!Constructor->isImplicit()) {
    505       // Note that we have a user-declared constructor.
    506       data().UserDeclaredConstructor = true;
    507 
    508       // C++ [class]p4:
    509       //   A POD-struct is an aggregate class [...]
    510       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
    511       // type is technically an aggregate in C++0x since it wouldn't be in 03.
    512       data().PlainOldData = false;
    513     }
    514 
    515     if (Constructor->isDefaultConstructor()) {
    516       SMKind |= SMF_DefaultConstructor;
    517 
    518       if (Constructor->isUserProvided())
    519         data().UserProvidedDefaultConstructor = true;
    520       if (Constructor->isConstexpr())
    521         data().HasConstexprDefaultConstructor = true;
    522       if (Constructor->isDefaulted())
    523         data().HasDefaultedDefaultConstructor = true;
    524     }
    525 
    526     if (!FunTmpl) {
    527       unsigned Quals;
    528       if (Constructor->isCopyConstructor(Quals)) {
    529         SMKind |= SMF_CopyConstructor;
    530 
    531         if (Quals & Qualifiers::Const)
    532           data().HasDeclaredCopyConstructorWithConstParam = true;
    533       } else if (Constructor->isMoveConstructor())
    534         SMKind |= SMF_MoveConstructor;
    535     }
    536   }
    537 
    538   // Handle constructors, including those inherited from base classes.
    539   if (CXXConstructorDecl *Constructor =
    540           dyn_cast<CXXConstructorDecl>(DUnderlying)) {
    541     // Record if we see any constexpr constructors which are neither copy
    542     // nor move constructors.
    543     // C++1z [basic.types]p10:
    544     //   [...] has at least one constexpr constructor or constructor template
    545     //   (possibly inherited from a base class) that is not a copy or move
    546     //   constructor [...]
    547     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
    548       data().HasConstexprNonCopyMoveConstructor = true;
    549 
    550     // C++ [dcl.init.aggr]p1:
    551     //   An aggregate is an array or a class with no user-declared
    552     //   constructors [...].
    553     // C++11 [dcl.init.aggr]p1:
    554     //   An aggregate is an array or a class with no user-provided
    555     //   constructors [...].
    556     // C++11 [dcl.init.aggr]p1:
    557     //   An aggregate is an array or a class with no user-provided
    558     //   constructors (including those inherited from a base class) [...].
    559     if (getASTContext().getLangOpts().CPlusPlus11
    560             ? Constructor->isUserProvided()
    561             : !Constructor->isImplicit())
    562       data().Aggregate = false;
    563   }
    564 
    565   // Handle destructors.
    566   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
    567     SMKind |= SMF_Destructor;
    568 
    569     if (DD->isUserProvided())
    570       data().HasIrrelevantDestructor = false;
    571     // If the destructor is explicitly defaulted and not trivial or not public
    572     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
    573     // finishedDefaultedOrDeletedMember.
    574 
    575     // C++11 [class.dtor]p5:
    576     //   A destructor is trivial if [...] the destructor is not virtual.
    577     if (DD->isVirtual())
    578       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    579   }
    580 
    581   // Handle member functions.
    582   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    583     if (Method->isCopyAssignmentOperator()) {
    584       SMKind |= SMF_CopyAssignment;
    585 
    586       const ReferenceType *ParamTy =
    587         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
    588       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
    589         data().HasDeclaredCopyAssignmentWithConstParam = true;
    590     }
    591 
    592     if (Method->isMoveAssignmentOperator())
    593       SMKind |= SMF_MoveAssignment;
    594 
    595     // Keep the list of conversion functions up-to-date.
    596     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
    597       // FIXME: We use the 'unsafe' accessor for the access specifier here,
    598       // because Sema may not have set it yet. That's really just a misdesign
    599       // in Sema. However, LLDB *will* have set the access specifier correctly,
    600       // and adds declarations after the class is technically completed,
    601       // so completeDefinition()'s overriding of the access specifiers doesn't
    602       // work.
    603       AccessSpecifier AS = Conversion->getAccessUnsafe();
    604 
    605       if (Conversion->getPrimaryTemplate()) {
    606         // We don't record specializations.
    607       } else {
    608         ASTContext &Ctx = getASTContext();
    609         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
    610         NamedDecl *Primary =
    611             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
    612         if (Primary->getPreviousDecl())
    613           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
    614                               Primary, AS);
    615         else
    616           Conversions.addDecl(Ctx, Primary, AS);
    617       }
    618     }
    619 
    620     if (SMKind) {
    621       // If this is the first declaration of a special member, we no longer have
    622       // an implicit trivial special member.
    623       data().HasTrivialSpecialMembers &=
    624         data().DeclaredSpecialMembers | ~SMKind;
    625 
    626       if (!Method->isImplicit() && !Method->isUserProvided()) {
    627         // This method is user-declared but not user-provided. We can't work out
    628         // whether it's trivial yet (not until we get to the end of the class).
    629         // We'll handle this method in finishedDefaultedOrDeletedMember.
    630       } else if (Method->isTrivial())
    631         data().HasTrivialSpecialMembers |= SMKind;
    632       else
    633         data().DeclaredNonTrivialSpecialMembers |= SMKind;
    634 
    635       // Note when we have declared a declared special member, and suppress the
    636       // implicit declaration of this special member.
    637       data().DeclaredSpecialMembers |= SMKind;
    638 
    639       if (!Method->isImplicit()) {
    640         data().UserDeclaredSpecialMembers |= SMKind;
    641 
    642         // C++03 [class]p4:
    643         //   A POD-struct is an aggregate class that has [...] no user-defined
    644         //   copy assignment operator and no user-defined destructor.
    645         //
    646         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
    647         // aggregates could not have any constructors, clear it even for an
    648         // explicitly defaulted or deleted constructor.
    649         // type is technically an aggregate in C++0x since it wouldn't be in 03.
    650         //
    651         // Also, a user-declared move assignment operator makes a class non-POD.
    652         // This is an extension in C++03.
    653         data().PlainOldData = false;
    654       }
    655     }
    656 
    657     return;
    658   }
    659 
    660   // Handle non-static data members.
    661   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
    662     // C++ [class.bit]p2:
    663     //   A declaration for a bit-field that omits the identifier declares an
    664     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
    665     //   initialized.
    666     if (Field->isUnnamedBitfield())
    667       return;
    668 
    669     // C++ [dcl.init.aggr]p1:
    670     //   An aggregate is an array or a class (clause 9) with [...] no
    671     //   private or protected non-static data members (clause 11).
    672     //
    673     // A POD must be an aggregate.
    674     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
    675       data().Aggregate = false;
    676       data().PlainOldData = false;
    677     }
    678 
    679     // C++0x [class]p7:
    680     //   A standard-layout class is a class that:
    681     //    [...]
    682     //    -- has the same access control for all non-static data members,
    683     switch (D->getAccess()) {
    684     case AS_private:    data().HasPrivateFields = true;   break;
    685     case AS_protected:  data().HasProtectedFields = true; break;
    686     case AS_public:     data().HasPublicFields = true;    break;
    687     case AS_none:       llvm_unreachable("Invalid access specifier");
    688     };
    689     if ((data().HasPrivateFields + data().HasProtectedFields +
    690          data().HasPublicFields) > 1)
    691       data().IsStandardLayout = false;
    692 
    693     // Keep track of the presence of mutable fields.
    694     if (Field->isMutable())
    695       data().HasMutableFields = true;
    696 
    697     // C++11 [class.union]p8, DR1460:
    698     //   If X is a union, a non-static data member of X that is not an anonymous
    699     //   union is a variant member of X.
    700     if (isUnion() && !Field->isAnonymousStructOrUnion())
    701       data().HasVariantMembers = true;
    702 
    703     // C++0x [class]p9:
    704     //   A POD struct is a class that is both a trivial class and a
    705     //   standard-layout class, and has no non-static data members of type
    706     //   non-POD struct, non-POD union (or array of such types).
    707     //
    708     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
    709     // that does not explicitly have no lifetime makes the class a non-POD.
    710     ASTContext &Context = getASTContext();
    711     QualType T = Context.getBaseElementType(Field->getType());
    712     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
    713       if (!Context.getLangOpts().ObjCAutoRefCount) {
    714         setHasObjectMember(true);
    715       } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
    716         // Objective-C Automatic Reference Counting:
    717         //   If a class has a non-static data member of Objective-C pointer
    718         //   type (or array thereof), it is a non-POD type and its
    719         //   default constructor (if any), copy constructor, move constructor,
    720         //   copy assignment operator, move assignment operator, and destructor are
    721         //   non-trivial.
    722         setHasObjectMember(true);
    723         struct DefinitionData &Data = data();
    724         Data.PlainOldData = false;
    725         Data.HasTrivialSpecialMembers = 0;
    726         Data.HasIrrelevantDestructor = false;
    727       }
    728     } else if (!T.isCXX98PODType(Context))
    729       data().PlainOldData = false;
    730 
    731     if (T->isReferenceType()) {
    732       if (!Field->hasInClassInitializer())
    733         data().HasUninitializedReferenceMember = true;
    734 
    735       // C++0x [class]p7:
    736       //   A standard-layout class is a class that:
    737       //    -- has no non-static data members of type [...] reference,
    738       data().IsStandardLayout = false;
    739     }
    740 
    741     if (!Field->hasInClassInitializer() && !Field->isMutable()) {
    742       if (CXXRecordDecl *FieldType = Field->getType()->getAsCXXRecordDecl()) {
    743         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
    744           data().HasUninitializedFields = true;
    745       } else {
    746         data().HasUninitializedFields = true;
    747       }
    748     }
    749 
    750     // Record if this field is the first non-literal or volatile field or base.
    751     if (!T->isLiteralType(Context) || T.isVolatileQualified())
    752       data().HasNonLiteralTypeFieldsOrBases = true;
    753 
    754     if (Field->hasInClassInitializer() ||
    755         (Field->isAnonymousStructOrUnion() &&
    756          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
    757       data().HasInClassInitializer = true;
    758 
    759       // C++11 [class]p5:
    760       //   A default constructor is trivial if [...] no non-static data member
    761       //   of its class has a brace-or-equal-initializer.
    762       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    763 
    764       // C++11 [dcl.init.aggr]p1:
    765       //   An aggregate is a [...] class with [...] no
    766       //   brace-or-equal-initializers for non-static data members.
    767       //
    768       // This rule was removed in C++14.
    769       if (!getASTContext().getLangOpts().CPlusPlus14)
    770         data().Aggregate = false;
    771 
    772       // C++11 [class]p10:
    773       //   A POD struct is [...] a trivial class.
    774       data().PlainOldData = false;
    775     }
    776 
    777     // C++11 [class.copy]p23:
    778     //   A defaulted copy/move assignment operator for a class X is defined
    779     //   as deleted if X has:
    780     //    -- a non-static data member of reference type
    781     if (T->isReferenceType())
    782       data().DefaultedMoveAssignmentIsDeleted = true;
    783 
    784     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
    785       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
    786       if (FieldRec->getDefinition()) {
    787         addedClassSubobject(FieldRec);
    788 
    789         // We may need to perform overload resolution to determine whether a
    790         // field can be moved if it's const or volatile qualified.
    791         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
    792           data().NeedOverloadResolutionForMoveConstructor = true;
    793           data().NeedOverloadResolutionForMoveAssignment = true;
    794         }
    795 
    796         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
    797         //   A defaulted [special member] for a class X is defined as
    798         //   deleted if:
    799         //    -- X is a union-like class that has a variant member with a
    800         //       non-trivial [corresponding special member]
    801         if (isUnion()) {
    802           if (FieldRec->hasNonTrivialMoveConstructor())
    803             data().DefaultedMoveConstructorIsDeleted = true;
    804           if (FieldRec->hasNonTrivialMoveAssignment())
    805             data().DefaultedMoveAssignmentIsDeleted = true;
    806           if (FieldRec->hasNonTrivialDestructor())
    807             data().DefaultedDestructorIsDeleted = true;
    808         }
    809 
    810         // C++0x [class.ctor]p5:
    811         //   A default constructor is trivial [...] if:
    812         //    -- for all the non-static data members of its class that are of
    813         //       class type (or array thereof), each such class has a trivial
    814         //       default constructor.
    815         if (!FieldRec->hasTrivialDefaultConstructor())
    816           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    817 
    818         // C++0x [class.copy]p13:
    819         //   A copy/move constructor for class X is trivial if [...]
    820         //    [...]
    821         //    -- for each non-static data member of X that is of class type (or
    822         //       an array thereof), the constructor selected to copy/move that
    823         //       member is trivial;
    824         if (!FieldRec->hasTrivialCopyConstructor())
    825           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
    826         // If the field doesn't have a simple move constructor, we'll eagerly
    827         // declare the move constructor for this class and we'll decide whether
    828         // it's trivial then.
    829         if (!FieldRec->hasTrivialMoveConstructor())
    830           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
    831 
    832         // C++0x [class.copy]p27:
    833         //   A copy/move assignment operator for class X is trivial if [...]
    834         //    [...]
    835         //    -- for each non-static data member of X that is of class type (or
    836         //       an array thereof), the assignment operator selected to
    837         //       copy/move that member is trivial;
    838         if (!FieldRec->hasTrivialCopyAssignment())
    839           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
    840         // If the field doesn't have a simple move assignment, we'll eagerly
    841         // declare the move assignment for this class and we'll decide whether
    842         // it's trivial then.
    843         if (!FieldRec->hasTrivialMoveAssignment())
    844           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
    845 
    846         if (!FieldRec->hasTrivialDestructor())
    847           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    848         if (!FieldRec->hasIrrelevantDestructor())
    849           data().HasIrrelevantDestructor = false;
    850         if (FieldRec->hasObjectMember())
    851           setHasObjectMember(true);
    852         if (FieldRec->hasVolatileMember())
    853           setHasVolatileMember(true);
    854 
    855         // C++0x [class]p7:
    856         //   A standard-layout class is a class that:
    857         //    -- has no non-static data members of type non-standard-layout
    858         //       class (or array of such types) [...]
    859         if (!FieldRec->isStandardLayout())
    860           data().IsStandardLayout = false;
    861 
    862         // C++0x [class]p7:
    863         //   A standard-layout class is a class that:
    864         //    [...]
    865         //    -- has no base classes of the same type as the first non-static
    866         //       data member.
    867         // We don't want to expend bits in the state of the record decl
    868         // tracking whether this is the first non-static data member so we
    869         // cheat a bit and use some of the existing state: the empty bit.
    870         // Virtual bases and virtual methods make a class non-empty, but they
    871         // also make it non-standard-layout so we needn't check here.
    872         // A non-empty base class may leave the class standard-layout, but not
    873         // if we have arrived here, and have at least one non-static data
    874         // member. If IsStandardLayout remains true, then the first non-static
    875         // data member must come through here with Empty still true, and Empty
    876         // will subsequently be set to false below.
    877         if (data().IsStandardLayout && data().Empty) {
    878           for (const auto &BI : bases()) {
    879             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
    880               data().IsStandardLayout = false;
    881               break;
    882             }
    883           }
    884         }
    885 
    886         // Keep track of the presence of mutable fields.
    887         if (FieldRec->hasMutableFields())
    888           data().HasMutableFields = true;
    889 
    890         // C++11 [class.copy]p13:
    891         //   If the implicitly-defined constructor would satisfy the
    892         //   requirements of a constexpr constructor, the implicitly-defined
    893         //   constructor is constexpr.
    894         // C++11 [dcl.constexpr]p4:
    895         //    -- every constructor involved in initializing non-static data
    896         //       members [...] shall be a constexpr constructor
    897         if (!Field->hasInClassInitializer() &&
    898             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
    899           // The standard requires any in-class initializer to be a constant
    900           // expression. We consider this to be a defect.
    901           data().DefaultedDefaultConstructorIsConstexpr = false;
    902 
    903         // C++11 [class.copy]p8:
    904         //   The implicitly-declared copy constructor for a class X will have
    905         //   the form 'X::X(const X&)' if [...] for all the non-static data
    906         //   members of X that are of a class type M (or array thereof), each
    907         //   such class type has a copy constructor whose first parameter is
    908         //   of type 'const M&' or 'const volatile M&'.
    909         if (!FieldRec->hasCopyConstructorWithConstParam())
    910           data().ImplicitCopyConstructorHasConstParam = false;
    911 
    912         // C++11 [class.copy]p18:
    913         //   The implicitly-declared copy assignment oeprator for a class X will
    914         //   have the form 'X& X::operator=(const X&)' if [...] for all the
    915         //   non-static data members of X that are of a class type M (or array
    916         //   thereof), each such class type has a copy assignment operator whose
    917         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
    918         if (!FieldRec->hasCopyAssignmentWithConstParam())
    919           data().ImplicitCopyAssignmentHasConstParam = false;
    920 
    921         if (FieldRec->hasUninitializedReferenceMember() &&
    922             !Field->hasInClassInitializer())
    923           data().HasUninitializedReferenceMember = true;
    924 
    925         // C++11 [class.union]p8, DR1460:
    926         //   a non-static data member of an anonymous union that is a member of
    927         //   X is also a variant member of X.
    928         if (FieldRec->hasVariantMembers() &&
    929             Field->isAnonymousStructOrUnion())
    930           data().HasVariantMembers = true;
    931       }
    932     } else {
    933       // Base element type of field is a non-class type.
    934       if (!T->isLiteralType(Context) ||
    935           (!Field->hasInClassInitializer() && !isUnion()))
    936         data().DefaultedDefaultConstructorIsConstexpr = false;
    937 
    938       // C++11 [class.copy]p23:
    939       //   A defaulted copy/move assignment operator for a class X is defined
    940       //   as deleted if X has:
    941       //    -- a non-static data member of const non-class type (or array
    942       //       thereof)
    943       if (T.isConstQualified())
    944         data().DefaultedMoveAssignmentIsDeleted = true;
    945     }
    946 
    947     // C++0x [class]p7:
    948     //   A standard-layout class is a class that:
    949     //    [...]
    950     //    -- either has no non-static data members in the most derived
    951     //       class and at most one base class with non-static data members,
    952     //       or has no base classes with non-static data members, and
    953     // At this point we know that we have a non-static data member, so the last
    954     // clause holds.
    955     if (!data().HasNoNonEmptyBases)
    956       data().IsStandardLayout = false;
    957 
    958     // C++14 [meta.unary.prop]p4:
    959     //   T is a class type [...] with [...] no non-static data members other
    960     //   than bit-fields of length 0...
    961     if (data().Empty) {
    962       if (!Field->isBitField() ||
    963           (!Field->getBitWidth()->isTypeDependent() &&
    964            !Field->getBitWidth()->isValueDependent() &&
    965            Field->getBitWidthValue(Context) != 0))
    966         data().Empty = false;
    967     }
    968   }
    969 
    970   // Handle using declarations of conversion functions.
    971   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
    972     if (Shadow->getDeclName().getNameKind()
    973           == DeclarationName::CXXConversionFunctionName) {
    974       ASTContext &Ctx = getASTContext();
    975       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
    976     }
    977   }
    978 
    979   if (UsingDecl *Using = dyn_cast<UsingDecl>(D)) {
    980     if (Using->getDeclName().getNameKind() ==
    981         DeclarationName::CXXConstructorName)
    982       data().HasInheritedConstructor = true;
    983 
    984     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
    985       data().HasInheritedAssignment = true;
    986   }
    987 }
    988 
    989 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
    990   assert(!D->isImplicit() && !D->isUserProvided());
    991 
    992   // The kind of special member this declaration is, if any.
    993   unsigned SMKind = 0;
    994 
    995   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    996     if (Constructor->isDefaultConstructor()) {
    997       SMKind |= SMF_DefaultConstructor;
    998       if (Constructor->isConstexpr())
    999         data().HasConstexprDefaultConstructor = true;
   1000     }
   1001     if (Constructor->isCopyConstructor())
   1002       SMKind |= SMF_CopyConstructor;
   1003     else if (Constructor->isMoveConstructor())
   1004       SMKind |= SMF_MoveConstructor;
   1005     else if (Constructor->isConstexpr())
   1006       // We may now know that the constructor is constexpr.
   1007       data().HasConstexprNonCopyMoveConstructor = true;
   1008   } else if (isa<CXXDestructorDecl>(D)) {
   1009     SMKind |= SMF_Destructor;
   1010     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
   1011       data().HasIrrelevantDestructor = false;
   1012   } else if (D->isCopyAssignmentOperator())
   1013     SMKind |= SMF_CopyAssignment;
   1014   else if (D->isMoveAssignmentOperator())
   1015     SMKind |= SMF_MoveAssignment;
   1016 
   1017   // Update which trivial / non-trivial special members we have.
   1018   // addedMember will have skipped this step for this member.
   1019   if (D->isTrivial())
   1020     data().HasTrivialSpecialMembers |= SMKind;
   1021   else
   1022     data().DeclaredNonTrivialSpecialMembers |= SMKind;
   1023 }
   1024 
   1025 bool CXXRecordDecl::isCLike() const {
   1026   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
   1027       !TemplateOrInstantiation.isNull())
   1028     return false;
   1029   if (!hasDefinition())
   1030     return true;
   1031 
   1032   return isPOD() && data().HasOnlyCMembers;
   1033 }
   1034 
   1035 bool CXXRecordDecl::isGenericLambda() const {
   1036   if (!isLambda()) return false;
   1037   return getLambdaData().IsGenericLambda;
   1038 }
   1039 
   1040 CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
   1041   if (!isLambda()) return nullptr;
   1042   DeclarationName Name =
   1043     getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
   1044   DeclContext::lookup_result Calls = lookup(Name);
   1045 
   1046   assert(!Calls.empty() && "Missing lambda call operator!");
   1047   assert(Calls.size() == 1 && "More than one lambda call operator!");
   1048 
   1049   NamedDecl *CallOp = Calls.front();
   1050   if (FunctionTemplateDecl *CallOpTmpl =
   1051                     dyn_cast<FunctionTemplateDecl>(CallOp))
   1052     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
   1053 
   1054   return cast<CXXMethodDecl>(CallOp);
   1055 }
   1056 
   1057 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
   1058   if (!isLambda()) return nullptr;
   1059   DeclarationName Name =
   1060     &getASTContext().Idents.get(getLambdaStaticInvokerName());
   1061   DeclContext::lookup_result Invoker = lookup(Name);
   1062   if (Invoker.empty()) return nullptr;
   1063   assert(Invoker.size() == 1 && "More than one static invoker operator!");
   1064   NamedDecl *InvokerFun = Invoker.front();
   1065   if (FunctionTemplateDecl *InvokerTemplate =
   1066                   dyn_cast<FunctionTemplateDecl>(InvokerFun))
   1067     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
   1068 
   1069   return cast<CXXMethodDecl>(InvokerFun);
   1070 }
   1071 
   1072 void CXXRecordDecl::getCaptureFields(
   1073        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
   1074        FieldDecl *&ThisCapture) const {
   1075   Captures.clear();
   1076   ThisCapture = nullptr;
   1077 
   1078   LambdaDefinitionData &Lambda = getLambdaData();
   1079   RecordDecl::field_iterator Field = field_begin();
   1080   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
   1081        C != CEnd; ++C, ++Field) {
   1082     if (C->capturesThis())
   1083       ThisCapture = *Field;
   1084     else if (C->capturesVariable())
   1085       Captures[C->getCapturedVar()] = *Field;
   1086   }
   1087   assert(Field == field_end());
   1088 }
   1089 
   1090 TemplateParameterList *
   1091 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
   1092   if (!isLambda()) return nullptr;
   1093   CXXMethodDecl *CallOp = getLambdaCallOperator();
   1094   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
   1095     return Tmpl->getTemplateParameters();
   1096   return nullptr;
   1097 }
   1098 
   1099 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
   1100   QualType T =
   1101       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
   1102           ->getConversionType();
   1103   return Context.getCanonicalType(T);
   1104 }
   1105 
   1106 /// Collect the visible conversions of a base class.
   1107 ///
   1108 /// \param Record a base class of the class we're considering
   1109 /// \param InVirtual whether this base class is a virtual base (or a base
   1110 ///   of a virtual base)
   1111 /// \param Access the access along the inheritance path to this base
   1112 /// \param ParentHiddenTypes the conversions provided by the inheritors
   1113 ///   of this base
   1114 /// \param Output the set to which to add conversions from non-virtual bases
   1115 /// \param VOutput the set to which to add conversions from virtual bases
   1116 /// \param HiddenVBaseCs the set of conversions which were hidden in a
   1117 ///   virtual base along some inheritance path
   1118 static void CollectVisibleConversions(ASTContext &Context,
   1119                                       CXXRecordDecl *Record,
   1120                                       bool InVirtual,
   1121                                       AccessSpecifier Access,
   1122                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
   1123                                       ASTUnresolvedSet &Output,
   1124                                       UnresolvedSetImpl &VOutput,
   1125                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
   1126   // The set of types which have conversions in this class or its
   1127   // subclasses.  As an optimization, we don't copy the derived set
   1128   // unless it might change.
   1129   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
   1130   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
   1131 
   1132   // Collect the direct conversions and figure out which conversions
   1133   // will be hidden in the subclasses.
   1134   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
   1135   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
   1136   if (ConvI != ConvE) {
   1137     HiddenTypesBuffer = ParentHiddenTypes;
   1138     HiddenTypes = &HiddenTypesBuffer;
   1139 
   1140     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
   1141       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
   1142       bool Hidden = ParentHiddenTypes.count(ConvType);
   1143       if (!Hidden)
   1144         HiddenTypesBuffer.insert(ConvType);
   1145 
   1146       // If this conversion is hidden and we're in a virtual base,
   1147       // remember that it's hidden along some inheritance path.
   1148       if (Hidden && InVirtual)
   1149         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
   1150 
   1151       // If this conversion isn't hidden, add it to the appropriate output.
   1152       else if (!Hidden) {
   1153         AccessSpecifier IAccess
   1154           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
   1155 
   1156         if (InVirtual)
   1157           VOutput.addDecl(I.getDecl(), IAccess);
   1158         else
   1159           Output.addDecl(Context, I.getDecl(), IAccess);
   1160       }
   1161     }
   1162   }
   1163 
   1164   // Collect information recursively from any base classes.
   1165   for (const auto &I : Record->bases()) {
   1166     const RecordType *RT = I.getType()->getAs<RecordType>();
   1167     if (!RT) continue;
   1168 
   1169     AccessSpecifier BaseAccess
   1170       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
   1171     bool BaseInVirtual = InVirtual || I.isVirtual();
   1172 
   1173     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
   1174     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
   1175                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
   1176   }
   1177 }
   1178 
   1179 /// Collect the visible conversions of a class.
   1180 ///
   1181 /// This would be extremely straightforward if it weren't for virtual
   1182 /// bases.  It might be worth special-casing that, really.
   1183 static void CollectVisibleConversions(ASTContext &Context,
   1184                                       CXXRecordDecl *Record,
   1185                                       ASTUnresolvedSet &Output) {
   1186   // The collection of all conversions in virtual bases that we've
   1187   // found.  These will be added to the output as long as they don't
   1188   // appear in the hidden-conversions set.
   1189   UnresolvedSet<8> VBaseCs;
   1190 
   1191   // The set of conversions in virtual bases that we've determined to
   1192   // be hidden.
   1193   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
   1194 
   1195   // The set of types hidden by classes derived from this one.
   1196   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
   1197 
   1198   // Go ahead and collect the direct conversions and add them to the
   1199   // hidden-types set.
   1200   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
   1201   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
   1202   Output.append(Context, ConvI, ConvE);
   1203   for (; ConvI != ConvE; ++ConvI)
   1204     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
   1205 
   1206   // Recursively collect conversions from base classes.
   1207   for (const auto &I : Record->bases()) {
   1208     const RecordType *RT = I.getType()->getAs<RecordType>();
   1209     if (!RT) continue;
   1210 
   1211     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
   1212                               I.isVirtual(), I.getAccessSpecifier(),
   1213                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
   1214   }
   1215 
   1216   // Add any unhidden conversions provided by virtual bases.
   1217   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
   1218          I != E; ++I) {
   1219     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
   1220       Output.addDecl(Context, I.getDecl(), I.getAccess());
   1221   }
   1222 }
   1223 
   1224 /// getVisibleConversionFunctions - get all conversion functions visible
   1225 /// in current class; including conversion function templates.
   1226 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
   1227 CXXRecordDecl::getVisibleConversionFunctions() {
   1228   ASTContext &Ctx = getASTContext();
   1229 
   1230   ASTUnresolvedSet *Set;
   1231   if (bases_begin() == bases_end()) {
   1232     // If root class, all conversions are visible.
   1233     Set = &data().Conversions.get(Ctx);
   1234   } else {
   1235     Set = &data().VisibleConversions.get(Ctx);
   1236     // If visible conversion list is not evaluated, evaluate it.
   1237     if (!data().ComputedVisibleConversions) {
   1238       CollectVisibleConversions(Ctx, this, *Set);
   1239       data().ComputedVisibleConversions = true;
   1240     }
   1241   }
   1242   return llvm::make_range(Set->begin(), Set->end());
   1243 }
   1244 
   1245 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
   1246   // This operation is O(N) but extremely rare.  Sema only uses it to
   1247   // remove UsingShadowDecls in a class that were followed by a direct
   1248   // declaration, e.g.:
   1249   //   class A : B {
   1250   //     using B::operator int;
   1251   //     operator int();
   1252   //   };
   1253   // This is uncommon by itself and even more uncommon in conjunction
   1254   // with sufficiently large numbers of directly-declared conversions
   1255   // that asymptotic behavior matters.
   1256 
   1257   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
   1258   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
   1259     if (Convs[I].getDecl() == ConvDecl) {
   1260       Convs.erase(I);
   1261       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
   1262              && "conversion was found multiple times in unresolved set");
   1263       return;
   1264     }
   1265   }
   1266 
   1267   llvm_unreachable("conversion not found in set!");
   1268 }
   1269 
   1270 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
   1271   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
   1272     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
   1273 
   1274   return nullptr;
   1275 }
   1276 
   1277 MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
   1278   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
   1279 }
   1280 
   1281 void
   1282 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
   1283                                              TemplateSpecializationKind TSK) {
   1284   assert(TemplateOrInstantiation.isNull() &&
   1285          "Previous template or instantiation?");
   1286   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
   1287   TemplateOrInstantiation
   1288     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
   1289 }
   1290 
   1291 ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
   1292   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
   1293 }
   1294 
   1295 void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
   1296   TemplateOrInstantiation = Template;
   1297 }
   1298 
   1299 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
   1300   if (const ClassTemplateSpecializationDecl *Spec
   1301         = dyn_cast<ClassTemplateSpecializationDecl>(this))
   1302     return Spec->getSpecializationKind();
   1303 
   1304   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
   1305     return MSInfo->getTemplateSpecializationKind();
   1306 
   1307   return TSK_Undeclared;
   1308 }
   1309 
   1310 void
   1311 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
   1312   if (ClassTemplateSpecializationDecl *Spec
   1313       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
   1314     Spec->setSpecializationKind(TSK);
   1315     return;
   1316   }
   1317 
   1318   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
   1319     MSInfo->setTemplateSpecializationKind(TSK);
   1320     return;
   1321   }
   1322 
   1323   llvm_unreachable("Not a class template or member class specialization");
   1324 }
   1325 
   1326 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
   1327   // If it's a class template specialization, find the template or partial
   1328   // specialization from which it was instantiated.
   1329   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
   1330     auto From = TD->getInstantiatedFrom();
   1331     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
   1332       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
   1333         if (NewCTD->isMemberSpecialization())
   1334           break;
   1335         CTD = NewCTD;
   1336       }
   1337       return CTD->getTemplatedDecl()->getDefinition();
   1338     }
   1339     if (auto *CTPSD =
   1340             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
   1341       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
   1342         if (NewCTPSD->isMemberSpecialization())
   1343           break;
   1344         CTPSD = NewCTPSD;
   1345       }
   1346       return CTPSD->getDefinition();
   1347     }
   1348   }
   1349 
   1350   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
   1351     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
   1352       const CXXRecordDecl *RD = this;
   1353       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
   1354         RD = NewRD;
   1355       return RD->getDefinition();
   1356     }
   1357   }
   1358 
   1359   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
   1360          "couldn't find pattern for class template instantiation");
   1361   return nullptr;
   1362 }
   1363 
   1364 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
   1365   ASTContext &Context = getASTContext();
   1366   QualType ClassType = Context.getTypeDeclType(this);
   1367 
   1368   DeclarationName Name
   1369     = Context.DeclarationNames.getCXXDestructorName(
   1370                                           Context.getCanonicalType(ClassType));
   1371 
   1372   DeclContext::lookup_result R = lookup(Name);
   1373   if (R.empty())
   1374     return nullptr;
   1375 
   1376   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
   1377   return Dtor;
   1378 }
   1379 
   1380 bool CXXRecordDecl::isAnyDestructorNoReturn() const {
   1381   // Destructor is noreturn.
   1382   if (const CXXDestructorDecl *Destructor = getDestructor())
   1383     if (Destructor->isNoReturn())
   1384       return true;
   1385 
   1386   // Check base classes destructor for noreturn.
   1387   for (const auto &Base : bases())
   1388     if (Base.getType()->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
   1389       return true;
   1390 
   1391   // Check fields for noreturn.
   1392   for (const auto *Field : fields())
   1393     if (const CXXRecordDecl *RD =
   1394             Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
   1395       if (RD->isAnyDestructorNoReturn())
   1396         return true;
   1397 
   1398   // All destructors are not noreturn.
   1399   return false;
   1400 }
   1401 
   1402 void CXXRecordDecl::completeDefinition() {
   1403   completeDefinition(nullptr);
   1404 }
   1405 
   1406 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
   1407   RecordDecl::completeDefinition();
   1408 
   1409   // If the class may be abstract (but hasn't been marked as such), check for
   1410   // any pure final overriders.
   1411   if (mayBeAbstract()) {
   1412     CXXFinalOverriderMap MyFinalOverriders;
   1413     if (!FinalOverriders) {
   1414       getFinalOverriders(MyFinalOverriders);
   1415       FinalOverriders = &MyFinalOverriders;
   1416     }
   1417 
   1418     bool Done = false;
   1419     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
   1420                                      MEnd = FinalOverriders->end();
   1421          M != MEnd && !Done; ++M) {
   1422       for (OverridingMethods::iterator SO = M->second.begin(),
   1423                                     SOEnd = M->second.end();
   1424            SO != SOEnd && !Done; ++SO) {
   1425         assert(SO->second.size() > 0 &&
   1426                "All virtual functions have overridding virtual functions");
   1427 
   1428         // C++ [class.abstract]p4:
   1429         //   A class is abstract if it contains or inherits at least one
   1430         //   pure virtual function for which the final overrider is pure
   1431         //   virtual.
   1432         if (SO->second.front().Method->isPure()) {
   1433           data().Abstract = true;
   1434           Done = true;
   1435           break;
   1436         }
   1437       }
   1438     }
   1439   }
   1440 
   1441   // Set access bits correctly on the directly-declared conversions.
   1442   for (conversion_iterator I = conversion_begin(), E = conversion_end();
   1443        I != E; ++I)
   1444     I.setAccess((*I)->getAccess());
   1445 }
   1446 
   1447 bool CXXRecordDecl::mayBeAbstract() const {
   1448   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
   1449       isDependentContext())
   1450     return false;
   1451 
   1452   for (const auto &B : bases()) {
   1453     CXXRecordDecl *BaseDecl
   1454       = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
   1455     if (BaseDecl->isAbstract())
   1456       return true;
   1457   }
   1458 
   1459   return false;
   1460 }
   1461 
   1462 void CXXMethodDecl::anchor() { }
   1463 
   1464 bool CXXMethodDecl::isStatic() const {
   1465   const CXXMethodDecl *MD = getCanonicalDecl();
   1466 
   1467   if (MD->getStorageClass() == SC_Static)
   1468     return true;
   1469 
   1470   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
   1471   return isStaticOverloadedOperator(OOK);
   1472 }
   1473 
   1474 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
   1475                                  const CXXMethodDecl *BaseMD) {
   1476   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
   1477          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
   1478     const CXXMethodDecl *MD = *I;
   1479     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
   1480       return true;
   1481     if (recursivelyOverrides(MD, BaseMD))
   1482       return true;
   1483   }
   1484   return false;
   1485 }
   1486 
   1487 CXXMethodDecl *
   1488 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1489                                              bool MayBeBase) {
   1490   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
   1491     return this;
   1492 
   1493   // Lookup doesn't work for destructors, so handle them separately.
   1494   if (isa<CXXDestructorDecl>(this)) {
   1495     CXXMethodDecl *MD = RD->getDestructor();
   1496     if (MD) {
   1497       if (recursivelyOverrides(MD, this))
   1498         return MD;
   1499       if (MayBeBase && recursivelyOverrides(this, MD))
   1500         return MD;
   1501     }
   1502     return nullptr;
   1503   }
   1504 
   1505   for (auto *ND : RD->lookup(getDeclName())) {
   1506     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
   1507     if (!MD)
   1508       continue;
   1509     if (recursivelyOverrides(MD, this))
   1510       return MD;
   1511     if (MayBeBase && recursivelyOverrides(this, MD))
   1512       return MD;
   1513   }
   1514 
   1515   for (const auto &I : RD->bases()) {
   1516     const RecordType *RT = I.getType()->getAs<RecordType>();
   1517     if (!RT)
   1518       continue;
   1519     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
   1520     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
   1521     if (T)
   1522       return T;
   1523   }
   1524 
   1525   return nullptr;
   1526 }
   1527 
   1528 CXXMethodDecl *
   1529 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1530                       SourceLocation StartLoc,
   1531                       const DeclarationNameInfo &NameInfo,
   1532                       QualType T, TypeSourceInfo *TInfo,
   1533                       StorageClass SC, bool isInline,
   1534                       bool isConstexpr, SourceLocation EndLocation) {
   1535   return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
   1536                                    T, TInfo, SC, isInline, isConstexpr,
   1537                                    EndLocation);
   1538 }
   1539 
   1540 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1541   return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
   1542                                    DeclarationNameInfo(), QualType(), nullptr,
   1543                                    SC_None, false, false, SourceLocation());
   1544 }
   1545 
   1546 bool CXXMethodDecl::isUsualDeallocationFunction() const {
   1547   if (getOverloadedOperator() != OO_Delete &&
   1548       getOverloadedOperator() != OO_Array_Delete)
   1549     return false;
   1550 
   1551   // C++ [basic.stc.dynamic.deallocation]p2:
   1552   //   A template instance is never a usual deallocation function,
   1553   //   regardless of its signature.
   1554   if (getPrimaryTemplate())
   1555     return false;
   1556 
   1557   // C++ [basic.stc.dynamic.deallocation]p2:
   1558   //   If a class T has a member deallocation function named operator delete
   1559   //   with exactly one parameter, then that function is a usual (non-placement)
   1560   //   deallocation function. [...]
   1561   if (getNumParams() == 1)
   1562     return true;
   1563 
   1564   // C++ [basic.stc.dynamic.deallocation]p2:
   1565   //   [...] If class T does not declare such an operator delete but does
   1566   //   declare a member deallocation function named operator delete with
   1567   //   exactly two parameters, the second of which has type std::size_t (18.1),
   1568   //   then this function is a usual deallocation function.
   1569   ASTContext &Context = getASTContext();
   1570   if (getNumParams() != 2 ||
   1571       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
   1572                                       Context.getSizeType()))
   1573     return false;
   1574 
   1575   // This function is a usual deallocation function if there are no
   1576   // single-parameter deallocation functions of the same kind.
   1577   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
   1578   for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
   1579        I != E; ++I) {
   1580     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
   1581       if (FD->getNumParams() == 1)
   1582         return false;
   1583   }
   1584 
   1585   return true;
   1586 }
   1587 
   1588 bool CXXMethodDecl::isCopyAssignmentOperator() const {
   1589   // C++0x [class.copy]p17:
   1590   //  A user-declared copy assignment operator X::operator= is a non-static
   1591   //  non-template member function of class X with exactly one parameter of
   1592   //  type X, X&, const X&, volatile X& or const volatile X&.
   1593   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
   1594       /*non-static*/ isStatic() ||
   1595       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
   1596       getNumParams() != 1)
   1597     return false;
   1598 
   1599   QualType ParamType = getParamDecl(0)->getType();
   1600   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
   1601     ParamType = Ref->getPointeeType();
   1602 
   1603   ASTContext &Context = getASTContext();
   1604   QualType ClassType
   1605     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
   1606   return Context.hasSameUnqualifiedType(ClassType, ParamType);
   1607 }
   1608 
   1609 bool CXXMethodDecl::isMoveAssignmentOperator() const {
   1610   // C++0x [class.copy]p19:
   1611   //  A user-declared move assignment operator X::operator= is a non-static
   1612   //  non-template member function of class X with exactly one parameter of type
   1613   //  X&&, const X&&, volatile X&&, or const volatile X&&.
   1614   if (getOverloadedOperator() != OO_Equal || isStatic() ||
   1615       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
   1616       getNumParams() != 1)
   1617     return false;
   1618 
   1619   QualType ParamType = getParamDecl(0)->getType();
   1620   if (!isa<RValueReferenceType>(ParamType))
   1621     return false;
   1622   ParamType = ParamType->getPointeeType();
   1623 
   1624   ASTContext &Context = getASTContext();
   1625   QualType ClassType
   1626     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
   1627   return Context.hasSameUnqualifiedType(ClassType, ParamType);
   1628 }
   1629 
   1630 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
   1631   assert(MD->isCanonicalDecl() && "Method is not canonical!");
   1632   assert(!MD->getParent()->isDependentContext() &&
   1633          "Can't add an overridden method to a class template!");
   1634   assert(MD->isVirtual() && "Method is not virtual!");
   1635 
   1636   getASTContext().addOverriddenMethod(this, MD);
   1637 }
   1638 
   1639 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
   1640   if (isa<CXXConstructorDecl>(this)) return nullptr;
   1641   return getASTContext().overridden_methods_begin(this);
   1642 }
   1643 
   1644 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
   1645   if (isa<CXXConstructorDecl>(this)) return nullptr;
   1646   return getASTContext().overridden_methods_end(this);
   1647 }
   1648 
   1649 unsigned CXXMethodDecl::size_overridden_methods() const {
   1650   if (isa<CXXConstructorDecl>(this)) return 0;
   1651   return getASTContext().overridden_methods_size(this);
   1652 }
   1653 
   1654 CXXMethodDecl::overridden_method_range
   1655 CXXMethodDecl::overridden_methods() const {
   1656   if (isa<CXXConstructorDecl>(this))
   1657     return overridden_method_range(nullptr, nullptr);
   1658   return getASTContext().overridden_methods(this);
   1659 }
   1660 
   1661 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
   1662   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
   1663   // If the member function is declared const, the type of this is const X*,
   1664   // if the member function is declared volatile, the type of this is
   1665   // volatile X*, and if the member function is declared const volatile,
   1666   // the type of this is const volatile X*.
   1667 
   1668   assert(isInstance() && "No 'this' for static methods!");
   1669 
   1670   QualType ClassTy = C.getTypeDeclType(getParent());
   1671   ClassTy = C.getQualifiedType(ClassTy,
   1672                                Qualifiers::fromCVRUMask(getTypeQualifiers()));
   1673   return C.getPointerType(ClassTy);
   1674 }
   1675 
   1676 bool CXXMethodDecl::hasInlineBody() const {
   1677   // If this function is a template instantiation, look at the template from
   1678   // which it was instantiated.
   1679   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
   1680   if (!CheckFn)
   1681     CheckFn = this;
   1682 
   1683   const FunctionDecl *fn;
   1684   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
   1685 }
   1686 
   1687 bool CXXMethodDecl::isLambdaStaticInvoker() const {
   1688   const CXXRecordDecl *P = getParent();
   1689   if (P->isLambda()) {
   1690     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
   1691       if (StaticInvoker == this) return true;
   1692       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
   1693         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
   1694     }
   1695   }
   1696   return false;
   1697 }
   1698 
   1699 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1700                                        TypeSourceInfo *TInfo, bool IsVirtual,
   1701                                        SourceLocation L, Expr *Init,
   1702                                        SourceLocation R,
   1703                                        SourceLocation EllipsisLoc)
   1704   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
   1705     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
   1706     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1707 {
   1708 }
   1709 
   1710 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1711                                        FieldDecl *Member,
   1712                                        SourceLocation MemberLoc,
   1713                                        SourceLocation L, Expr *Init,
   1714                                        SourceLocation R)
   1715   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1716     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1717     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1718 {
   1719 }
   1720 
   1721 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1722                                        IndirectFieldDecl *Member,
   1723                                        SourceLocation MemberLoc,
   1724                                        SourceLocation L, Expr *Init,
   1725                                        SourceLocation R)
   1726   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1727     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1728     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1729 {
   1730 }
   1731 
   1732 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1733                                        TypeSourceInfo *TInfo,
   1734                                        SourceLocation L, Expr *Init,
   1735                                        SourceLocation R)
   1736   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
   1737     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
   1738     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1739 {
   1740 }
   1741 
   1742 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1743                                        FieldDecl *Member,
   1744                                        SourceLocation MemberLoc,
   1745                                        SourceLocation L, Expr *Init,
   1746                                        SourceLocation R,
   1747                                        VarDecl **Indices,
   1748                                        unsigned NumIndices)
   1749   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1750     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1751     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
   1752 {
   1753   std::uninitialized_copy(Indices, Indices + NumIndices,
   1754                           getTrailingObjects<VarDecl *>());
   1755 }
   1756 
   1757 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
   1758                                                FieldDecl *Member,
   1759                                                SourceLocation MemberLoc,
   1760                                                SourceLocation L, Expr *Init,
   1761                                                SourceLocation R,
   1762                                                VarDecl **Indices,
   1763                                                unsigned NumIndices) {
   1764   void *Mem = Context.Allocate(totalSizeToAlloc<VarDecl *>(NumIndices),
   1765                                llvm::alignOf<CXXCtorInitializer>());
   1766   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
   1767                                       Indices, NumIndices);
   1768 }
   1769 
   1770 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
   1771   if (isBaseInitializer())
   1772     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
   1773   else
   1774     return TypeLoc();
   1775 }
   1776 
   1777 const Type *CXXCtorInitializer::getBaseClass() const {
   1778   if (isBaseInitializer())
   1779     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
   1780   else
   1781     return nullptr;
   1782 }
   1783 
   1784 SourceLocation CXXCtorInitializer::getSourceLocation() const {
   1785   if (isInClassMemberInitializer())
   1786     return getAnyMember()->getLocation();
   1787 
   1788   if (isAnyMemberInitializer())
   1789     return getMemberLocation();
   1790 
   1791   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
   1792     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
   1793 
   1794   return SourceLocation();
   1795 }
   1796 
   1797 SourceRange CXXCtorInitializer::getSourceRange() const {
   1798   if (isInClassMemberInitializer()) {
   1799     FieldDecl *D = getAnyMember();
   1800     if (Expr *I = D->getInClassInitializer())
   1801       return I->getSourceRange();
   1802     return SourceRange();
   1803   }
   1804 
   1805   return SourceRange(getSourceLocation(), getRParenLoc());
   1806 }
   1807 
   1808 void CXXConstructorDecl::anchor() { }
   1809 
   1810 CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
   1811                                                            unsigned ID,
   1812                                                            bool Inherited) {
   1813   unsigned Extra = additionalSizeToAlloc<InheritedConstructor>(Inherited);
   1814   auto *Result = new (C, ID, Extra) CXXConstructorDecl(
   1815       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
   1816       false, false, false, false, InheritedConstructor());
   1817   Result->IsInheritingConstructor = Inherited;
   1818   return Result;
   1819 }
   1820 
   1821 CXXConstructorDecl *
   1822 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1823                            SourceLocation StartLoc,
   1824                            const DeclarationNameInfo &NameInfo,
   1825                            QualType T, TypeSourceInfo *TInfo,
   1826                            bool isExplicit, bool isInline,
   1827                            bool isImplicitlyDeclared, bool isConstexpr,
   1828                            InheritedConstructor Inherited) {
   1829   assert(NameInfo.getName().getNameKind()
   1830          == DeclarationName::CXXConstructorName &&
   1831          "Name must refer to a constructor");
   1832   unsigned Extra =
   1833       additionalSizeToAlloc<InheritedConstructor>(Inherited ? 1 : 0);
   1834   return new (C, RD, Extra) CXXConstructorDecl(
   1835       C, RD, StartLoc, NameInfo, T, TInfo, isExplicit, isInline,
   1836       isImplicitlyDeclared, isConstexpr, Inherited);
   1837 }
   1838 
   1839 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
   1840   return CtorInitializers.get(getASTContext().getExternalSource());
   1841 }
   1842 
   1843 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
   1844   assert(isDelegatingConstructor() && "Not a delegating constructor!");
   1845   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
   1846   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
   1847     return Construct->getConstructor();
   1848 
   1849   return nullptr;
   1850 }
   1851 
   1852 bool CXXConstructorDecl::isDefaultConstructor() const {
   1853   // C++ [class.ctor]p5:
   1854   //   A default constructor for a class X is a constructor of class
   1855   //   X that can be called without an argument.
   1856   return (getNumParams() == 0) ||
   1857          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
   1858 }
   1859 
   1860 bool
   1861 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
   1862   return isCopyOrMoveConstructor(TypeQuals) &&
   1863          getParamDecl(0)->getType()->isLValueReferenceType();
   1864 }
   1865 
   1866 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
   1867   return isCopyOrMoveConstructor(TypeQuals) &&
   1868     getParamDecl(0)->getType()->isRValueReferenceType();
   1869 }
   1870 
   1871 /// \brief Determine whether this is a copy or move constructor.
   1872 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
   1873   // C++ [class.copy]p2:
   1874   //   A non-template constructor for class X is a copy constructor
   1875   //   if its first parameter is of type X&, const X&, volatile X& or
   1876   //   const volatile X&, and either there are no other parameters
   1877   //   or else all other parameters have default arguments (8.3.6).
   1878   // C++0x [class.copy]p3:
   1879   //   A non-template constructor for class X is a move constructor if its
   1880   //   first parameter is of type X&&, const X&&, volatile X&&, or
   1881   //   const volatile X&&, and either there are no other parameters or else
   1882   //   all other parameters have default arguments.
   1883   if ((getNumParams() < 1) ||
   1884       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
   1885       (getPrimaryTemplate() != nullptr) ||
   1886       (getDescribedFunctionTemplate() != nullptr))
   1887     return false;
   1888 
   1889   const ParmVarDecl *Param = getParamDecl(0);
   1890 
   1891   // Do we have a reference type?
   1892   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
   1893   if (!ParamRefType)
   1894     return false;
   1895 
   1896   // Is it a reference to our class type?
   1897   ASTContext &Context = getASTContext();
   1898 
   1899   CanQualType PointeeType
   1900     = Context.getCanonicalType(ParamRefType->getPointeeType());
   1901   CanQualType ClassTy
   1902     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
   1903   if (PointeeType.getUnqualifiedType() != ClassTy)
   1904     return false;
   1905 
   1906   // FIXME: other qualifiers?
   1907 
   1908   // We have a copy or move constructor.
   1909   TypeQuals = PointeeType.getCVRQualifiers();
   1910   return true;
   1911 }
   1912 
   1913 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
   1914   // C++ [class.conv.ctor]p1:
   1915   //   A constructor declared without the function-specifier explicit
   1916   //   that can be called with a single parameter specifies a
   1917   //   conversion from the type of its first parameter to the type of
   1918   //   its class. Such a constructor is called a converting
   1919   //   constructor.
   1920   if (isExplicit() && !AllowExplicit)
   1921     return false;
   1922 
   1923   return (getNumParams() == 0 &&
   1924           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
   1925          (getNumParams() == 1) ||
   1926          (getNumParams() > 1 &&
   1927           (getParamDecl(1)->hasDefaultArg() ||
   1928            getParamDecl(1)->isParameterPack()));
   1929 }
   1930 
   1931 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
   1932   if ((getNumParams() < 1) ||
   1933       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
   1934       (getDescribedFunctionTemplate() != nullptr))
   1935     return false;
   1936 
   1937   const ParmVarDecl *Param = getParamDecl(0);
   1938 
   1939   ASTContext &Context = getASTContext();
   1940   CanQualType ParamType = Context.getCanonicalType(Param->getType());
   1941 
   1942   // Is it the same as our our class type?
   1943   CanQualType ClassTy
   1944     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
   1945   if (ParamType.getUnqualifiedType() != ClassTy)
   1946     return false;
   1947 
   1948   return true;
   1949 }
   1950 
   1951 void CXXDestructorDecl::anchor() { }
   1952 
   1953 CXXDestructorDecl *
   1954 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1955   return new (C, ID)
   1956       CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
   1957                         QualType(), nullptr, false, false);
   1958 }
   1959 
   1960 CXXDestructorDecl *
   1961 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1962                           SourceLocation StartLoc,
   1963                           const DeclarationNameInfo &NameInfo,
   1964                           QualType T, TypeSourceInfo *TInfo,
   1965                           bool isInline, bool isImplicitlyDeclared) {
   1966   assert(NameInfo.getName().getNameKind()
   1967          == DeclarationName::CXXDestructorName &&
   1968          "Name must refer to a destructor");
   1969   return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
   1970                                        isInline, isImplicitlyDeclared);
   1971 }
   1972 
   1973 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
   1974   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
   1975   if (OD && !First->OperatorDelete) {
   1976     First->OperatorDelete = OD;
   1977     if (auto *L = getASTMutationListener())
   1978       L->ResolvedOperatorDelete(First, OD);
   1979   }
   1980 }
   1981 
   1982 void CXXConversionDecl::anchor() { }
   1983 
   1984 CXXConversionDecl *
   1985 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1986   return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
   1987                                        DeclarationNameInfo(), QualType(),
   1988                                        nullptr, false, false, false,
   1989                                        SourceLocation());
   1990 }
   1991 
   1992 CXXConversionDecl *
   1993 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1994                           SourceLocation StartLoc,
   1995                           const DeclarationNameInfo &NameInfo,
   1996                           QualType T, TypeSourceInfo *TInfo,
   1997                           bool isInline, bool isExplicit,
   1998                           bool isConstexpr, SourceLocation EndLocation) {
   1999   assert(NameInfo.getName().getNameKind()
   2000          == DeclarationName::CXXConversionFunctionName &&
   2001          "Name must refer to a conversion function");
   2002   return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
   2003                                        isInline, isExplicit, isConstexpr,
   2004                                        EndLocation);
   2005 }
   2006 
   2007 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
   2008   return isImplicit() && getParent()->isLambda() &&
   2009          getConversionType()->isBlockPointerType();
   2010 }
   2011 
   2012 void LinkageSpecDecl::anchor() { }
   2013 
   2014 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
   2015                                          DeclContext *DC,
   2016                                          SourceLocation ExternLoc,
   2017                                          SourceLocation LangLoc,
   2018                                          LanguageIDs Lang,
   2019                                          bool HasBraces) {
   2020   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
   2021 }
   2022 
   2023 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
   2024                                                      unsigned ID) {
   2025   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
   2026                                      SourceLocation(), lang_c, false);
   2027 }
   2028 
   2029 void UsingDirectiveDecl::anchor() { }
   2030 
   2031 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
   2032                                                SourceLocation L,
   2033                                                SourceLocation NamespaceLoc,
   2034                                            NestedNameSpecifierLoc QualifierLoc,
   2035                                                SourceLocation IdentLoc,
   2036                                                NamedDecl *Used,
   2037                                                DeclContext *CommonAncestor) {
   2038   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
   2039     Used = NS->getOriginalNamespace();
   2040   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
   2041                                         IdentLoc, Used, CommonAncestor);
   2042 }
   2043 
   2044 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
   2045                                                            unsigned ID) {
   2046   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
   2047                                         SourceLocation(),
   2048                                         NestedNameSpecifierLoc(),
   2049                                         SourceLocation(), nullptr, nullptr);
   2050 }
   2051 
   2052 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
   2053   if (NamespaceAliasDecl *NA =
   2054         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
   2055     return NA->getNamespace();
   2056   return cast_or_null<NamespaceDecl>(NominatedNamespace);
   2057 }
   2058 
   2059 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
   2060                              SourceLocation StartLoc, SourceLocation IdLoc,
   2061                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
   2062     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
   2063       redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
   2064       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
   2065   setPreviousDecl(PrevDecl);
   2066 
   2067   if (PrevDecl)
   2068     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
   2069 }
   2070 
   2071 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
   2072                                      bool Inline, SourceLocation StartLoc,
   2073                                      SourceLocation IdLoc, IdentifierInfo *Id,
   2074                                      NamespaceDecl *PrevDecl) {
   2075   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
   2076                                    PrevDecl);
   2077 }
   2078 
   2079 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2080   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
   2081                                    SourceLocation(), nullptr, nullptr);
   2082 }
   2083 
   2084 NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
   2085   if (isFirstDecl())
   2086     return this;
   2087 
   2088   return AnonOrFirstNamespaceAndInline.getPointer();
   2089 }
   2090 
   2091 const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
   2092   if (isFirstDecl())
   2093     return this;
   2094 
   2095   return AnonOrFirstNamespaceAndInline.getPointer();
   2096 }
   2097 
   2098 bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
   2099 
   2100 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
   2101   return getNextRedeclaration();
   2102 }
   2103 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
   2104   return getPreviousDecl();
   2105 }
   2106 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
   2107   return getMostRecentDecl();
   2108 }
   2109 
   2110 void NamespaceAliasDecl::anchor() { }
   2111 
   2112 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
   2113   return getNextRedeclaration();
   2114 }
   2115 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
   2116   return getPreviousDecl();
   2117 }
   2118 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
   2119   return getMostRecentDecl();
   2120 }
   2121 
   2122 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
   2123                                                SourceLocation UsingLoc,
   2124                                                SourceLocation AliasLoc,
   2125                                                IdentifierInfo *Alias,
   2126                                            NestedNameSpecifierLoc QualifierLoc,
   2127                                                SourceLocation IdentLoc,
   2128                                                NamedDecl *Namespace) {
   2129   // FIXME: Preserve the aliased namespace as written.
   2130   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
   2131     Namespace = NS->getOriginalNamespace();
   2132   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
   2133                                         QualifierLoc, IdentLoc, Namespace);
   2134 }
   2135 
   2136 NamespaceAliasDecl *
   2137 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2138   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
   2139                                         SourceLocation(), nullptr,
   2140                                         NestedNameSpecifierLoc(),
   2141                                         SourceLocation(), nullptr);
   2142 }
   2143 
   2144 void UsingShadowDecl::anchor() { }
   2145 
   2146 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
   2147                                  SourceLocation Loc, UsingDecl *Using,
   2148                                  NamedDecl *Target)
   2149     : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
   2150       redeclarable_base(C), Underlying(Target),
   2151       UsingOrNextShadow(cast<NamedDecl>(Using)) {
   2152   if (Target)
   2153     IdentifierNamespace = Target->getIdentifierNamespace();
   2154   setImplicit();
   2155 }
   2156 
   2157 UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
   2158     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
   2159       redeclarable_base(C), Underlying(), UsingOrNextShadow() {}
   2160 
   2161 UsingShadowDecl *
   2162 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2163   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
   2164 }
   2165 
   2166 UsingDecl *UsingShadowDecl::getUsingDecl() const {
   2167   const UsingShadowDecl *Shadow = this;
   2168   while (const UsingShadowDecl *NextShadow =
   2169          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
   2170     Shadow = NextShadow;
   2171   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
   2172 }
   2173 
   2174 void ConstructorUsingShadowDecl::anchor() { }
   2175 
   2176 ConstructorUsingShadowDecl *
   2177 ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
   2178                                    SourceLocation Loc, UsingDecl *Using,
   2179                                    NamedDecl *Target, bool IsVirtual) {
   2180   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
   2181                                                 IsVirtual);
   2182 }
   2183 
   2184 ConstructorUsingShadowDecl *
   2185 ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2186   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
   2187 }
   2188 
   2189 CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
   2190   return getUsingDecl()->getQualifier()->getAsRecordDecl();
   2191 }
   2192 
   2193 void UsingDecl::anchor() { }
   2194 
   2195 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
   2196   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
   2197          "declaration already in set");
   2198   assert(S->getUsingDecl() == this);
   2199 
   2200   if (FirstUsingShadow.getPointer())
   2201     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
   2202   FirstUsingShadow.setPointer(S);
   2203 }
   2204 
   2205 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
   2206   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
   2207          "declaration not in set");
   2208   assert(S->getUsingDecl() == this);
   2209 
   2210   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
   2211 
   2212   if (FirstUsingShadow.getPointer() == S) {
   2213     FirstUsingShadow.setPointer(
   2214       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
   2215     S->UsingOrNextShadow = this;
   2216     return;
   2217   }
   2218 
   2219   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
   2220   while (Prev->UsingOrNextShadow != S)
   2221     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
   2222   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
   2223   S->UsingOrNextShadow = this;
   2224 }
   2225 
   2226 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
   2227                              NestedNameSpecifierLoc QualifierLoc,
   2228                              const DeclarationNameInfo &NameInfo,
   2229                              bool HasTypename) {
   2230   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
   2231 }
   2232 
   2233 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2234   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
   2235                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
   2236                                false);
   2237 }
   2238 
   2239 SourceRange UsingDecl::getSourceRange() const {
   2240   SourceLocation Begin = isAccessDeclaration()
   2241     ? getQualifierLoc().getBeginLoc() : UsingLocation;
   2242   return SourceRange(Begin, getNameInfo().getEndLoc());
   2243 }
   2244 
   2245 void UnresolvedUsingValueDecl::anchor() { }
   2246 
   2247 UnresolvedUsingValueDecl *
   2248 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
   2249                                  SourceLocation UsingLoc,
   2250                                  NestedNameSpecifierLoc QualifierLoc,
   2251                                  const DeclarationNameInfo &NameInfo) {
   2252   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
   2253                                               QualifierLoc, NameInfo);
   2254 }
   2255 
   2256 UnresolvedUsingValueDecl *
   2257 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2258   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
   2259                                               SourceLocation(),
   2260                                               NestedNameSpecifierLoc(),
   2261                                               DeclarationNameInfo());
   2262 }
   2263 
   2264 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
   2265   SourceLocation Begin = isAccessDeclaration()
   2266     ? getQualifierLoc().getBeginLoc() : UsingLocation;
   2267   return SourceRange(Begin, getNameInfo().getEndLoc());
   2268 }
   2269 
   2270 void UnresolvedUsingTypenameDecl::anchor() { }
   2271 
   2272 UnresolvedUsingTypenameDecl *
   2273 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
   2274                                     SourceLocation UsingLoc,
   2275                                     SourceLocation TypenameLoc,
   2276                                     NestedNameSpecifierLoc QualifierLoc,
   2277                                     SourceLocation TargetNameLoc,
   2278                                     DeclarationName TargetName) {
   2279   return new (C, DC) UnresolvedUsingTypenameDecl(
   2280       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
   2281       TargetName.getAsIdentifierInfo());
   2282 }
   2283 
   2284 UnresolvedUsingTypenameDecl *
   2285 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2286   return new (C, ID) UnresolvedUsingTypenameDecl(
   2287       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
   2288       SourceLocation(), nullptr);
   2289 }
   2290 
   2291 void StaticAssertDecl::anchor() { }
   2292 
   2293 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
   2294                                            SourceLocation StaticAssertLoc,
   2295                                            Expr *AssertExpr,
   2296                                            StringLiteral *Message,
   2297                                            SourceLocation RParenLoc,
   2298                                            bool Failed) {
   2299   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
   2300                                       RParenLoc, Failed);
   2301 }
   2302 
   2303 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
   2304                                                        unsigned ID) {
   2305   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
   2306                                       nullptr, SourceLocation(), false);
   2307 }
   2308 
   2309 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
   2310                                        SourceLocation L, DeclarationName N,
   2311                                        QualType T, TypeSourceInfo *TInfo,
   2312                                        SourceLocation StartL,
   2313                                        IdentifierInfo *Getter,
   2314                                        IdentifierInfo *Setter) {
   2315   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
   2316 }
   2317 
   2318 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
   2319                                                    unsigned ID) {
   2320   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
   2321                                     DeclarationName(), QualType(), nullptr,
   2322                                     SourceLocation(), nullptr, nullptr);
   2323 }
   2324 
   2325 static const char *getAccessName(AccessSpecifier AS) {
   2326   switch (AS) {
   2327     case AS_none:
   2328       llvm_unreachable("Invalid access specifier!");
   2329     case AS_public:
   2330       return "public";
   2331     case AS_private:
   2332       return "private";
   2333     case AS_protected:
   2334       return "protected";
   2335   }
   2336   llvm_unreachable("Invalid access specifier!");
   2337 }
   2338 
   2339 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
   2340                                            AccessSpecifier AS) {
   2341   return DB << getAccessName(AS);
   2342 }
   2343 
   2344 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
   2345                                            AccessSpecifier AS) {
   2346   return DB << getAccessName(AS);
   2347 }
   2348