1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expression parsing implementation for C++. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "clang/AST/ASTContext.h" 14 #include "RAIIObjectsForParser.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/Basic/PrettyStackTrace.h" 17 #include "clang/Lex/LiteralSupport.h" 18 #include "clang/Parse/ParseDiagnostic.h" 19 #include "clang/Parse/Parser.h" 20 #include "clang/Sema/DeclSpec.h" 21 #include "clang/Sema/ParsedTemplate.h" 22 #include "clang/Sema/Scope.h" 23 #include "llvm/Support/ErrorHandling.h" 24 25 26 using namespace clang; 27 28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) { 29 switch (Kind) { 30 // template name 31 case tok::unknown: return 0; 32 // casts 33 case tok::kw_const_cast: return 1; 34 case tok::kw_dynamic_cast: return 2; 35 case tok::kw_reinterpret_cast: return 3; 36 case tok::kw_static_cast: return 4; 37 default: 38 llvm_unreachable("Unknown type for digraph error message."); 39 } 40 } 41 42 // Are the two tokens adjacent in the same source file? 43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) { 44 SourceManager &SM = PP.getSourceManager(); 45 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation()); 46 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength()); 47 return FirstEnd == SM.getSpellingLoc(Second.getLocation()); 48 } 49 50 // Suggest fixit for "<::" after a cast. 51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, 52 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) { 53 // Pull '<:' and ':' off token stream. 54 if (!AtDigraph) 55 PP.Lex(DigraphToken); 56 PP.Lex(ColonToken); 57 58 SourceRange Range; 59 Range.setBegin(DigraphToken.getLocation()); 60 Range.setEnd(ColonToken.getLocation()); 61 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph) 62 << SelectDigraphErrorMessage(Kind) 63 << FixItHint::CreateReplacement(Range, "< ::"); 64 65 // Update token information to reflect their change in token type. 66 ColonToken.setKind(tok::coloncolon); 67 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1)); 68 ColonToken.setLength(2); 69 DigraphToken.setKind(tok::less); 70 DigraphToken.setLength(1); 71 72 // Push new tokens back to token stream. 73 PP.EnterToken(ColonToken); 74 if (!AtDigraph) 75 PP.EnterToken(DigraphToken); 76 } 77 78 // Check for '<::' which should be '< ::' instead of '[:' when following 79 // a template name. 80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType, 81 bool EnteringContext, 82 IdentifierInfo &II, CXXScopeSpec &SS) { 83 if (!Next.is(tok::l_square) || Next.getLength() != 2) 84 return; 85 86 Token SecondToken = GetLookAheadToken(2); 87 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken)) 88 return; 89 90 TemplateTy Template; 91 UnqualifiedId TemplateName; 92 TemplateName.setIdentifier(&II, Tok.getLocation()); 93 bool MemberOfUnknownSpecialization; 94 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, 95 TemplateName, ObjectType, EnteringContext, 96 Template, MemberOfUnknownSpecialization)) 97 return; 98 99 FixDigraph(*this, PP, Next, SecondToken, tok::unknown, 100 /*AtDigraph*/false); 101 } 102 103 /// \brief Emits an error for a left parentheses after a double colon. 104 /// 105 /// When a '(' is found after a '::', emit an error. Attempt to fix the token 106 /// stream by removing the '(', and the matching ')' if found. 107 void Parser::CheckForLParenAfterColonColon() { 108 if (!Tok.is(tok::l_paren)) 109 return; 110 111 Token LParen = Tok; 112 Token NextTok = GetLookAheadToken(1); 113 Token StarTok = NextTok; 114 // Check for (identifier or (*identifier 115 Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok; 116 if (IdentifierTok.isNot(tok::identifier)) 117 return; 118 // Eat the '('. 119 ConsumeParen(); 120 Token RParen; 121 RParen.setLocation(SourceLocation()); 122 // Do we have a ')' ? 123 NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1); 124 if (NextTok.is(tok::r_paren)) { 125 RParen = NextTok; 126 // Eat the '*' if it is present. 127 if (StarTok.is(tok::star)) 128 ConsumeToken(); 129 // Eat the identifier. 130 ConsumeToken(); 131 // Add the identifier token back. 132 PP.EnterToken(IdentifierTok); 133 // Add the '*' back if it was present. 134 if (StarTok.is(tok::star)) 135 PP.EnterToken(StarTok); 136 // Eat the ')'. 137 ConsumeParen(); 138 } 139 140 Diag(LParen.getLocation(), diag::err_paren_after_colon_colon) 141 << FixItHint::CreateRemoval(LParen.getLocation()) 142 << FixItHint::CreateRemoval(RParen.getLocation()); 143 } 144 145 /// \brief Parse global scope or nested-name-specifier if present. 146 /// 147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which 148 /// may be preceded by '::'). Note that this routine will not parse ::new or 149 /// ::delete; it will just leave them in the token stream. 150 /// 151 /// '::'[opt] nested-name-specifier 152 /// '::' 153 /// 154 /// nested-name-specifier: 155 /// type-name '::' 156 /// namespace-name '::' 157 /// nested-name-specifier identifier '::' 158 /// nested-name-specifier 'template'[opt] simple-template-id '::' 159 /// 160 /// 161 /// \param SS the scope specifier that will be set to the parsed 162 /// nested-name-specifier (or empty) 163 /// 164 /// \param ObjectType if this nested-name-specifier is being parsed following 165 /// the "." or "->" of a member access expression, this parameter provides the 166 /// type of the object whose members are being accessed. 167 /// 168 /// \param EnteringContext whether we will be entering into the context of 169 /// the nested-name-specifier after parsing it. 170 /// 171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that 172 /// indicates whether this nested-name-specifier may be part of a 173 /// pseudo-destructor name. In this case, the flag will be set false 174 /// if we don't actually end up parsing a destructor name. Moreorover, 175 /// if we do end up determining that we are parsing a destructor name, 176 /// the last component of the nested-name-specifier is not parsed as 177 /// part of the scope specifier. 178 /// 179 /// \param IsTypename If \c true, this nested-name-specifier is known to be 180 /// part of a type name. This is used to improve error recovery. 181 /// 182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be 183 /// filled in with the leading identifier in the last component of the 184 /// nested-name-specifier, if any. 185 /// 186 /// \returns true if there was an error parsing a scope specifier 187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, 188 ParsedType ObjectType, 189 bool EnteringContext, 190 bool *MayBePseudoDestructor, 191 bool IsTypename, 192 IdentifierInfo **LastII) { 193 assert(getLangOpts().CPlusPlus && 194 "Call sites of this function should be guarded by checking for C++"); 195 196 if (Tok.is(tok::annot_cxxscope)) { 197 assert(!LastII && "want last identifier but have already annotated scope"); 198 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope"); 199 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 200 Tok.getAnnotationRange(), 201 SS); 202 ConsumeToken(); 203 return false; 204 } 205 206 if (Tok.is(tok::annot_template_id)) { 207 // If the current token is an annotated template id, it may already have 208 // a scope specifier. Restore it. 209 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 210 SS = TemplateId->SS; 211 } 212 213 // Has to happen before any "return false"s in this function. 214 bool CheckForDestructor = false; 215 if (MayBePseudoDestructor && *MayBePseudoDestructor) { 216 CheckForDestructor = true; 217 *MayBePseudoDestructor = false; 218 } 219 220 if (LastII) 221 *LastII = nullptr; 222 223 bool HasScopeSpecifier = false; 224 225 if (Tok.is(tok::coloncolon)) { 226 // ::new and ::delete aren't nested-name-specifiers. 227 tok::TokenKind NextKind = NextToken().getKind(); 228 if (NextKind == tok::kw_new || NextKind == tok::kw_delete) 229 return false; 230 231 if (NextKind == tok::l_brace) { 232 // It is invalid to have :: {, consume the scope qualifier and pretend 233 // like we never saw it. 234 Diag(ConsumeToken(), diag::err_expected) << tok::identifier; 235 } else { 236 // '::' - Global scope qualifier. 237 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS)) 238 return true; 239 240 CheckForLParenAfterColonColon(); 241 242 HasScopeSpecifier = true; 243 } 244 } 245 246 if (Tok.is(tok::kw___super)) { 247 SourceLocation SuperLoc = ConsumeToken(); 248 if (!Tok.is(tok::coloncolon)) { 249 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super); 250 return true; 251 } 252 253 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS); 254 } 255 256 if (!HasScopeSpecifier && 257 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) { 258 DeclSpec DS(AttrFactory); 259 SourceLocation DeclLoc = Tok.getLocation(); 260 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 261 262 SourceLocation CCLoc; 263 if (!TryConsumeToken(tok::coloncolon, CCLoc)) { 264 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc); 265 return false; 266 } 267 268 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc)) 269 SS.SetInvalid(SourceRange(DeclLoc, CCLoc)); 270 271 HasScopeSpecifier = true; 272 } 273 274 while (true) { 275 if (HasScopeSpecifier) { 276 // C++ [basic.lookup.classref]p5: 277 // If the qualified-id has the form 278 // 279 // ::class-name-or-namespace-name::... 280 // 281 // the class-name-or-namespace-name is looked up in global scope as a 282 // class-name or namespace-name. 283 // 284 // To implement this, we clear out the object type as soon as we've 285 // seen a leading '::' or part of a nested-name-specifier. 286 ObjectType = nullptr; 287 288 if (Tok.is(tok::code_completion)) { 289 // Code completion for a nested-name-specifier, where the code 290 // code completion token follows the '::'. 291 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext); 292 // Include code completion token into the range of the scope otherwise 293 // when we try to annotate the scope tokens the dangling code completion 294 // token will cause assertion in 295 // Preprocessor::AnnotatePreviousCachedTokens. 296 SS.setEndLoc(Tok.getLocation()); 297 cutOffParsing(); 298 return true; 299 } 300 } 301 302 // nested-name-specifier: 303 // nested-name-specifier 'template'[opt] simple-template-id '::' 304 305 // Parse the optional 'template' keyword, then make sure we have 306 // 'identifier <' after it. 307 if (Tok.is(tok::kw_template)) { 308 // If we don't have a scope specifier or an object type, this isn't a 309 // nested-name-specifier, since they aren't allowed to start with 310 // 'template'. 311 if (!HasScopeSpecifier && !ObjectType) 312 break; 313 314 TentativeParsingAction TPA(*this); 315 SourceLocation TemplateKWLoc = ConsumeToken(); 316 317 UnqualifiedId TemplateName; 318 if (Tok.is(tok::identifier)) { 319 // Consume the identifier. 320 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 321 ConsumeToken(); 322 } else if (Tok.is(tok::kw_operator)) { 323 // We don't need to actually parse the unqualified-id in this case, 324 // because a simple-template-id cannot start with 'operator', but 325 // go ahead and parse it anyway for consistency with the case where 326 // we already annotated the template-id. 327 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, 328 TemplateName)) { 329 TPA.Commit(); 330 break; 331 } 332 333 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId && 334 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) { 335 Diag(TemplateName.getSourceRange().getBegin(), 336 diag::err_id_after_template_in_nested_name_spec) 337 << TemplateName.getSourceRange(); 338 TPA.Commit(); 339 break; 340 } 341 } else { 342 TPA.Revert(); 343 break; 344 } 345 346 // If the next token is not '<', we have a qualified-id that refers 347 // to a template name, such as T::template apply, but is not a 348 // template-id. 349 if (Tok.isNot(tok::less)) { 350 TPA.Revert(); 351 break; 352 } 353 354 // Commit to parsing the template-id. 355 TPA.Commit(); 356 TemplateTy Template; 357 if (TemplateNameKind TNK 358 = Actions.ActOnDependentTemplateName(getCurScope(), 359 SS, TemplateKWLoc, TemplateName, 360 ObjectType, EnteringContext, 361 Template)) { 362 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc, 363 TemplateName, false)) 364 return true; 365 } else 366 return true; 367 368 continue; 369 } 370 371 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { 372 // We have 373 // 374 // template-id '::' 375 // 376 // So we need to check whether the template-id is a simple-template-id of 377 // the right kind (it should name a type or be dependent), and then 378 // convert it into a type within the nested-name-specifier. 379 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 380 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { 381 *MayBePseudoDestructor = true; 382 return false; 383 } 384 385 if (LastII) 386 *LastII = TemplateId->Name; 387 388 // Consume the template-id token. 389 ConsumeToken(); 390 391 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); 392 SourceLocation CCLoc = ConsumeToken(); 393 394 HasScopeSpecifier = true; 395 396 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 397 TemplateId->NumArgs); 398 399 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), 400 SS, 401 TemplateId->TemplateKWLoc, 402 TemplateId->Template, 403 TemplateId->TemplateNameLoc, 404 TemplateId->LAngleLoc, 405 TemplateArgsPtr, 406 TemplateId->RAngleLoc, 407 CCLoc, 408 EnteringContext)) { 409 SourceLocation StartLoc 410 = SS.getBeginLoc().isValid()? SS.getBeginLoc() 411 : TemplateId->TemplateNameLoc; 412 SS.SetInvalid(SourceRange(StartLoc, CCLoc)); 413 } 414 415 continue; 416 } 417 418 // The rest of the nested-name-specifier possibilities start with 419 // tok::identifier. 420 if (Tok.isNot(tok::identifier)) 421 break; 422 423 IdentifierInfo &II = *Tok.getIdentifierInfo(); 424 425 // nested-name-specifier: 426 // type-name '::' 427 // namespace-name '::' 428 // nested-name-specifier identifier '::' 429 Token Next = NextToken(); 430 431 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover 432 // and emit a fixit hint for it. 433 if (Next.is(tok::colon) && !ColonIsSacred) { 434 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, 435 Tok.getLocation(), 436 Next.getLocation(), ObjectType, 437 EnteringContext) && 438 // If the token after the colon isn't an identifier, it's still an 439 // error, but they probably meant something else strange so don't 440 // recover like this. 441 PP.LookAhead(1).is(tok::identifier)) { 442 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec) 443 << FixItHint::CreateReplacement(Next.getLocation(), "::"); 444 // Recover as if the user wrote '::'. 445 Next.setKind(tok::coloncolon); 446 } 447 } 448 449 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) { 450 // It is invalid to have :: {, consume the scope qualifier and pretend 451 // like we never saw it. 452 Token Identifier = Tok; // Stash away the identifier. 453 ConsumeToken(); // Eat the identifier, current token is now '::'. 454 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected) 455 << tok::identifier; 456 UnconsumeToken(Identifier); // Stick the identifier back. 457 Next = NextToken(); // Point Next at the '{' token. 458 } 459 460 if (Next.is(tok::coloncolon)) { 461 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) && 462 !Actions.isNonTypeNestedNameSpecifier( 463 getCurScope(), SS, Tok.getLocation(), II, ObjectType)) { 464 *MayBePseudoDestructor = true; 465 return false; 466 } 467 468 if (ColonIsSacred) { 469 const Token &Next2 = GetLookAheadToken(2); 470 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) || 471 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) { 472 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec) 473 << Next2.getName() 474 << FixItHint::CreateReplacement(Next.getLocation(), ":"); 475 Token ColonColon; 476 PP.Lex(ColonColon); 477 ColonColon.setKind(tok::colon); 478 PP.EnterToken(ColonColon); 479 break; 480 } 481 } 482 483 if (LastII) 484 *LastII = &II; 485 486 // We have an identifier followed by a '::'. Lookup this name 487 // as the name in a nested-name-specifier. 488 Token Identifier = Tok; 489 SourceLocation IdLoc = ConsumeToken(); 490 assert(Tok.isOneOf(tok::coloncolon, tok::colon) && 491 "NextToken() not working properly!"); 492 Token ColonColon = Tok; 493 SourceLocation CCLoc = ConsumeToken(); 494 495 CheckForLParenAfterColonColon(); 496 497 bool IsCorrectedToColon = false; 498 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr; 499 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc, 500 ObjectType, EnteringContext, SS, 501 false, CorrectionFlagPtr)) { 502 // Identifier is not recognized as a nested name, but we can have 503 // mistyped '::' instead of ':'. 504 if (CorrectionFlagPtr && IsCorrectedToColon) { 505 ColonColon.setKind(tok::colon); 506 PP.EnterToken(Tok); 507 PP.EnterToken(ColonColon); 508 Tok = Identifier; 509 break; 510 } 511 SS.SetInvalid(SourceRange(IdLoc, CCLoc)); 512 } 513 HasScopeSpecifier = true; 514 continue; 515 } 516 517 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS); 518 519 // nested-name-specifier: 520 // type-name '<' 521 if (Next.is(tok::less)) { 522 TemplateTy Template; 523 UnqualifiedId TemplateName; 524 TemplateName.setIdentifier(&II, Tok.getLocation()); 525 bool MemberOfUnknownSpecialization; 526 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 527 /*hasTemplateKeyword=*/false, 528 TemplateName, 529 ObjectType, 530 EnteringContext, 531 Template, 532 MemberOfUnknownSpecialization)) { 533 // We have found a template name, so annotate this token 534 // with a template-id annotation. We do not permit the 535 // template-id to be translated into a type annotation, 536 // because some clients (e.g., the parsing of class template 537 // specializations) still want to see the original template-id 538 // token. 539 ConsumeToken(); 540 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 541 TemplateName, false)) 542 return true; 543 continue; 544 } 545 546 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 547 (IsTypename || IsTemplateArgumentList(1))) { 548 // We have something like t::getAs<T>, where getAs is a 549 // member of an unknown specialization. However, this will only 550 // parse correctly as a template, so suggest the keyword 'template' 551 // before 'getAs' and treat this as a dependent template name. 552 unsigned DiagID = diag::err_missing_dependent_template_keyword; 553 if (getLangOpts().MicrosoftExt) 554 DiagID = diag::warn_missing_dependent_template_keyword; 555 556 Diag(Tok.getLocation(), DiagID) 557 << II.getName() 558 << FixItHint::CreateInsertion(Tok.getLocation(), "template "); 559 560 if (TemplateNameKind TNK 561 = Actions.ActOnDependentTemplateName(getCurScope(), 562 SS, SourceLocation(), 563 TemplateName, ObjectType, 564 EnteringContext, Template)) { 565 // Consume the identifier. 566 ConsumeToken(); 567 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 568 TemplateName, false)) 569 return true; 570 } 571 else 572 return true; 573 574 continue; 575 } 576 } 577 578 // We don't have any tokens that form the beginning of a 579 // nested-name-specifier, so we're done. 580 break; 581 } 582 583 // Even if we didn't see any pieces of a nested-name-specifier, we 584 // still check whether there is a tilde in this position, which 585 // indicates a potential pseudo-destructor. 586 if (CheckForDestructor && Tok.is(tok::tilde)) 587 *MayBePseudoDestructor = true; 588 589 return false; 590 } 591 592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand, 593 Token &Replacement) { 594 SourceLocation TemplateKWLoc; 595 UnqualifiedId Name; 596 if (ParseUnqualifiedId(SS, 597 /*EnteringContext=*/false, 598 /*AllowDestructorName=*/false, 599 /*AllowConstructorName=*/false, 600 /*ObjectType=*/nullptr, TemplateKWLoc, Name)) 601 return ExprError(); 602 603 // This is only the direct operand of an & operator if it is not 604 // followed by a postfix-expression suffix. 605 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 606 isAddressOfOperand = false; 607 608 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name, 609 Tok.is(tok::l_paren), isAddressOfOperand, 610 nullptr, /*IsInlineAsmIdentifier=*/false, 611 &Replacement); 612 } 613 614 /// ParseCXXIdExpression - Handle id-expression. 615 /// 616 /// id-expression: 617 /// unqualified-id 618 /// qualified-id 619 /// 620 /// qualified-id: 621 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 622 /// '::' identifier 623 /// '::' operator-function-id 624 /// '::' template-id 625 /// 626 /// NOTE: The standard specifies that, for qualified-id, the parser does not 627 /// expect: 628 /// 629 /// '::' conversion-function-id 630 /// '::' '~' class-name 631 /// 632 /// This may cause a slight inconsistency on diagnostics: 633 /// 634 /// class C {}; 635 /// namespace A {} 636 /// void f() { 637 /// :: A :: ~ C(); // Some Sema error about using destructor with a 638 /// // namespace. 639 /// :: ~ C(); // Some Parser error like 'unexpected ~'. 640 /// } 641 /// 642 /// We simplify the parser a bit and make it work like: 643 /// 644 /// qualified-id: 645 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 646 /// '::' unqualified-id 647 /// 648 /// That way Sema can handle and report similar errors for namespaces and the 649 /// global scope. 650 /// 651 /// The isAddressOfOperand parameter indicates that this id-expression is a 652 /// direct operand of the address-of operator. This is, besides member contexts, 653 /// the only place where a qualified-id naming a non-static class member may 654 /// appear. 655 /// 656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { 657 // qualified-id: 658 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 659 // '::' unqualified-id 660 // 661 CXXScopeSpec SS; 662 ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/false); 663 664 Token Replacement; 665 ExprResult Result = 666 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 667 if (Result.isUnset()) { 668 // If the ExprResult is valid but null, then typo correction suggested a 669 // keyword replacement that needs to be reparsed. 670 UnconsumeToken(Replacement); 671 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 672 } 673 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement " 674 "for a previous keyword suggestion"); 675 return Result; 676 } 677 678 /// ParseLambdaExpression - Parse a C++11 lambda expression. 679 /// 680 /// lambda-expression: 681 /// lambda-introducer lambda-declarator[opt] compound-statement 682 /// 683 /// lambda-introducer: 684 /// '[' lambda-capture[opt] ']' 685 /// 686 /// lambda-capture: 687 /// capture-default 688 /// capture-list 689 /// capture-default ',' capture-list 690 /// 691 /// capture-default: 692 /// '&' 693 /// '=' 694 /// 695 /// capture-list: 696 /// capture 697 /// capture-list ',' capture 698 /// 699 /// capture: 700 /// simple-capture 701 /// init-capture [C++1y] 702 /// 703 /// simple-capture: 704 /// identifier 705 /// '&' identifier 706 /// 'this' 707 /// 708 /// init-capture: [C++1y] 709 /// identifier initializer 710 /// '&' identifier initializer 711 /// 712 /// lambda-declarator: 713 /// '(' parameter-declaration-clause ')' attribute-specifier[opt] 714 /// 'mutable'[opt] exception-specification[opt] 715 /// trailing-return-type[opt] 716 /// 717 ExprResult Parser::ParseLambdaExpression() { 718 // Parse lambda-introducer. 719 LambdaIntroducer Intro; 720 Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro); 721 if (DiagID) { 722 Diag(Tok, DiagID.getValue()); 723 SkipUntil(tok::r_square, StopAtSemi); 724 SkipUntil(tok::l_brace, StopAtSemi); 725 SkipUntil(tok::r_brace, StopAtSemi); 726 return ExprError(); 727 } 728 729 return ParseLambdaExpressionAfterIntroducer(Intro); 730 } 731 732 /// TryParseLambdaExpression - Use lookahead and potentially tentative 733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse 734 /// it if we are. 735 /// 736 /// If we are not looking at a lambda expression, returns ExprError(). 737 ExprResult Parser::TryParseLambdaExpression() { 738 assert(getLangOpts().CPlusPlus11 739 && Tok.is(tok::l_square) 740 && "Not at the start of a possible lambda expression."); 741 742 const Token Next = NextToken(); 743 if (Next.is(tok::eof)) // Nothing else to lookup here... 744 return ExprEmpty(); 745 746 const Token After = GetLookAheadToken(2); 747 // If lookahead indicates this is a lambda... 748 if (Next.is(tok::r_square) || // [] 749 Next.is(tok::equal) || // [= 750 (Next.is(tok::amp) && // [&] or [&, 751 (After.is(tok::r_square) || 752 After.is(tok::comma))) || 753 (Next.is(tok::identifier) && // [identifier] 754 After.is(tok::r_square))) { 755 return ParseLambdaExpression(); 756 } 757 758 // If lookahead indicates an ObjC message send... 759 // [identifier identifier 760 if (Next.is(tok::identifier) && After.is(tok::identifier)) { 761 return ExprEmpty(); 762 } 763 764 // Here, we're stuck: lambda introducers and Objective-C message sends are 765 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a 766 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of 767 // writing two routines to parse a lambda introducer, just try to parse 768 // a lambda introducer first, and fall back if that fails. 769 // (TryParseLambdaIntroducer never produces any diagnostic output.) 770 LambdaIntroducer Intro; 771 if (TryParseLambdaIntroducer(Intro)) 772 return ExprEmpty(); 773 774 return ParseLambdaExpressionAfterIntroducer(Intro); 775 } 776 777 /// \brief Parse a lambda introducer. 778 /// \param Intro A LambdaIntroducer filled in with information about the 779 /// contents of the lambda-introducer. 780 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C 781 /// message send and a lambda expression. In this mode, we will 782 /// sometimes skip the initializers for init-captures and not fully 783 /// populate \p Intro. This flag will be set to \c true if we do so. 784 /// \return A DiagnosticID if it hit something unexpected. The location for 785 /// for the diagnostic is that of the current token. 786 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro, 787 bool *SkippedInits) { 788 typedef Optional<unsigned> DiagResult; 789 790 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['."); 791 BalancedDelimiterTracker T(*this, tok::l_square); 792 T.consumeOpen(); 793 794 Intro.Range.setBegin(T.getOpenLocation()); 795 796 bool first = true; 797 798 // Parse capture-default. 799 if (Tok.is(tok::amp) && 800 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) { 801 Intro.Default = LCD_ByRef; 802 Intro.DefaultLoc = ConsumeToken(); 803 first = false; 804 } else if (Tok.is(tok::equal)) { 805 Intro.Default = LCD_ByCopy; 806 Intro.DefaultLoc = ConsumeToken(); 807 first = false; 808 } 809 810 while (Tok.isNot(tok::r_square)) { 811 if (!first) { 812 if (Tok.isNot(tok::comma)) { 813 // Provide a completion for a lambda introducer here. Except 814 // in Objective-C, where this is Almost Surely meant to be a message 815 // send. In that case, fail here and let the ObjC message 816 // expression parser perform the completion. 817 if (Tok.is(tok::code_completion) && 818 !(getLangOpts().ObjC1 && Intro.Default == LCD_None && 819 !Intro.Captures.empty())) { 820 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 821 /*AfterAmpersand=*/false); 822 cutOffParsing(); 823 break; 824 } 825 826 return DiagResult(diag::err_expected_comma_or_rsquare); 827 } 828 ConsumeToken(); 829 } 830 831 if (Tok.is(tok::code_completion)) { 832 // If we're in Objective-C++ and we have a bare '[', then this is more 833 // likely to be a message receiver. 834 if (getLangOpts().ObjC1 && first) 835 Actions.CodeCompleteObjCMessageReceiver(getCurScope()); 836 else 837 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 838 /*AfterAmpersand=*/false); 839 cutOffParsing(); 840 break; 841 } 842 843 first = false; 844 845 // Parse capture. 846 LambdaCaptureKind Kind = LCK_ByCopy; 847 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit; 848 SourceLocation Loc; 849 IdentifierInfo *Id = nullptr; 850 SourceLocation EllipsisLoc; 851 ExprResult Init; 852 853 if (Tok.is(tok::star)) { 854 Loc = ConsumeToken(); 855 if (Tok.is(tok::kw_this)) { 856 ConsumeToken(); 857 Kind = LCK_StarThis; 858 } else { 859 return DiagResult(diag::err_expected_star_this_capture); 860 } 861 } else if (Tok.is(tok::kw_this)) { 862 Kind = LCK_This; 863 Loc = ConsumeToken(); 864 } else { 865 if (Tok.is(tok::amp)) { 866 Kind = LCK_ByRef; 867 ConsumeToken(); 868 869 if (Tok.is(tok::code_completion)) { 870 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 871 /*AfterAmpersand=*/true); 872 cutOffParsing(); 873 break; 874 } 875 } 876 877 if (Tok.is(tok::identifier)) { 878 Id = Tok.getIdentifierInfo(); 879 Loc = ConsumeToken(); 880 } else if (Tok.is(tok::kw_this)) { 881 // FIXME: If we want to suggest a fixit here, will need to return more 882 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be 883 // Clear()ed to prevent emission in case of tentative parsing? 884 return DiagResult(diag::err_this_captured_by_reference); 885 } else { 886 return DiagResult(diag::err_expected_capture); 887 } 888 889 if (Tok.is(tok::l_paren)) { 890 BalancedDelimiterTracker Parens(*this, tok::l_paren); 891 Parens.consumeOpen(); 892 893 InitKind = LambdaCaptureInitKind::DirectInit; 894 895 ExprVector Exprs; 896 CommaLocsTy Commas; 897 if (SkippedInits) { 898 Parens.skipToEnd(); 899 *SkippedInits = true; 900 } else if (ParseExpressionList(Exprs, Commas)) { 901 Parens.skipToEnd(); 902 Init = ExprError(); 903 } else { 904 Parens.consumeClose(); 905 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(), 906 Parens.getCloseLocation(), 907 Exprs); 908 } 909 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) { 910 // Each lambda init-capture forms its own full expression, which clears 911 // Actions.MaybeODRUseExprs. So create an expression evaluation context 912 // to save the necessary state, and restore it later. 913 EnterExpressionEvaluationContext EC(Actions, 914 Sema::PotentiallyEvaluated); 915 916 if (TryConsumeToken(tok::equal)) 917 InitKind = LambdaCaptureInitKind::CopyInit; 918 else 919 InitKind = LambdaCaptureInitKind::ListInit; 920 921 if (!SkippedInits) { 922 Init = ParseInitializer(); 923 } else if (Tok.is(tok::l_brace)) { 924 BalancedDelimiterTracker Braces(*this, tok::l_brace); 925 Braces.consumeOpen(); 926 Braces.skipToEnd(); 927 *SkippedInits = true; 928 } else { 929 // We're disambiguating this: 930 // 931 // [..., x = expr 932 // 933 // We need to find the end of the following expression in order to 934 // determine whether this is an Obj-C message send's receiver, a 935 // C99 designator, or a lambda init-capture. 936 // 937 // Parse the expression to find where it ends, and annotate it back 938 // onto the tokens. We would have parsed this expression the same way 939 // in either case: both the RHS of an init-capture and the RHS of an 940 // assignment expression are parsed as an initializer-clause, and in 941 // neither case can anything be added to the scope between the '[' and 942 // here. 943 // 944 // FIXME: This is horrible. Adding a mechanism to skip an expression 945 // would be much cleaner. 946 // FIXME: If there is a ',' before the next ']' or ':', we can skip to 947 // that instead. (And if we see a ':' with no matching '?', we can 948 // classify this as an Obj-C message send.) 949 SourceLocation StartLoc = Tok.getLocation(); 950 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true); 951 Init = ParseInitializer(); 952 953 if (Tok.getLocation() != StartLoc) { 954 // Back out the lexing of the token after the initializer. 955 PP.RevertCachedTokens(1); 956 957 // Replace the consumed tokens with an appropriate annotation. 958 Tok.setLocation(StartLoc); 959 Tok.setKind(tok::annot_primary_expr); 960 setExprAnnotation(Tok, Init); 961 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation()); 962 PP.AnnotateCachedTokens(Tok); 963 964 // Consume the annotated initializer. 965 ConsumeToken(); 966 } 967 } 968 } else 969 TryConsumeToken(tok::ellipsis, EllipsisLoc); 970 } 971 // If this is an init capture, process the initialization expression 972 // right away. For lambda init-captures such as the following: 973 // const int x = 10; 974 // auto L = [i = x+1](int a) { 975 // return [j = x+2, 976 // &k = x](char b) { }; 977 // }; 978 // keep in mind that each lambda init-capture has to have: 979 // - its initialization expression executed in the context 980 // of the enclosing/parent decl-context. 981 // - but the variable itself has to be 'injected' into the 982 // decl-context of its lambda's call-operator (which has 983 // not yet been created). 984 // Each init-expression is a full-expression that has to get 985 // Sema-analyzed (for capturing etc.) before its lambda's 986 // call-operator's decl-context, scope & scopeinfo are pushed on their 987 // respective stacks. Thus if any variable is odr-used in the init-capture 988 // it will correctly get captured in the enclosing lambda, if one exists. 989 // The init-variables above are created later once the lambdascope and 990 // call-operators decl-context is pushed onto its respective stack. 991 992 // Since the lambda init-capture's initializer expression occurs in the 993 // context of the enclosing function or lambda, therefore we can not wait 994 // till a lambda scope has been pushed on before deciding whether the 995 // variable needs to be captured. We also need to process all 996 // lvalue-to-rvalue conversions and discarded-value conversions, 997 // so that we can avoid capturing certain constant variables. 998 // For e.g., 999 // void test() { 1000 // const int x = 10; 1001 // auto L = [&z = x](char a) { <-- don't capture by the current lambda 1002 // return [y = x](int i) { <-- don't capture by enclosing lambda 1003 // return y; 1004 // } 1005 // }; 1006 // If x was not const, the second use would require 'L' to capture, and 1007 // that would be an error. 1008 1009 ParsedType InitCaptureType; 1010 if (Init.isUsable()) { 1011 // Get the pointer and store it in an lvalue, so we can use it as an 1012 // out argument. 1013 Expr *InitExpr = Init.get(); 1014 // This performs any lvalue-to-rvalue conversions if necessary, which 1015 // can affect what gets captured in the containing decl-context. 1016 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization( 1017 Loc, Kind == LCK_ByRef, Id, InitKind, InitExpr); 1018 Init = InitExpr; 1019 } 1020 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init, 1021 InitCaptureType); 1022 } 1023 1024 T.consumeClose(); 1025 Intro.Range.setEnd(T.getCloseLocation()); 1026 return DiagResult(); 1027 } 1028 1029 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer. 1030 /// 1031 /// Returns true if it hit something unexpected. 1032 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) { 1033 TentativeParsingAction PA(*this); 1034 1035 bool SkippedInits = false; 1036 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits)); 1037 1038 if (DiagID) { 1039 PA.Revert(); 1040 return true; 1041 } 1042 1043 if (SkippedInits) { 1044 // Parse it again, but this time parse the init-captures too. 1045 PA.Revert(); 1046 Intro = LambdaIntroducer(); 1047 DiagID = ParseLambdaIntroducer(Intro); 1048 assert(!DiagID && "parsing lambda-introducer failed on reparse"); 1049 return false; 1050 } 1051 1052 PA.Commit(); 1053 return false; 1054 } 1055 1056 static void 1057 tryConsumeMutableOrConstexprToken(Parser &P, SourceLocation &MutableLoc, 1058 SourceLocation &ConstexprLoc, 1059 SourceLocation &DeclEndLoc) { 1060 assert(MutableLoc.isInvalid()); 1061 assert(ConstexprLoc.isInvalid()); 1062 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc 1063 // to the final of those locations. Emit an error if we have multiple 1064 // copies of those keywords and recover. 1065 1066 while (true) { 1067 switch (P.getCurToken().getKind()) { 1068 case tok::kw_mutable: { 1069 if (MutableLoc.isValid()) { 1070 P.Diag(P.getCurToken().getLocation(), 1071 diag::err_lambda_decl_specifier_repeated) 1072 << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation()); 1073 } 1074 MutableLoc = P.ConsumeToken(); 1075 DeclEndLoc = MutableLoc; 1076 break /*switch*/; 1077 } 1078 case tok::kw_constexpr: 1079 if (ConstexprLoc.isValid()) { 1080 P.Diag(P.getCurToken().getLocation(), 1081 diag::err_lambda_decl_specifier_repeated) 1082 << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation()); 1083 } 1084 ConstexprLoc = P.ConsumeToken(); 1085 DeclEndLoc = ConstexprLoc; 1086 break /*switch*/; 1087 default: 1088 return; 1089 } 1090 } 1091 } 1092 1093 static void 1094 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc, 1095 DeclSpec &DS) { 1096 if (ConstexprLoc.isValid()) { 1097 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus1z 1098 ? diag::ext_constexpr_on_lambda_cxx1z 1099 : diag::warn_cxx14_compat_constexpr_on_lambda); 1100 const char *PrevSpec = nullptr; 1101 unsigned DiagID = 0; 1102 DS.SetConstexprSpec(ConstexprLoc, PrevSpec, DiagID); 1103 assert(PrevSpec == nullptr && DiagID == 0 && 1104 "Constexpr cannot have been set previously!"); 1105 } 1106 } 1107 1108 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda 1109 /// expression. 1110 ExprResult Parser::ParseLambdaExpressionAfterIntroducer( 1111 LambdaIntroducer &Intro) { 1112 SourceLocation LambdaBeginLoc = Intro.Range.getBegin(); 1113 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda); 1114 1115 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc, 1116 "lambda expression parsing"); 1117 1118 1119 1120 // FIXME: Call into Actions to add any init-capture declarations to the 1121 // scope while parsing the lambda-declarator and compound-statement. 1122 1123 // Parse lambda-declarator[opt]. 1124 DeclSpec DS(AttrFactory); 1125 Declarator D(DS, Declarator::LambdaExprContext); 1126 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); 1127 Actions.PushLambdaScope(); 1128 1129 TypeResult TrailingReturnType; 1130 if (Tok.is(tok::l_paren)) { 1131 ParseScope PrototypeScope(this, 1132 Scope::FunctionPrototypeScope | 1133 Scope::FunctionDeclarationScope | 1134 Scope::DeclScope); 1135 1136 SourceLocation DeclEndLoc; 1137 BalancedDelimiterTracker T(*this, tok::l_paren); 1138 T.consumeOpen(); 1139 SourceLocation LParenLoc = T.getOpenLocation(); 1140 1141 // Parse parameter-declaration-clause. 1142 ParsedAttributes Attr(AttrFactory); 1143 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 1144 SourceLocation EllipsisLoc; 1145 1146 if (Tok.isNot(tok::r_paren)) { 1147 Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth); 1148 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc); 1149 // For a generic lambda, each 'auto' within the parameter declaration 1150 // clause creates a template type parameter, so increment the depth. 1151 if (Actions.getCurGenericLambda()) 1152 ++CurTemplateDepthTracker; 1153 } 1154 T.consumeClose(); 1155 SourceLocation RParenLoc = T.getCloseLocation(); 1156 DeclEndLoc = RParenLoc; 1157 1158 // GNU-style attributes must be parsed before the mutable specifier to be 1159 // compatible with GCC. 1160 MaybeParseGNUAttributes(Attr, &DeclEndLoc); 1161 1162 // MSVC-style attributes must be parsed before the mutable specifier to be 1163 // compatible with MSVC. 1164 MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc); 1165 1166 // Parse mutable-opt and/or constexpr-opt, and update the DeclEndLoc. 1167 SourceLocation MutableLoc; 1168 SourceLocation ConstexprLoc; 1169 tryConsumeMutableOrConstexprToken(*this, MutableLoc, ConstexprLoc, 1170 DeclEndLoc); 1171 1172 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS); 1173 1174 // Parse exception-specification[opt]. 1175 ExceptionSpecificationType ESpecType = EST_None; 1176 SourceRange ESpecRange; 1177 SmallVector<ParsedType, 2> DynamicExceptions; 1178 SmallVector<SourceRange, 2> DynamicExceptionRanges; 1179 ExprResult NoexceptExpr; 1180 CachedTokens *ExceptionSpecTokens; 1181 ESpecType = tryParseExceptionSpecification(/*Delayed=*/false, 1182 ESpecRange, 1183 DynamicExceptions, 1184 DynamicExceptionRanges, 1185 NoexceptExpr, 1186 ExceptionSpecTokens); 1187 1188 if (ESpecType != EST_None) 1189 DeclEndLoc = ESpecRange.getEnd(); 1190 1191 // Parse attribute-specifier[opt]. 1192 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1193 1194 SourceLocation FunLocalRangeEnd = DeclEndLoc; 1195 1196 // Parse trailing-return-type[opt]. 1197 if (Tok.is(tok::arrow)) { 1198 FunLocalRangeEnd = Tok.getLocation(); 1199 SourceRange Range; 1200 TrailingReturnType = ParseTrailingReturnType(Range); 1201 if (Range.getEnd().isValid()) 1202 DeclEndLoc = Range.getEnd(); 1203 } 1204 1205 PrototypeScope.Exit(); 1206 1207 SourceLocation NoLoc; 1208 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1209 /*isAmbiguous=*/false, 1210 LParenLoc, 1211 ParamInfo.data(), ParamInfo.size(), 1212 EllipsisLoc, RParenLoc, 1213 DS.getTypeQualifiers(), 1214 /*RefQualifierIsLValueRef=*/true, 1215 /*RefQualifierLoc=*/NoLoc, 1216 /*ConstQualifierLoc=*/NoLoc, 1217 /*VolatileQualifierLoc=*/NoLoc, 1218 /*RestrictQualifierLoc=*/NoLoc, 1219 MutableLoc, 1220 ESpecType, ESpecRange, 1221 DynamicExceptions.data(), 1222 DynamicExceptionRanges.data(), 1223 DynamicExceptions.size(), 1224 NoexceptExpr.isUsable() ? 1225 NoexceptExpr.get() : nullptr, 1226 /*ExceptionSpecTokens*/nullptr, 1227 LParenLoc, FunLocalRangeEnd, D, 1228 TrailingReturnType), 1229 Attr, DeclEndLoc); 1230 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute, 1231 tok::kw_constexpr) || 1232 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) { 1233 // It's common to forget that one needs '()' before 'mutable', an attribute 1234 // specifier, or the result type. Deal with this. 1235 unsigned TokKind = 0; 1236 switch (Tok.getKind()) { 1237 case tok::kw_mutable: TokKind = 0; break; 1238 case tok::arrow: TokKind = 1; break; 1239 case tok::kw___attribute: 1240 case tok::l_square: TokKind = 2; break; 1241 case tok::kw_constexpr: TokKind = 3; break; 1242 default: llvm_unreachable("Unknown token kind"); 1243 } 1244 1245 Diag(Tok, diag::err_lambda_missing_parens) 1246 << TokKind 1247 << FixItHint::CreateInsertion(Tok.getLocation(), "() "); 1248 SourceLocation DeclLoc = Tok.getLocation(); 1249 SourceLocation DeclEndLoc = DeclLoc; 1250 1251 // GNU-style attributes must be parsed before the mutable specifier to be 1252 // compatible with GCC. 1253 ParsedAttributes Attr(AttrFactory); 1254 MaybeParseGNUAttributes(Attr, &DeclEndLoc); 1255 1256 // Parse 'mutable', if it's there. 1257 SourceLocation MutableLoc; 1258 if (Tok.is(tok::kw_mutable)) { 1259 MutableLoc = ConsumeToken(); 1260 DeclEndLoc = MutableLoc; 1261 } 1262 1263 // Parse attribute-specifier[opt]. 1264 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1265 1266 // Parse the return type, if there is one. 1267 if (Tok.is(tok::arrow)) { 1268 SourceRange Range; 1269 TrailingReturnType = ParseTrailingReturnType(Range); 1270 if (Range.getEnd().isValid()) 1271 DeclEndLoc = Range.getEnd(); 1272 } 1273 1274 SourceLocation NoLoc; 1275 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1276 /*isAmbiguous=*/false, 1277 /*LParenLoc=*/NoLoc, 1278 /*Params=*/nullptr, 1279 /*NumParams=*/0, 1280 /*EllipsisLoc=*/NoLoc, 1281 /*RParenLoc=*/NoLoc, 1282 /*TypeQuals=*/0, 1283 /*RefQualifierIsLValueRef=*/true, 1284 /*RefQualifierLoc=*/NoLoc, 1285 /*ConstQualifierLoc=*/NoLoc, 1286 /*VolatileQualifierLoc=*/NoLoc, 1287 /*RestrictQualifierLoc=*/NoLoc, 1288 MutableLoc, 1289 EST_None, 1290 /*ESpecRange=*/SourceRange(), 1291 /*Exceptions=*/nullptr, 1292 /*ExceptionRanges=*/nullptr, 1293 /*NumExceptions=*/0, 1294 /*NoexceptExpr=*/nullptr, 1295 /*ExceptionSpecTokens=*/nullptr, 1296 DeclLoc, DeclEndLoc, D, 1297 TrailingReturnType), 1298 Attr, DeclEndLoc); 1299 } 1300 1301 1302 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using 1303 // it. 1304 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope; 1305 ParseScope BodyScope(this, ScopeFlags); 1306 1307 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope()); 1308 1309 // Parse compound-statement. 1310 if (!Tok.is(tok::l_brace)) { 1311 Diag(Tok, diag::err_expected_lambda_body); 1312 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1313 return ExprError(); 1314 } 1315 1316 StmtResult Stmt(ParseCompoundStatementBody()); 1317 BodyScope.Exit(); 1318 1319 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid()) 1320 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope()); 1321 1322 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1323 return ExprError(); 1324 } 1325 1326 /// ParseCXXCasts - This handles the various ways to cast expressions to another 1327 /// type. 1328 /// 1329 /// postfix-expression: [C++ 5.2p1] 1330 /// 'dynamic_cast' '<' type-name '>' '(' expression ')' 1331 /// 'static_cast' '<' type-name '>' '(' expression ')' 1332 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' 1333 /// 'const_cast' '<' type-name '>' '(' expression ')' 1334 /// 1335 ExprResult Parser::ParseCXXCasts() { 1336 tok::TokenKind Kind = Tok.getKind(); 1337 const char *CastName = nullptr; // For error messages 1338 1339 switch (Kind) { 1340 default: llvm_unreachable("Unknown C++ cast!"); 1341 case tok::kw_const_cast: CastName = "const_cast"; break; 1342 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; 1343 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; 1344 case tok::kw_static_cast: CastName = "static_cast"; break; 1345 } 1346 1347 SourceLocation OpLoc = ConsumeToken(); 1348 SourceLocation LAngleBracketLoc = Tok.getLocation(); 1349 1350 // Check for "<::" which is parsed as "[:". If found, fix token stream, 1351 // diagnose error, suggest fix, and recover parsing. 1352 if (Tok.is(tok::l_square) && Tok.getLength() == 2) { 1353 Token Next = NextToken(); 1354 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next)) 1355 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true); 1356 } 1357 1358 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) 1359 return ExprError(); 1360 1361 // Parse the common declaration-specifiers piece. 1362 DeclSpec DS(AttrFactory); 1363 ParseSpecifierQualifierList(DS); 1364 1365 // Parse the abstract-declarator, if present. 1366 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1367 ParseDeclarator(DeclaratorInfo); 1368 1369 SourceLocation RAngleBracketLoc = Tok.getLocation(); 1370 1371 if (ExpectAndConsume(tok::greater)) 1372 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less); 1373 1374 SourceLocation LParenLoc, RParenLoc; 1375 BalancedDelimiterTracker T(*this, tok::l_paren); 1376 1377 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName)) 1378 return ExprError(); 1379 1380 ExprResult Result = ParseExpression(); 1381 1382 // Match the ')'. 1383 T.consumeClose(); 1384 1385 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType()) 1386 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, 1387 LAngleBracketLoc, DeclaratorInfo, 1388 RAngleBracketLoc, 1389 T.getOpenLocation(), Result.get(), 1390 T.getCloseLocation()); 1391 1392 return Result; 1393 } 1394 1395 /// ParseCXXTypeid - This handles the C++ typeid expression. 1396 /// 1397 /// postfix-expression: [C++ 5.2p1] 1398 /// 'typeid' '(' expression ')' 1399 /// 'typeid' '(' type-id ')' 1400 /// 1401 ExprResult Parser::ParseCXXTypeid() { 1402 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); 1403 1404 SourceLocation OpLoc = ConsumeToken(); 1405 SourceLocation LParenLoc, RParenLoc; 1406 BalancedDelimiterTracker T(*this, tok::l_paren); 1407 1408 // typeid expressions are always parenthesized. 1409 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid")) 1410 return ExprError(); 1411 LParenLoc = T.getOpenLocation(); 1412 1413 ExprResult Result; 1414 1415 // C++0x [expr.typeid]p3: 1416 // When typeid is applied to an expression other than an lvalue of a 1417 // polymorphic class type [...] The expression is an unevaluated 1418 // operand (Clause 5). 1419 // 1420 // Note that we can't tell whether the expression is an lvalue of a 1421 // polymorphic class type until after we've parsed the expression; we 1422 // speculatively assume the subexpression is unevaluated, and fix it up 1423 // later. 1424 // 1425 // We enter the unevaluated context before trying to determine whether we 1426 // have a type-id, because the tentative parse logic will try to resolve 1427 // names, and must treat them as unevaluated. 1428 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated, 1429 Sema::ReuseLambdaContextDecl); 1430 1431 if (isTypeIdInParens()) { 1432 TypeResult Ty = ParseTypeName(); 1433 1434 // Match the ')'. 1435 T.consumeClose(); 1436 RParenLoc = T.getCloseLocation(); 1437 if (Ty.isInvalid() || RParenLoc.isInvalid()) 1438 return ExprError(); 1439 1440 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, 1441 Ty.get().getAsOpaquePtr(), RParenLoc); 1442 } else { 1443 Result = ParseExpression(); 1444 1445 // Match the ')'. 1446 if (Result.isInvalid()) 1447 SkipUntil(tok::r_paren, StopAtSemi); 1448 else { 1449 T.consumeClose(); 1450 RParenLoc = T.getCloseLocation(); 1451 if (RParenLoc.isInvalid()) 1452 return ExprError(); 1453 1454 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, 1455 Result.get(), RParenLoc); 1456 } 1457 } 1458 1459 return Result; 1460 } 1461 1462 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression. 1463 /// 1464 /// '__uuidof' '(' expression ')' 1465 /// '__uuidof' '(' type-id ')' 1466 /// 1467 ExprResult Parser::ParseCXXUuidof() { 1468 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!"); 1469 1470 SourceLocation OpLoc = ConsumeToken(); 1471 BalancedDelimiterTracker T(*this, tok::l_paren); 1472 1473 // __uuidof expressions are always parenthesized. 1474 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof")) 1475 return ExprError(); 1476 1477 ExprResult Result; 1478 1479 if (isTypeIdInParens()) { 1480 TypeResult Ty = ParseTypeName(); 1481 1482 // Match the ')'. 1483 T.consumeClose(); 1484 1485 if (Ty.isInvalid()) 1486 return ExprError(); 1487 1488 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true, 1489 Ty.get().getAsOpaquePtr(), 1490 T.getCloseLocation()); 1491 } else { 1492 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); 1493 Result = ParseExpression(); 1494 1495 // Match the ')'. 1496 if (Result.isInvalid()) 1497 SkipUntil(tok::r_paren, StopAtSemi); 1498 else { 1499 T.consumeClose(); 1500 1501 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), 1502 /*isType=*/false, 1503 Result.get(), T.getCloseLocation()); 1504 } 1505 } 1506 1507 return Result; 1508 } 1509 1510 /// \brief Parse a C++ pseudo-destructor expression after the base, 1511 /// . or -> operator, and nested-name-specifier have already been 1512 /// parsed. 1513 /// 1514 /// postfix-expression: [C++ 5.2] 1515 /// postfix-expression . pseudo-destructor-name 1516 /// postfix-expression -> pseudo-destructor-name 1517 /// 1518 /// pseudo-destructor-name: 1519 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name 1520 /// ::[opt] nested-name-specifier template simple-template-id :: 1521 /// ~type-name 1522 /// ::[opt] nested-name-specifier[opt] ~type-name 1523 /// 1524 ExprResult 1525 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc, 1526 tok::TokenKind OpKind, 1527 CXXScopeSpec &SS, 1528 ParsedType ObjectType) { 1529 // We're parsing either a pseudo-destructor-name or a dependent 1530 // member access that has the same form as a 1531 // pseudo-destructor-name. We parse both in the same way and let 1532 // the action model sort them out. 1533 // 1534 // Note that the ::[opt] nested-name-specifier[opt] has already 1535 // been parsed, and if there was a simple-template-id, it has 1536 // been coalesced into a template-id annotation token. 1537 UnqualifiedId FirstTypeName; 1538 SourceLocation CCLoc; 1539 if (Tok.is(tok::identifier)) { 1540 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 1541 ConsumeToken(); 1542 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1543 CCLoc = ConsumeToken(); 1544 } else if (Tok.is(tok::annot_template_id)) { 1545 // FIXME: retrieve TemplateKWLoc from template-id annotation and 1546 // store it in the pseudo-dtor node (to be used when instantiating it). 1547 FirstTypeName.setTemplateId( 1548 (TemplateIdAnnotation *)Tok.getAnnotationValue()); 1549 ConsumeToken(); 1550 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1551 CCLoc = ConsumeToken(); 1552 } else { 1553 FirstTypeName.setIdentifier(nullptr, SourceLocation()); 1554 } 1555 1556 // Parse the tilde. 1557 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); 1558 SourceLocation TildeLoc = ConsumeToken(); 1559 1560 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) { 1561 DeclSpec DS(AttrFactory); 1562 ParseDecltypeSpecifier(DS); 1563 if (DS.getTypeSpecType() == TST_error) 1564 return ExprError(); 1565 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind, 1566 TildeLoc, DS); 1567 } 1568 1569 if (!Tok.is(tok::identifier)) { 1570 Diag(Tok, diag::err_destructor_tilde_identifier); 1571 return ExprError(); 1572 } 1573 1574 // Parse the second type. 1575 UnqualifiedId SecondTypeName; 1576 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1577 SourceLocation NameLoc = ConsumeToken(); 1578 SecondTypeName.setIdentifier(Name, NameLoc); 1579 1580 // If there is a '<', the second type name is a template-id. Parse 1581 // it as such. 1582 if (Tok.is(tok::less) && 1583 ParseUnqualifiedIdTemplateId(SS, SourceLocation(), 1584 Name, NameLoc, 1585 false, ObjectType, SecondTypeName, 1586 /*AssumeTemplateName=*/true)) 1587 return ExprError(); 1588 1589 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind, 1590 SS, FirstTypeName, CCLoc, TildeLoc, 1591 SecondTypeName); 1592 } 1593 1594 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. 1595 /// 1596 /// boolean-literal: [C++ 2.13.5] 1597 /// 'true' 1598 /// 'false' 1599 ExprResult Parser::ParseCXXBoolLiteral() { 1600 tok::TokenKind Kind = Tok.getKind(); 1601 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); 1602 } 1603 1604 /// ParseThrowExpression - This handles the C++ throw expression. 1605 /// 1606 /// throw-expression: [C++ 15] 1607 /// 'throw' assignment-expression[opt] 1608 ExprResult Parser::ParseThrowExpression() { 1609 assert(Tok.is(tok::kw_throw) && "Not throw!"); 1610 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. 1611 1612 // If the current token isn't the start of an assignment-expression, 1613 // then the expression is not present. This handles things like: 1614 // "C ? throw : (void)42", which is crazy but legal. 1615 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. 1616 case tok::semi: 1617 case tok::r_paren: 1618 case tok::r_square: 1619 case tok::r_brace: 1620 case tok::colon: 1621 case tok::comma: 1622 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr); 1623 1624 default: 1625 ExprResult Expr(ParseAssignmentExpression()); 1626 if (Expr.isInvalid()) return Expr; 1627 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get()); 1628 } 1629 } 1630 1631 /// \brief Parse the C++ Coroutines co_yield expression. 1632 /// 1633 /// co_yield-expression: 1634 /// 'co_yield' assignment-expression[opt] 1635 ExprResult Parser::ParseCoyieldExpression() { 1636 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!"); 1637 1638 SourceLocation Loc = ConsumeToken(); 1639 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer() 1640 : ParseAssignmentExpression(); 1641 if (!Expr.isInvalid()) 1642 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get()); 1643 return Expr; 1644 } 1645 1646 /// ParseCXXThis - This handles the C++ 'this' pointer. 1647 /// 1648 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is 1649 /// a non-lvalue expression whose value is the address of the object for which 1650 /// the function is called. 1651 ExprResult Parser::ParseCXXThis() { 1652 assert(Tok.is(tok::kw_this) && "Not 'this'!"); 1653 SourceLocation ThisLoc = ConsumeToken(); 1654 return Actions.ActOnCXXThis(ThisLoc); 1655 } 1656 1657 /// ParseCXXTypeConstructExpression - Parse construction of a specified type. 1658 /// Can be interpreted either as function-style casting ("int(x)") 1659 /// or class type construction ("ClassType(x,y,z)") 1660 /// or creation of a value-initialized type ("int()"). 1661 /// See [C++ 5.2.3]. 1662 /// 1663 /// postfix-expression: [C++ 5.2p1] 1664 /// simple-type-specifier '(' expression-list[opt] ')' 1665 /// [C++0x] simple-type-specifier braced-init-list 1666 /// typename-specifier '(' expression-list[opt] ')' 1667 /// [C++0x] typename-specifier braced-init-list 1668 /// 1669 ExprResult 1670 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { 1671 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1672 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); 1673 1674 assert((Tok.is(tok::l_paren) || 1675 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) 1676 && "Expected '(' or '{'!"); 1677 1678 if (Tok.is(tok::l_brace)) { 1679 ExprResult Init = ParseBraceInitializer(); 1680 if (Init.isInvalid()) 1681 return Init; 1682 Expr *InitList = Init.get(); 1683 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(), 1684 MultiExprArg(&InitList, 1), 1685 SourceLocation()); 1686 } else { 1687 BalancedDelimiterTracker T(*this, tok::l_paren); 1688 T.consumeOpen(); 1689 1690 ExprVector Exprs; 1691 CommaLocsTy CommaLocs; 1692 1693 if (Tok.isNot(tok::r_paren)) { 1694 if (ParseExpressionList(Exprs, CommaLocs, [&] { 1695 Actions.CodeCompleteConstructor(getCurScope(), 1696 TypeRep.get()->getCanonicalTypeInternal(), 1697 DS.getLocEnd(), Exprs); 1698 })) { 1699 SkipUntil(tok::r_paren, StopAtSemi); 1700 return ExprError(); 1701 } 1702 } 1703 1704 // Match the ')'. 1705 T.consumeClose(); 1706 1707 // TypeRep could be null, if it references an invalid typedef. 1708 if (!TypeRep) 1709 return ExprError(); 1710 1711 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& 1712 "Unexpected number of commas!"); 1713 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 1714 Exprs, 1715 T.getCloseLocation()); 1716 } 1717 } 1718 1719 /// ParseCXXCondition - if/switch/while condition expression. 1720 /// 1721 /// condition: 1722 /// expression 1723 /// type-specifier-seq declarator '=' assignment-expression 1724 /// [C++11] type-specifier-seq declarator '=' initializer-clause 1725 /// [C++11] type-specifier-seq declarator braced-init-list 1726 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] 1727 /// '=' assignment-expression 1728 /// 1729 /// In C++1z, a condition may in some contexts be preceded by an 1730 /// optional init-statement. This function will parse that too. 1731 /// 1732 /// \param InitStmt If non-null, an init-statement is permitted, and if present 1733 /// will be parsed and stored here. 1734 /// 1735 /// \param Loc The location of the start of the statement that requires this 1736 /// condition, e.g., the "for" in a for loop. 1737 /// 1738 /// \returns The parsed condition. 1739 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt, 1740 SourceLocation Loc, 1741 Sema::ConditionKind CK) { 1742 if (Tok.is(tok::code_completion)) { 1743 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition); 1744 cutOffParsing(); 1745 return Sema::ConditionError(); 1746 } 1747 1748 ParsedAttributesWithRange attrs(AttrFactory); 1749 MaybeParseCXX11Attributes(attrs); 1750 1751 // Determine what kind of thing we have. 1752 switch (isCXXConditionDeclarationOrInitStatement(InitStmt)) { 1753 case ConditionOrInitStatement::Expression: { 1754 ProhibitAttributes(attrs); 1755 1756 // Parse the expression. 1757 ExprResult Expr = ParseExpression(); // expression 1758 if (Expr.isInvalid()) 1759 return Sema::ConditionError(); 1760 1761 if (InitStmt && Tok.is(tok::semi)) { 1762 *InitStmt = Actions.ActOnExprStmt(Expr.get()); 1763 ConsumeToken(); 1764 return ParseCXXCondition(nullptr, Loc, CK); 1765 } 1766 1767 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK); 1768 } 1769 1770 case ConditionOrInitStatement::InitStmtDecl: { 1771 SourceLocation DeclStart = Tok.getLocation(), DeclEnd; 1772 DeclGroupPtrTy DG = ParseSimpleDeclaration( 1773 Declarator::InitStmtContext, DeclEnd, attrs, /*RequireSemi=*/true); 1774 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd); 1775 return ParseCXXCondition(nullptr, Loc, CK); 1776 } 1777 1778 case ConditionOrInitStatement::ConditionDecl: 1779 case ConditionOrInitStatement::Error: 1780 break; 1781 } 1782 1783 // type-specifier-seq 1784 DeclSpec DS(AttrFactory); 1785 DS.takeAttributesFrom(attrs); 1786 ParseSpecifierQualifierList(DS, AS_none, DSC_condition); 1787 1788 // declarator 1789 Declarator DeclaratorInfo(DS, Declarator::ConditionContext); 1790 ParseDeclarator(DeclaratorInfo); 1791 1792 // simple-asm-expr[opt] 1793 if (Tok.is(tok::kw_asm)) { 1794 SourceLocation Loc; 1795 ExprResult AsmLabel(ParseSimpleAsm(&Loc)); 1796 if (AsmLabel.isInvalid()) { 1797 SkipUntil(tok::semi, StopAtSemi); 1798 return Sema::ConditionError(); 1799 } 1800 DeclaratorInfo.setAsmLabel(AsmLabel.get()); 1801 DeclaratorInfo.SetRangeEnd(Loc); 1802 } 1803 1804 // If attributes are present, parse them. 1805 MaybeParseGNUAttributes(DeclaratorInfo); 1806 1807 // Type-check the declaration itself. 1808 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 1809 DeclaratorInfo); 1810 if (Dcl.isInvalid()) 1811 return Sema::ConditionError(); 1812 Decl *DeclOut = Dcl.get(); 1813 1814 // '=' assignment-expression 1815 // If a '==' or '+=' is found, suggest a fixit to '='. 1816 bool CopyInitialization = isTokenEqualOrEqualTypo(); 1817 if (CopyInitialization) 1818 ConsumeToken(); 1819 1820 ExprResult InitExpr = ExprError(); 1821 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1822 Diag(Tok.getLocation(), 1823 diag::warn_cxx98_compat_generalized_initializer_lists); 1824 InitExpr = ParseBraceInitializer(); 1825 } else if (CopyInitialization) { 1826 InitExpr = ParseAssignmentExpression(); 1827 } else if (Tok.is(tok::l_paren)) { 1828 // This was probably an attempt to initialize the variable. 1829 SourceLocation LParen = ConsumeParen(), RParen = LParen; 1830 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) 1831 RParen = ConsumeParen(); 1832 Diag(DeclOut->getLocation(), 1833 diag::err_expected_init_in_condition_lparen) 1834 << SourceRange(LParen, RParen); 1835 } else { 1836 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition); 1837 } 1838 1839 if (!InitExpr.isInvalid()) 1840 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization, 1841 DS.containsPlaceholderType()); 1842 else 1843 Actions.ActOnInitializerError(DeclOut); 1844 1845 Actions.FinalizeDeclaration(DeclOut); 1846 return Actions.ActOnConditionVariable(DeclOut, Loc, CK); 1847 } 1848 1849 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. 1850 /// This should only be called when the current token is known to be part of 1851 /// simple-type-specifier. 1852 /// 1853 /// simple-type-specifier: 1854 /// '::'[opt] nested-name-specifier[opt] type-name 1855 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] 1856 /// char 1857 /// wchar_t 1858 /// bool 1859 /// short 1860 /// int 1861 /// long 1862 /// signed 1863 /// unsigned 1864 /// float 1865 /// double 1866 /// void 1867 /// [GNU] typeof-specifier 1868 /// [C++0x] auto [TODO] 1869 /// 1870 /// type-name: 1871 /// class-name 1872 /// enum-name 1873 /// typedef-name 1874 /// 1875 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { 1876 DS.SetRangeStart(Tok.getLocation()); 1877 const char *PrevSpec; 1878 unsigned DiagID; 1879 SourceLocation Loc = Tok.getLocation(); 1880 const clang::PrintingPolicy &Policy = 1881 Actions.getASTContext().getPrintingPolicy(); 1882 1883 switch (Tok.getKind()) { 1884 case tok::identifier: // foo::bar 1885 case tok::coloncolon: // ::foo::bar 1886 llvm_unreachable("Annotation token should already be formed!"); 1887 default: 1888 llvm_unreachable("Not a simple-type-specifier token!"); 1889 1890 // type-name 1891 case tok::annot_typename: { 1892 if (getTypeAnnotation(Tok)) 1893 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, 1894 getTypeAnnotation(Tok), Policy); 1895 else 1896 DS.SetTypeSpecError(); 1897 1898 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1899 ConsumeToken(); 1900 1901 DS.Finish(Actions, Policy); 1902 return; 1903 } 1904 1905 // builtin types 1906 case tok::kw_short: 1907 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy); 1908 break; 1909 case tok::kw_long: 1910 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy); 1911 break; 1912 case tok::kw___int64: 1913 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); 1914 break; 1915 case tok::kw_signed: 1916 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); 1917 break; 1918 case tok::kw_unsigned: 1919 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); 1920 break; 1921 case tok::kw_void: 1922 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); 1923 break; 1924 case tok::kw_char: 1925 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); 1926 break; 1927 case tok::kw_int: 1928 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); 1929 break; 1930 case tok::kw___int128: 1931 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); 1932 break; 1933 case tok::kw_half: 1934 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); 1935 break; 1936 case tok::kw_float: 1937 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); 1938 break; 1939 case tok::kw_double: 1940 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); 1941 break; 1942 case tok::kw___float128: 1943 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy); 1944 break; 1945 case tok::kw_wchar_t: 1946 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); 1947 break; 1948 case tok::kw_char16_t: 1949 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); 1950 break; 1951 case tok::kw_char32_t: 1952 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); 1953 break; 1954 case tok::kw_bool: 1955 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); 1956 break; 1957 case tok::annot_decltype: 1958 case tok::kw_decltype: 1959 DS.SetRangeEnd(ParseDecltypeSpecifier(DS)); 1960 return DS.Finish(Actions, Policy); 1961 1962 // GNU typeof support. 1963 case tok::kw_typeof: 1964 ParseTypeofSpecifier(DS); 1965 DS.Finish(Actions, Policy); 1966 return; 1967 } 1968 if (Tok.is(tok::annot_typename)) 1969 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1970 else 1971 DS.SetRangeEnd(Tok.getLocation()); 1972 ConsumeToken(); 1973 DS.Finish(Actions, Policy); 1974 } 1975 1976 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ 1977 /// [dcl.name]), which is a non-empty sequence of type-specifiers, 1978 /// e.g., "const short int". Note that the DeclSpec is *not* finished 1979 /// by parsing the type-specifier-seq, because these sequences are 1980 /// typically followed by some form of declarator. Returns true and 1981 /// emits diagnostics if this is not a type-specifier-seq, false 1982 /// otherwise. 1983 /// 1984 /// type-specifier-seq: [C++ 8.1] 1985 /// type-specifier type-specifier-seq[opt] 1986 /// 1987 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { 1988 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier); 1989 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); 1990 return false; 1991 } 1992 1993 /// \brief Finish parsing a C++ unqualified-id that is a template-id of 1994 /// some form. 1995 /// 1996 /// This routine is invoked when a '<' is encountered after an identifier or 1997 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine 1998 /// whether the unqualified-id is actually a template-id. This routine will 1999 /// then parse the template arguments and form the appropriate template-id to 2000 /// return to the caller. 2001 /// 2002 /// \param SS the nested-name-specifier that precedes this template-id, if 2003 /// we're actually parsing a qualified-id. 2004 /// 2005 /// \param Name for constructor and destructor names, this is the actual 2006 /// identifier that may be a template-name. 2007 /// 2008 /// \param NameLoc the location of the class-name in a constructor or 2009 /// destructor. 2010 /// 2011 /// \param EnteringContext whether we're entering the scope of the 2012 /// nested-name-specifier. 2013 /// 2014 /// \param ObjectType if this unqualified-id occurs within a member access 2015 /// expression, the type of the base object whose member is being accessed. 2016 /// 2017 /// \param Id as input, describes the template-name or operator-function-id 2018 /// that precedes the '<'. If template arguments were parsed successfully, 2019 /// will be updated with the template-id. 2020 /// 2021 /// \param AssumeTemplateId When true, this routine will assume that the name 2022 /// refers to a template without performing name lookup to verify. 2023 /// 2024 /// \returns true if a parse error occurred, false otherwise. 2025 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, 2026 SourceLocation TemplateKWLoc, 2027 IdentifierInfo *Name, 2028 SourceLocation NameLoc, 2029 bool EnteringContext, 2030 ParsedType ObjectType, 2031 UnqualifiedId &Id, 2032 bool AssumeTemplateId) { 2033 assert((AssumeTemplateId || Tok.is(tok::less)) && 2034 "Expected '<' to finish parsing a template-id"); 2035 2036 TemplateTy Template; 2037 TemplateNameKind TNK = TNK_Non_template; 2038 switch (Id.getKind()) { 2039 case UnqualifiedId::IK_Identifier: 2040 case UnqualifiedId::IK_OperatorFunctionId: 2041 case UnqualifiedId::IK_LiteralOperatorId: 2042 if (AssumeTemplateId) { 2043 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc, 2044 Id, ObjectType, EnteringContext, 2045 Template); 2046 if (TNK == TNK_Non_template) 2047 return true; 2048 } else { 2049 bool MemberOfUnknownSpecialization; 2050 TNK = Actions.isTemplateName(getCurScope(), SS, 2051 TemplateKWLoc.isValid(), Id, 2052 ObjectType, EnteringContext, Template, 2053 MemberOfUnknownSpecialization); 2054 2055 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization && 2056 ObjectType && IsTemplateArgumentList()) { 2057 // We have something like t->getAs<T>(), where getAs is a 2058 // member of an unknown specialization. However, this will only 2059 // parse correctly as a template, so suggest the keyword 'template' 2060 // before 'getAs' and treat this as a dependent template name. 2061 std::string Name; 2062 if (Id.getKind() == UnqualifiedId::IK_Identifier) 2063 Name = Id.Identifier->getName(); 2064 else { 2065 Name = "operator "; 2066 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId) 2067 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator); 2068 else 2069 Name += Id.Identifier->getName(); 2070 } 2071 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword) 2072 << Name 2073 << FixItHint::CreateInsertion(Id.StartLocation, "template "); 2074 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 2075 SS, TemplateKWLoc, Id, 2076 ObjectType, EnteringContext, 2077 Template); 2078 if (TNK == TNK_Non_template) 2079 return true; 2080 } 2081 } 2082 break; 2083 2084 case UnqualifiedId::IK_ConstructorName: { 2085 UnqualifiedId TemplateName; 2086 bool MemberOfUnknownSpecialization; 2087 TemplateName.setIdentifier(Name, NameLoc); 2088 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 2089 TemplateName, ObjectType, 2090 EnteringContext, Template, 2091 MemberOfUnknownSpecialization); 2092 break; 2093 } 2094 2095 case UnqualifiedId::IK_DestructorName: { 2096 UnqualifiedId TemplateName; 2097 bool MemberOfUnknownSpecialization; 2098 TemplateName.setIdentifier(Name, NameLoc); 2099 if (ObjectType) { 2100 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 2101 SS, TemplateKWLoc, TemplateName, 2102 ObjectType, EnteringContext, 2103 Template); 2104 if (TNK == TNK_Non_template) 2105 return true; 2106 } else { 2107 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 2108 TemplateName, ObjectType, 2109 EnteringContext, Template, 2110 MemberOfUnknownSpecialization); 2111 2112 if (TNK == TNK_Non_template && !Id.DestructorName.get()) { 2113 Diag(NameLoc, diag::err_destructor_template_id) 2114 << Name << SS.getRange(); 2115 return true; 2116 } 2117 } 2118 break; 2119 } 2120 2121 default: 2122 return false; 2123 } 2124 2125 if (TNK == TNK_Non_template) 2126 return false; 2127 2128 // Parse the enclosed template argument list. 2129 SourceLocation LAngleLoc, RAngleLoc; 2130 TemplateArgList TemplateArgs; 2131 if (Tok.is(tok::less) && 2132 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation, 2133 SS, true, LAngleLoc, 2134 TemplateArgs, 2135 RAngleLoc)) 2136 return true; 2137 2138 if (Id.getKind() == UnqualifiedId::IK_Identifier || 2139 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId || 2140 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) { 2141 // Form a parsed representation of the template-id to be stored in the 2142 // UnqualifiedId. 2143 TemplateIdAnnotation *TemplateId 2144 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds); 2145 2146 // FIXME: Store name for literal operator too. 2147 if (Id.getKind() == UnqualifiedId::IK_Identifier) { 2148 TemplateId->Name = Id.Identifier; 2149 TemplateId->Operator = OO_None; 2150 TemplateId->TemplateNameLoc = Id.StartLocation; 2151 } else { 2152 TemplateId->Name = nullptr; 2153 TemplateId->Operator = Id.OperatorFunctionId.Operator; 2154 TemplateId->TemplateNameLoc = Id.StartLocation; 2155 } 2156 2157 TemplateId->SS = SS; 2158 TemplateId->TemplateKWLoc = TemplateKWLoc; 2159 TemplateId->Template = Template; 2160 TemplateId->Kind = TNK; 2161 TemplateId->LAngleLoc = LAngleLoc; 2162 TemplateId->RAngleLoc = RAngleLoc; 2163 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs(); 2164 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); 2165 Arg != ArgEnd; ++Arg) 2166 Args[Arg] = TemplateArgs[Arg]; 2167 2168 Id.setTemplateId(TemplateId); 2169 return false; 2170 } 2171 2172 // Bundle the template arguments together. 2173 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); 2174 2175 // Constructor and destructor names. 2176 TypeResult Type 2177 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc, 2178 Template, NameLoc, 2179 LAngleLoc, TemplateArgsPtr, RAngleLoc, 2180 /*IsCtorOrDtorName=*/true); 2181 if (Type.isInvalid()) 2182 return true; 2183 2184 if (Id.getKind() == UnqualifiedId::IK_ConstructorName) 2185 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); 2186 else 2187 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); 2188 2189 return false; 2190 } 2191 2192 /// \brief Parse an operator-function-id or conversion-function-id as part 2193 /// of a C++ unqualified-id. 2194 /// 2195 /// This routine is responsible only for parsing the operator-function-id or 2196 /// conversion-function-id; it does not handle template arguments in any way. 2197 /// 2198 /// \code 2199 /// operator-function-id: [C++ 13.5] 2200 /// 'operator' operator 2201 /// 2202 /// operator: one of 2203 /// new delete new[] delete[] 2204 /// + - * / % ^ & | ~ 2205 /// ! = < > += -= *= /= %= 2206 /// ^= &= |= << >> >>= <<= == != 2207 /// <= >= && || ++ -- , ->* -> 2208 /// () [] 2209 /// 2210 /// conversion-function-id: [C++ 12.3.2] 2211 /// operator conversion-type-id 2212 /// 2213 /// conversion-type-id: 2214 /// type-specifier-seq conversion-declarator[opt] 2215 /// 2216 /// conversion-declarator: 2217 /// ptr-operator conversion-declarator[opt] 2218 /// \endcode 2219 /// 2220 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2221 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2222 /// 2223 /// \param EnteringContext whether we are entering the scope of the 2224 /// nested-name-specifier. 2225 /// 2226 /// \param ObjectType if this unqualified-id occurs within a member access 2227 /// expression, the type of the base object whose member is being accessed. 2228 /// 2229 /// \param Result on a successful parse, contains the parsed unqualified-id. 2230 /// 2231 /// \returns true if parsing fails, false otherwise. 2232 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, 2233 ParsedType ObjectType, 2234 UnqualifiedId &Result) { 2235 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); 2236 2237 // Consume the 'operator' keyword. 2238 SourceLocation KeywordLoc = ConsumeToken(); 2239 2240 // Determine what kind of operator name we have. 2241 unsigned SymbolIdx = 0; 2242 SourceLocation SymbolLocations[3]; 2243 OverloadedOperatorKind Op = OO_None; 2244 switch (Tok.getKind()) { 2245 case tok::kw_new: 2246 case tok::kw_delete: { 2247 bool isNew = Tok.getKind() == tok::kw_new; 2248 // Consume the 'new' or 'delete'. 2249 SymbolLocations[SymbolIdx++] = ConsumeToken(); 2250 // Check for array new/delete. 2251 if (Tok.is(tok::l_square) && 2252 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) { 2253 // Consume the '[' and ']'. 2254 BalancedDelimiterTracker T(*this, tok::l_square); 2255 T.consumeOpen(); 2256 T.consumeClose(); 2257 if (T.getCloseLocation().isInvalid()) 2258 return true; 2259 2260 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2261 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2262 Op = isNew? OO_Array_New : OO_Array_Delete; 2263 } else { 2264 Op = isNew? OO_New : OO_Delete; 2265 } 2266 break; 2267 } 2268 2269 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 2270 case tok::Token: \ 2271 SymbolLocations[SymbolIdx++] = ConsumeToken(); \ 2272 Op = OO_##Name; \ 2273 break; 2274 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) 2275 #include "clang/Basic/OperatorKinds.def" 2276 2277 case tok::l_paren: { 2278 // Consume the '(' and ')'. 2279 BalancedDelimiterTracker T(*this, tok::l_paren); 2280 T.consumeOpen(); 2281 T.consumeClose(); 2282 if (T.getCloseLocation().isInvalid()) 2283 return true; 2284 2285 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2286 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2287 Op = OO_Call; 2288 break; 2289 } 2290 2291 case tok::l_square: { 2292 // Consume the '[' and ']'. 2293 BalancedDelimiterTracker T(*this, tok::l_square); 2294 T.consumeOpen(); 2295 T.consumeClose(); 2296 if (T.getCloseLocation().isInvalid()) 2297 return true; 2298 2299 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2300 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2301 Op = OO_Subscript; 2302 break; 2303 } 2304 2305 case tok::code_completion: { 2306 // Code completion for the operator name. 2307 Actions.CodeCompleteOperatorName(getCurScope()); 2308 cutOffParsing(); 2309 // Don't try to parse any further. 2310 return true; 2311 } 2312 2313 default: 2314 break; 2315 } 2316 2317 if (Op != OO_None) { 2318 // We have parsed an operator-function-id. 2319 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); 2320 return false; 2321 } 2322 2323 // Parse a literal-operator-id. 2324 // 2325 // literal-operator-id: C++11 [over.literal] 2326 // operator string-literal identifier 2327 // operator user-defined-string-literal 2328 2329 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { 2330 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator); 2331 2332 SourceLocation DiagLoc; 2333 unsigned DiagId = 0; 2334 2335 // We're past translation phase 6, so perform string literal concatenation 2336 // before checking for "". 2337 SmallVector<Token, 4> Toks; 2338 SmallVector<SourceLocation, 4> TokLocs; 2339 while (isTokenStringLiteral()) { 2340 if (!Tok.is(tok::string_literal) && !DiagId) { 2341 // C++11 [over.literal]p1: 2342 // The string-literal or user-defined-string-literal in a 2343 // literal-operator-id shall have no encoding-prefix [...]. 2344 DiagLoc = Tok.getLocation(); 2345 DiagId = diag::err_literal_operator_string_prefix; 2346 } 2347 Toks.push_back(Tok); 2348 TokLocs.push_back(ConsumeStringToken()); 2349 } 2350 2351 StringLiteralParser Literal(Toks, PP); 2352 if (Literal.hadError) 2353 return true; 2354 2355 // Grab the literal operator's suffix, which will be either the next token 2356 // or a ud-suffix from the string literal. 2357 IdentifierInfo *II = nullptr; 2358 SourceLocation SuffixLoc; 2359 if (!Literal.getUDSuffix().empty()) { 2360 II = &PP.getIdentifierTable().get(Literal.getUDSuffix()); 2361 SuffixLoc = 2362 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()], 2363 Literal.getUDSuffixOffset(), 2364 PP.getSourceManager(), getLangOpts()); 2365 } else if (Tok.is(tok::identifier)) { 2366 II = Tok.getIdentifierInfo(); 2367 SuffixLoc = ConsumeToken(); 2368 TokLocs.push_back(SuffixLoc); 2369 } else { 2370 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; 2371 return true; 2372 } 2373 2374 // The string literal must be empty. 2375 if (!Literal.GetString().empty() || Literal.Pascal) { 2376 // C++11 [over.literal]p1: 2377 // The string-literal or user-defined-string-literal in a 2378 // literal-operator-id shall [...] contain no characters 2379 // other than the implicit terminating '\0'. 2380 DiagLoc = TokLocs.front(); 2381 DiagId = diag::err_literal_operator_string_not_empty; 2382 } 2383 2384 if (DiagId) { 2385 // This isn't a valid literal-operator-id, but we think we know 2386 // what the user meant. Tell them what they should have written. 2387 SmallString<32> Str; 2388 Str += "\"\""; 2389 Str += II->getName(); 2390 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement( 2391 SourceRange(TokLocs.front(), TokLocs.back()), Str); 2392 } 2393 2394 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc); 2395 2396 return Actions.checkLiteralOperatorId(SS, Result); 2397 } 2398 2399 // Parse a conversion-function-id. 2400 // 2401 // conversion-function-id: [C++ 12.3.2] 2402 // operator conversion-type-id 2403 // 2404 // conversion-type-id: 2405 // type-specifier-seq conversion-declarator[opt] 2406 // 2407 // conversion-declarator: 2408 // ptr-operator conversion-declarator[opt] 2409 2410 // Parse the type-specifier-seq. 2411 DeclSpec DS(AttrFactory); 2412 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? 2413 return true; 2414 2415 // Parse the conversion-declarator, which is merely a sequence of 2416 // ptr-operators. 2417 Declarator D(DS, Declarator::ConversionIdContext); 2418 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr); 2419 2420 // Finish up the type. 2421 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D); 2422 if (Ty.isInvalid()) 2423 return true; 2424 2425 // Note that this is a conversion-function-id. 2426 Result.setConversionFunctionId(KeywordLoc, Ty.get(), 2427 D.getSourceRange().getEnd()); 2428 return false; 2429 } 2430 2431 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the 2432 /// name of an entity. 2433 /// 2434 /// \code 2435 /// unqualified-id: [C++ expr.prim.general] 2436 /// identifier 2437 /// operator-function-id 2438 /// conversion-function-id 2439 /// [C++0x] literal-operator-id [TODO] 2440 /// ~ class-name 2441 /// template-id 2442 /// 2443 /// \endcode 2444 /// 2445 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2446 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2447 /// 2448 /// \param EnteringContext whether we are entering the scope of the 2449 /// nested-name-specifier. 2450 /// 2451 /// \param AllowDestructorName whether we allow parsing of a destructor name. 2452 /// 2453 /// \param AllowConstructorName whether we allow parsing a constructor name. 2454 /// 2455 /// \param ObjectType if this unqualified-id occurs within a member access 2456 /// expression, the type of the base object whose member is being accessed. 2457 /// 2458 /// \param Result on a successful parse, contains the parsed unqualified-id. 2459 /// 2460 /// \returns true if parsing fails, false otherwise. 2461 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, 2462 bool AllowDestructorName, 2463 bool AllowConstructorName, 2464 ParsedType ObjectType, 2465 SourceLocation& TemplateKWLoc, 2466 UnqualifiedId &Result) { 2467 2468 // Handle 'A::template B'. This is for template-ids which have not 2469 // already been annotated by ParseOptionalCXXScopeSpecifier(). 2470 bool TemplateSpecified = false; 2471 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) && 2472 (ObjectType || SS.isSet())) { 2473 TemplateSpecified = true; 2474 TemplateKWLoc = ConsumeToken(); 2475 } 2476 2477 // unqualified-id: 2478 // identifier 2479 // template-id (when it hasn't already been annotated) 2480 if (Tok.is(tok::identifier)) { 2481 // Consume the identifier. 2482 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2483 SourceLocation IdLoc = ConsumeToken(); 2484 2485 if (!getLangOpts().CPlusPlus) { 2486 // If we're not in C++, only identifiers matter. Record the 2487 // identifier and return. 2488 Result.setIdentifier(Id, IdLoc); 2489 return false; 2490 } 2491 2492 if (AllowConstructorName && 2493 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) { 2494 // We have parsed a constructor name. 2495 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, false, 2496 false, nullptr, 2497 /*IsCtorOrDtorName=*/true, 2498 /*NonTrivialTypeSourceInfo=*/true); 2499 Result.setConstructorName(Ty, IdLoc, IdLoc); 2500 } else { 2501 // We have parsed an identifier. 2502 Result.setIdentifier(Id, IdLoc); 2503 } 2504 2505 // If the next token is a '<', we may have a template. 2506 if (TemplateSpecified || Tok.is(tok::less)) 2507 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc, 2508 EnteringContext, ObjectType, 2509 Result, TemplateSpecified); 2510 2511 return false; 2512 } 2513 2514 // unqualified-id: 2515 // template-id (already parsed and annotated) 2516 if (Tok.is(tok::annot_template_id)) { 2517 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2518 2519 // If the template-name names the current class, then this is a constructor 2520 if (AllowConstructorName && TemplateId->Name && 2521 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { 2522 if (SS.isSet()) { 2523 // C++ [class.qual]p2 specifies that a qualified template-name 2524 // is taken as the constructor name where a constructor can be 2525 // declared. Thus, the template arguments are extraneous, so 2526 // complain about them and remove them entirely. 2527 Diag(TemplateId->TemplateNameLoc, 2528 diag::err_out_of_line_constructor_template_id) 2529 << TemplateId->Name 2530 << FixItHint::CreateRemoval( 2531 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); 2532 ParsedType Ty = 2533 Actions.getTypeName(*TemplateId->Name, TemplateId->TemplateNameLoc, 2534 getCurScope(), &SS, false, false, nullptr, 2535 /*IsCtorOrDtorName=*/true, 2536 /*NontrivialTypeSourceInfo=*/true); 2537 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc, 2538 TemplateId->RAngleLoc); 2539 ConsumeToken(); 2540 return false; 2541 } 2542 2543 Result.setConstructorTemplateId(TemplateId); 2544 ConsumeToken(); 2545 return false; 2546 } 2547 2548 // We have already parsed a template-id; consume the annotation token as 2549 // our unqualified-id. 2550 Result.setTemplateId(TemplateId); 2551 TemplateKWLoc = TemplateId->TemplateKWLoc; 2552 ConsumeToken(); 2553 return false; 2554 } 2555 2556 // unqualified-id: 2557 // operator-function-id 2558 // conversion-function-id 2559 if (Tok.is(tok::kw_operator)) { 2560 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) 2561 return true; 2562 2563 // If we have an operator-function-id or a literal-operator-id and the next 2564 // token is a '<', we may have a 2565 // 2566 // template-id: 2567 // operator-function-id < template-argument-list[opt] > 2568 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId || 2569 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) && 2570 (TemplateSpecified || Tok.is(tok::less))) 2571 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2572 nullptr, SourceLocation(), 2573 EnteringContext, ObjectType, 2574 Result, TemplateSpecified); 2575 2576 return false; 2577 } 2578 2579 if (getLangOpts().CPlusPlus && 2580 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { 2581 // C++ [expr.unary.op]p10: 2582 // There is an ambiguity in the unary-expression ~X(), where X is a 2583 // class-name. The ambiguity is resolved in favor of treating ~ as a 2584 // unary complement rather than treating ~X as referring to a destructor. 2585 2586 // Parse the '~'. 2587 SourceLocation TildeLoc = ConsumeToken(); 2588 2589 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) { 2590 DeclSpec DS(AttrFactory); 2591 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 2592 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) { 2593 Result.setDestructorName(TildeLoc, Type, EndLoc); 2594 return false; 2595 } 2596 return true; 2597 } 2598 2599 // Parse the class-name. 2600 if (Tok.isNot(tok::identifier)) { 2601 Diag(Tok, diag::err_destructor_tilde_identifier); 2602 return true; 2603 } 2604 2605 // If the user wrote ~T::T, correct it to T::~T. 2606 DeclaratorScopeObj DeclScopeObj(*this, SS); 2607 if (!TemplateSpecified && NextToken().is(tok::coloncolon)) { 2608 // Don't let ParseOptionalCXXScopeSpecifier() "correct" 2609 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`, 2610 // it will confuse this recovery logic. 2611 ColonProtectionRAIIObject ColonRAII(*this, false); 2612 2613 if (SS.isSet()) { 2614 AnnotateScopeToken(SS, /*NewAnnotation*/true); 2615 SS.clear(); 2616 } 2617 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext)) 2618 return true; 2619 if (SS.isNotEmpty()) 2620 ObjectType = nullptr; 2621 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) || 2622 !SS.isSet()) { 2623 Diag(TildeLoc, diag::err_destructor_tilde_scope); 2624 return true; 2625 } 2626 2627 // Recover as if the tilde had been written before the identifier. 2628 Diag(TildeLoc, diag::err_destructor_tilde_scope) 2629 << FixItHint::CreateRemoval(TildeLoc) 2630 << FixItHint::CreateInsertion(Tok.getLocation(), "~"); 2631 2632 // Temporarily enter the scope for the rest of this function. 2633 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) 2634 DeclScopeObj.EnterDeclaratorScope(); 2635 } 2636 2637 // Parse the class-name (or template-name in a simple-template-id). 2638 IdentifierInfo *ClassName = Tok.getIdentifierInfo(); 2639 SourceLocation ClassNameLoc = ConsumeToken(); 2640 2641 if (TemplateSpecified || Tok.is(tok::less)) { 2642 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc); 2643 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2644 ClassName, ClassNameLoc, 2645 EnteringContext, ObjectType, 2646 Result, TemplateSpecified); 2647 } 2648 2649 // Note that this is a destructor name. 2650 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 2651 ClassNameLoc, getCurScope(), 2652 SS, ObjectType, 2653 EnteringContext); 2654 if (!Ty) 2655 return true; 2656 2657 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); 2658 return false; 2659 } 2660 2661 Diag(Tok, diag::err_expected_unqualified_id) 2662 << getLangOpts().CPlusPlus; 2663 return true; 2664 } 2665 2666 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate 2667 /// memory in a typesafe manner and call constructors. 2668 /// 2669 /// This method is called to parse the new expression after the optional :: has 2670 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" 2671 /// is its location. Otherwise, "Start" is the location of the 'new' token. 2672 /// 2673 /// new-expression: 2674 /// '::'[opt] 'new' new-placement[opt] new-type-id 2675 /// new-initializer[opt] 2676 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2677 /// new-initializer[opt] 2678 /// 2679 /// new-placement: 2680 /// '(' expression-list ')' 2681 /// 2682 /// new-type-id: 2683 /// type-specifier-seq new-declarator[opt] 2684 /// [GNU] attributes type-specifier-seq new-declarator[opt] 2685 /// 2686 /// new-declarator: 2687 /// ptr-operator new-declarator[opt] 2688 /// direct-new-declarator 2689 /// 2690 /// new-initializer: 2691 /// '(' expression-list[opt] ')' 2692 /// [C++0x] braced-init-list 2693 /// 2694 ExprResult 2695 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { 2696 assert(Tok.is(tok::kw_new) && "expected 'new' token"); 2697 ConsumeToken(); // Consume 'new' 2698 2699 // A '(' now can be a new-placement or the '(' wrapping the type-id in the 2700 // second form of new-expression. It can't be a new-type-id. 2701 2702 ExprVector PlacementArgs; 2703 SourceLocation PlacementLParen, PlacementRParen; 2704 2705 SourceRange TypeIdParens; 2706 DeclSpec DS(AttrFactory); 2707 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext); 2708 if (Tok.is(tok::l_paren)) { 2709 // If it turns out to be a placement, we change the type location. 2710 BalancedDelimiterTracker T(*this, tok::l_paren); 2711 T.consumeOpen(); 2712 PlacementLParen = T.getOpenLocation(); 2713 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { 2714 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2715 return ExprError(); 2716 } 2717 2718 T.consumeClose(); 2719 PlacementRParen = T.getCloseLocation(); 2720 if (PlacementRParen.isInvalid()) { 2721 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2722 return ExprError(); 2723 } 2724 2725 if (PlacementArgs.empty()) { 2726 // Reset the placement locations. There was no placement. 2727 TypeIdParens = T.getRange(); 2728 PlacementLParen = PlacementRParen = SourceLocation(); 2729 } else { 2730 // We still need the type. 2731 if (Tok.is(tok::l_paren)) { 2732 BalancedDelimiterTracker T(*this, tok::l_paren); 2733 T.consumeOpen(); 2734 MaybeParseGNUAttributes(DeclaratorInfo); 2735 ParseSpecifierQualifierList(DS); 2736 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2737 ParseDeclarator(DeclaratorInfo); 2738 T.consumeClose(); 2739 TypeIdParens = T.getRange(); 2740 } else { 2741 MaybeParseGNUAttributes(DeclaratorInfo); 2742 if (ParseCXXTypeSpecifierSeq(DS)) 2743 DeclaratorInfo.setInvalidType(true); 2744 else { 2745 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2746 ParseDeclaratorInternal(DeclaratorInfo, 2747 &Parser::ParseDirectNewDeclarator); 2748 } 2749 } 2750 } 2751 } else { 2752 // A new-type-id is a simplified type-id, where essentially the 2753 // direct-declarator is replaced by a direct-new-declarator. 2754 MaybeParseGNUAttributes(DeclaratorInfo); 2755 if (ParseCXXTypeSpecifierSeq(DS)) 2756 DeclaratorInfo.setInvalidType(true); 2757 else { 2758 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2759 ParseDeclaratorInternal(DeclaratorInfo, 2760 &Parser::ParseDirectNewDeclarator); 2761 } 2762 } 2763 if (DeclaratorInfo.isInvalidType()) { 2764 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2765 return ExprError(); 2766 } 2767 2768 ExprResult Initializer; 2769 2770 if (Tok.is(tok::l_paren)) { 2771 SourceLocation ConstructorLParen, ConstructorRParen; 2772 ExprVector ConstructorArgs; 2773 BalancedDelimiterTracker T(*this, tok::l_paren); 2774 T.consumeOpen(); 2775 ConstructorLParen = T.getOpenLocation(); 2776 if (Tok.isNot(tok::r_paren)) { 2777 CommaLocsTy CommaLocs; 2778 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] { 2779 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), 2780 DeclaratorInfo).get(); 2781 Actions.CodeCompleteConstructor(getCurScope(), 2782 TypeRep.get()->getCanonicalTypeInternal(), 2783 DeclaratorInfo.getLocEnd(), 2784 ConstructorArgs); 2785 })) { 2786 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2787 return ExprError(); 2788 } 2789 } 2790 T.consumeClose(); 2791 ConstructorRParen = T.getCloseLocation(); 2792 if (ConstructorRParen.isInvalid()) { 2793 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2794 return ExprError(); 2795 } 2796 Initializer = Actions.ActOnParenListExpr(ConstructorLParen, 2797 ConstructorRParen, 2798 ConstructorArgs); 2799 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { 2800 Diag(Tok.getLocation(), 2801 diag::warn_cxx98_compat_generalized_initializer_lists); 2802 Initializer = ParseBraceInitializer(); 2803 } 2804 if (Initializer.isInvalid()) 2805 return Initializer; 2806 2807 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, 2808 PlacementArgs, PlacementRParen, 2809 TypeIdParens, DeclaratorInfo, Initializer.get()); 2810 } 2811 2812 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be 2813 /// passed to ParseDeclaratorInternal. 2814 /// 2815 /// direct-new-declarator: 2816 /// '[' expression ']' 2817 /// direct-new-declarator '[' constant-expression ']' 2818 /// 2819 void Parser::ParseDirectNewDeclarator(Declarator &D) { 2820 // Parse the array dimensions. 2821 bool first = true; 2822 while (Tok.is(tok::l_square)) { 2823 // An array-size expression can't start with a lambda. 2824 if (CheckProhibitedCXX11Attribute()) 2825 continue; 2826 2827 BalancedDelimiterTracker T(*this, tok::l_square); 2828 T.consumeOpen(); 2829 2830 ExprResult Size(first ? ParseExpression() 2831 : ParseConstantExpression()); 2832 if (Size.isInvalid()) { 2833 // Recover 2834 SkipUntil(tok::r_square, StopAtSemi); 2835 return; 2836 } 2837 first = false; 2838 2839 T.consumeClose(); 2840 2841 // Attributes here appertain to the array type. C++11 [expr.new]p5. 2842 ParsedAttributes Attrs(AttrFactory); 2843 MaybeParseCXX11Attributes(Attrs); 2844 2845 D.AddTypeInfo(DeclaratorChunk::getArray(0, 2846 /*static=*/false, /*star=*/false, 2847 Size.get(), 2848 T.getOpenLocation(), 2849 T.getCloseLocation()), 2850 Attrs, T.getCloseLocation()); 2851 2852 if (T.getCloseLocation().isInvalid()) 2853 return; 2854 } 2855 } 2856 2857 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. 2858 /// This ambiguity appears in the syntax of the C++ new operator. 2859 /// 2860 /// new-expression: 2861 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2862 /// new-initializer[opt] 2863 /// 2864 /// new-placement: 2865 /// '(' expression-list ')' 2866 /// 2867 bool Parser::ParseExpressionListOrTypeId( 2868 SmallVectorImpl<Expr*> &PlacementArgs, 2869 Declarator &D) { 2870 // The '(' was already consumed. 2871 if (isTypeIdInParens()) { 2872 ParseSpecifierQualifierList(D.getMutableDeclSpec()); 2873 D.SetSourceRange(D.getDeclSpec().getSourceRange()); 2874 ParseDeclarator(D); 2875 return D.isInvalidType(); 2876 } 2877 2878 // It's not a type, it has to be an expression list. 2879 // Discard the comma locations - ActOnCXXNew has enough parameters. 2880 CommaLocsTy CommaLocs; 2881 return ParseExpressionList(PlacementArgs, CommaLocs); 2882 } 2883 2884 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used 2885 /// to free memory allocated by new. 2886 /// 2887 /// This method is called to parse the 'delete' expression after the optional 2888 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true 2889 /// and "Start" is its location. Otherwise, "Start" is the location of the 2890 /// 'delete' token. 2891 /// 2892 /// delete-expression: 2893 /// '::'[opt] 'delete' cast-expression 2894 /// '::'[opt] 'delete' '[' ']' cast-expression 2895 ExprResult 2896 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { 2897 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); 2898 ConsumeToken(); // Consume 'delete' 2899 2900 // Array delete? 2901 bool ArrayDelete = false; 2902 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { 2903 // C++11 [expr.delete]p1: 2904 // Whenever the delete keyword is followed by empty square brackets, it 2905 // shall be interpreted as [array delete]. 2906 // [Footnote: A lambda expression with a lambda-introducer that consists 2907 // of empty square brackets can follow the delete keyword if 2908 // the lambda expression is enclosed in parentheses.] 2909 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a 2910 // lambda-introducer. 2911 ArrayDelete = true; 2912 BalancedDelimiterTracker T(*this, tok::l_square); 2913 2914 T.consumeOpen(); 2915 T.consumeClose(); 2916 if (T.getCloseLocation().isInvalid()) 2917 return ExprError(); 2918 } 2919 2920 ExprResult Operand(ParseCastExpression(false)); 2921 if (Operand.isInvalid()) 2922 return Operand; 2923 2924 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get()); 2925 } 2926 2927 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) { 2928 switch (kind) { 2929 default: llvm_unreachable("Not a known type trait"); 2930 #define TYPE_TRAIT_1(Spelling, Name, Key) \ 2931 case tok::kw_ ## Spelling: return UTT_ ## Name; 2932 #define TYPE_TRAIT_2(Spelling, Name, Key) \ 2933 case tok::kw_ ## Spelling: return BTT_ ## Name; 2934 #include "clang/Basic/TokenKinds.def" 2935 #define TYPE_TRAIT_N(Spelling, Name, Key) \ 2936 case tok::kw_ ## Spelling: return TT_ ## Name; 2937 #include "clang/Basic/TokenKinds.def" 2938 } 2939 } 2940 2941 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) { 2942 switch(kind) { 2943 default: llvm_unreachable("Not a known binary type trait"); 2944 case tok::kw___array_rank: return ATT_ArrayRank; 2945 case tok::kw___array_extent: return ATT_ArrayExtent; 2946 } 2947 } 2948 2949 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) { 2950 switch(kind) { 2951 default: llvm_unreachable("Not a known unary expression trait."); 2952 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr; 2953 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr; 2954 } 2955 } 2956 2957 static unsigned TypeTraitArity(tok::TokenKind kind) { 2958 switch (kind) { 2959 default: llvm_unreachable("Not a known type trait"); 2960 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N; 2961 #include "clang/Basic/TokenKinds.def" 2962 } 2963 } 2964 2965 /// \brief Parse the built-in type-trait pseudo-functions that allow 2966 /// implementation of the TR1/C++11 type traits templates. 2967 /// 2968 /// primary-expression: 2969 /// unary-type-trait '(' type-id ')' 2970 /// binary-type-trait '(' type-id ',' type-id ')' 2971 /// type-trait '(' type-id-seq ')' 2972 /// 2973 /// type-id-seq: 2974 /// type-id ...[opt] type-id-seq[opt] 2975 /// 2976 ExprResult Parser::ParseTypeTrait() { 2977 tok::TokenKind Kind = Tok.getKind(); 2978 unsigned Arity = TypeTraitArity(Kind); 2979 2980 SourceLocation Loc = ConsumeToken(); 2981 2982 BalancedDelimiterTracker Parens(*this, tok::l_paren); 2983 if (Parens.expectAndConsume()) 2984 return ExprError(); 2985 2986 SmallVector<ParsedType, 2> Args; 2987 do { 2988 // Parse the next type. 2989 TypeResult Ty = ParseTypeName(); 2990 if (Ty.isInvalid()) { 2991 Parens.skipToEnd(); 2992 return ExprError(); 2993 } 2994 2995 // Parse the ellipsis, if present. 2996 if (Tok.is(tok::ellipsis)) { 2997 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken()); 2998 if (Ty.isInvalid()) { 2999 Parens.skipToEnd(); 3000 return ExprError(); 3001 } 3002 } 3003 3004 // Add this type to the list of arguments. 3005 Args.push_back(Ty.get()); 3006 } while (TryConsumeToken(tok::comma)); 3007 3008 if (Parens.consumeClose()) 3009 return ExprError(); 3010 3011 SourceLocation EndLoc = Parens.getCloseLocation(); 3012 3013 if (Arity && Args.size() != Arity) { 3014 Diag(EndLoc, diag::err_type_trait_arity) 3015 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc); 3016 return ExprError(); 3017 } 3018 3019 if (!Arity && Args.empty()) { 3020 Diag(EndLoc, diag::err_type_trait_arity) 3021 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc); 3022 return ExprError(); 3023 } 3024 3025 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc); 3026 } 3027 3028 /// ParseArrayTypeTrait - Parse the built-in array type-trait 3029 /// pseudo-functions. 3030 /// 3031 /// primary-expression: 3032 /// [Embarcadero] '__array_rank' '(' type-id ')' 3033 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')' 3034 /// 3035 ExprResult Parser::ParseArrayTypeTrait() { 3036 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind()); 3037 SourceLocation Loc = ConsumeToken(); 3038 3039 BalancedDelimiterTracker T(*this, tok::l_paren); 3040 if (T.expectAndConsume()) 3041 return ExprError(); 3042 3043 TypeResult Ty = ParseTypeName(); 3044 if (Ty.isInvalid()) { 3045 SkipUntil(tok::comma, StopAtSemi); 3046 SkipUntil(tok::r_paren, StopAtSemi); 3047 return ExprError(); 3048 } 3049 3050 switch (ATT) { 3051 case ATT_ArrayRank: { 3052 T.consumeClose(); 3053 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr, 3054 T.getCloseLocation()); 3055 } 3056 case ATT_ArrayExtent: { 3057 if (ExpectAndConsume(tok::comma)) { 3058 SkipUntil(tok::r_paren, StopAtSemi); 3059 return ExprError(); 3060 } 3061 3062 ExprResult DimExpr = ParseExpression(); 3063 T.consumeClose(); 3064 3065 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(), 3066 T.getCloseLocation()); 3067 } 3068 } 3069 llvm_unreachable("Invalid ArrayTypeTrait!"); 3070 } 3071 3072 /// ParseExpressionTrait - Parse built-in expression-trait 3073 /// pseudo-functions like __is_lvalue_expr( xxx ). 3074 /// 3075 /// primary-expression: 3076 /// [Embarcadero] expression-trait '(' expression ')' 3077 /// 3078 ExprResult Parser::ParseExpressionTrait() { 3079 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind()); 3080 SourceLocation Loc = ConsumeToken(); 3081 3082 BalancedDelimiterTracker T(*this, tok::l_paren); 3083 if (T.expectAndConsume()) 3084 return ExprError(); 3085 3086 ExprResult Expr = ParseExpression(); 3087 3088 T.consumeClose(); 3089 3090 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(), 3091 T.getCloseLocation()); 3092 } 3093 3094 3095 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a 3096 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate 3097 /// based on the context past the parens. 3098 ExprResult 3099 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, 3100 ParsedType &CastTy, 3101 BalancedDelimiterTracker &Tracker, 3102 ColonProtectionRAIIObject &ColonProt) { 3103 assert(getLangOpts().CPlusPlus && "Should only be called for C++!"); 3104 assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); 3105 assert(isTypeIdInParens() && "Not a type-id!"); 3106 3107 ExprResult Result(true); 3108 CastTy = nullptr; 3109 3110 // We need to disambiguate a very ugly part of the C++ syntax: 3111 // 3112 // (T())x; - type-id 3113 // (T())*x; - type-id 3114 // (T())/x; - expression 3115 // (T()); - expression 3116 // 3117 // The bad news is that we cannot use the specialized tentative parser, since 3118 // it can only verify that the thing inside the parens can be parsed as 3119 // type-id, it is not useful for determining the context past the parens. 3120 // 3121 // The good news is that the parser can disambiguate this part without 3122 // making any unnecessary Action calls. 3123 // 3124 // It uses a scheme similar to parsing inline methods. The parenthesized 3125 // tokens are cached, the context that follows is determined (possibly by 3126 // parsing a cast-expression), and then we re-introduce the cached tokens 3127 // into the token stream and parse them appropriately. 3128 3129 ParenParseOption ParseAs; 3130 CachedTokens Toks; 3131 3132 // Store the tokens of the parentheses. We will parse them after we determine 3133 // the context that follows them. 3134 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) { 3135 // We didn't find the ')' we expected. 3136 Tracker.consumeClose(); 3137 return ExprError(); 3138 } 3139 3140 if (Tok.is(tok::l_brace)) { 3141 ParseAs = CompoundLiteral; 3142 } else { 3143 bool NotCastExpr; 3144 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { 3145 NotCastExpr = true; 3146 } else { 3147 // Try parsing the cast-expression that may follow. 3148 // If it is not a cast-expression, NotCastExpr will be true and no token 3149 // will be consumed. 3150 ColonProt.restore(); 3151 Result = ParseCastExpression(false/*isUnaryExpression*/, 3152 false/*isAddressofOperand*/, 3153 NotCastExpr, 3154 // type-id has priority. 3155 IsTypeCast); 3156 } 3157 3158 // If we parsed a cast-expression, it's really a type-id, otherwise it's 3159 // an expression. 3160 ParseAs = NotCastExpr ? SimpleExpr : CastExpr; 3161 } 3162 3163 // Create a fake EOF to mark end of Toks buffer. 3164 Token AttrEnd; 3165 AttrEnd.startToken(); 3166 AttrEnd.setKind(tok::eof); 3167 AttrEnd.setLocation(Tok.getLocation()); 3168 AttrEnd.setEofData(Toks.data()); 3169 Toks.push_back(AttrEnd); 3170 3171 // The current token should go after the cached tokens. 3172 Toks.push_back(Tok); 3173 // Re-enter the stored parenthesized tokens into the token stream, so we may 3174 // parse them now. 3175 PP.EnterTokenStream(Toks, true /*DisableMacroExpansion*/); 3176 // Drop the current token and bring the first cached one. It's the same token 3177 // as when we entered this function. 3178 ConsumeAnyToken(); 3179 3180 if (ParseAs >= CompoundLiteral) { 3181 // Parse the type declarator. 3182 DeclSpec DS(AttrFactory); 3183 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 3184 { 3185 ColonProtectionRAIIObject InnerColonProtection(*this); 3186 ParseSpecifierQualifierList(DS); 3187 ParseDeclarator(DeclaratorInfo); 3188 } 3189 3190 // Match the ')'. 3191 Tracker.consumeClose(); 3192 ColonProt.restore(); 3193 3194 // Consume EOF marker for Toks buffer. 3195 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()); 3196 ConsumeAnyToken(); 3197 3198 if (ParseAs == CompoundLiteral) { 3199 ExprType = CompoundLiteral; 3200 if (DeclaratorInfo.isInvalidType()) 3201 return ExprError(); 3202 3203 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3204 return ParseCompoundLiteralExpression(Ty.get(), 3205 Tracker.getOpenLocation(), 3206 Tracker.getCloseLocation()); 3207 } 3208 3209 // We parsed '(' type-id ')' and the thing after it wasn't a '{'. 3210 assert(ParseAs == CastExpr); 3211 3212 if (DeclaratorInfo.isInvalidType()) 3213 return ExprError(); 3214 3215 // Result is what ParseCastExpression returned earlier. 3216 if (!Result.isInvalid()) 3217 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(), 3218 DeclaratorInfo, CastTy, 3219 Tracker.getCloseLocation(), Result.get()); 3220 return Result; 3221 } 3222 3223 // Not a compound literal, and not followed by a cast-expression. 3224 assert(ParseAs == SimpleExpr); 3225 3226 ExprType = SimpleExpr; 3227 Result = ParseExpression(); 3228 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3229 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 3230 Tok.getLocation(), Result.get()); 3231 3232 // Match the ')'. 3233 if (Result.isInvalid()) { 3234 while (Tok.isNot(tok::eof)) 3235 ConsumeAnyToken(); 3236 assert(Tok.getEofData() == AttrEnd.getEofData()); 3237 ConsumeAnyToken(); 3238 return ExprError(); 3239 } 3240 3241 Tracker.consumeClose(); 3242 // Consume EOF marker for Toks buffer. 3243 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()); 3244 ConsumeAnyToken(); 3245 return Result; 3246 } 3247