Home | History | Annotate | Download | only in Sema
      1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ lambda expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/Sema/DeclSpec.h"
     14 #include "TypeLocBuilder.h"
     15 #include "clang/AST/ASTLambda.h"
     16 #include "clang/AST/ExprCXX.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Sema/Initialization.h"
     19 #include "clang/Sema/Lookup.h"
     20 #include "clang/Sema/Scope.h"
     21 #include "clang/Sema/ScopeInfo.h"
     22 #include "clang/Sema/SemaInternal.h"
     23 #include "clang/Sema/SemaLambda.h"
     24 using namespace clang;
     25 using namespace sema;
     26 
     27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
     28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
     29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
     30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
     31 /// of the capture-ready lambda's LambdaScopeInfo.
     32 ///
     33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
     34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
     35 /// lambda that is ready to capture the \p VarToCapture being referenced in
     36 /// the current lambda.
     37 /// As we climb down the stack, we want the index of the first such lambda -
     38 /// that is the lambda with the highest index that is 'capture-ready'.
     39 ///
     40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
     41 ///  - its enclosing context is non-dependent
     42 ///  - and if the chain of lambdas between L and the lambda in which
     43 ///    V is potentially used (i.e. the lambda at the top of the scope info
     44 ///    stack), can all capture or have already captured V.
     45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
     46 ///
     47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
     48 /// for whether it is 'capture-capable' (see
     49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
     50 /// capture.
     51 ///
     52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
     53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
     54 ///  is at the top of the stack and has the highest index.
     55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
     56 ///
     57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
     58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
     59 /// which is capture-ready.  If the return value evaluates to 'false' then
     60 /// no lambda is capture-ready for \p VarToCapture.
     61 
     62 static inline Optional<unsigned>
     63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
     64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
     65     VarDecl *VarToCapture) {
     66   // Label failure to capture.
     67   const Optional<unsigned> NoLambdaIsCaptureReady;
     68 
     69   assert(
     70       isa<clang::sema::LambdaScopeInfo>(
     71           FunctionScopes[FunctionScopes.size() - 1]) &&
     72       "The function on the top of sema's function-info stack must be a lambda");
     73 
     74   // If VarToCapture is null, we are attempting to capture 'this'.
     75   const bool IsCapturingThis = !VarToCapture;
     76   const bool IsCapturingVariable = !IsCapturingThis;
     77 
     78   // Start with the current lambda at the top of the stack (highest index).
     79   unsigned CurScopeIndex = FunctionScopes.size() - 1;
     80   DeclContext *EnclosingDC =
     81       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
     82 
     83   do {
     84     const clang::sema::LambdaScopeInfo *LSI =
     85         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
     86     // IF we have climbed down to an intervening enclosing lambda that contains
     87     // the variable declaration - it obviously can/must not capture the
     88     // variable.
     89     // Since its enclosing DC is dependent, all the lambdas between it and the
     90     // innermost nested lambda are dependent (otherwise we wouldn't have
     91     // arrived here) - so we don't yet have a lambda that can capture the
     92     // variable.
     93     if (IsCapturingVariable &&
     94         VarToCapture->getDeclContext()->Equals(EnclosingDC))
     95       return NoLambdaIsCaptureReady;
     96 
     97     // For an enclosing lambda to be capture ready for an entity, all
     98     // intervening lambda's have to be able to capture that entity. If even
     99     // one of the intervening lambda's is not capable of capturing the entity
    100     // then no enclosing lambda can ever capture that entity.
    101     // For e.g.
    102     // const int x = 10;
    103     // [=](auto a) {    #1
    104     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
    105     //    [=](auto c) { #3
    106     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
    107     //    }; }; };
    108     // If they do not have a default implicit capture, check to see
    109     // if the entity has already been explicitly captured.
    110     // If even a single dependent enclosing lambda lacks the capability
    111     // to ever capture this variable, there is no further enclosing
    112     // non-dependent lambda that can capture this variable.
    113     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
    114       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
    115         return NoLambdaIsCaptureReady;
    116       if (IsCapturingThis && !LSI->isCXXThisCaptured())
    117         return NoLambdaIsCaptureReady;
    118     }
    119     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
    120 
    121     assert(CurScopeIndex);
    122     --CurScopeIndex;
    123   } while (!EnclosingDC->isTranslationUnit() &&
    124            EnclosingDC->isDependentContext() &&
    125            isLambdaCallOperator(EnclosingDC));
    126 
    127   assert(CurScopeIndex < (FunctionScopes.size() - 1));
    128   // If the enclosingDC is not dependent, then the immediately nested lambda
    129   // (one index above) is capture-ready.
    130   if (!EnclosingDC->isDependentContext())
    131     return CurScopeIndex + 1;
    132   return NoLambdaIsCaptureReady;
    133 }
    134 
    135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
    136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
    137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
    138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
    139 /// of the capture-capable lambda's LambdaScopeInfo.
    140 ///
    141 /// Given the current stack of lambdas being processed by Sema and
    142 /// the variable of interest, to identify the nearest enclosing lambda (to the
    143 /// current lambda at the top of the stack) that can truly capture
    144 /// a variable, it has to have the following two properties:
    145 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
    146 ///     - climb down the stack (i.e. starting from the innermost and examining
    147 ///       each outer lambda step by step) checking if each enclosing
    148 ///       lambda can either implicitly or explicitly capture the variable.
    149 ///       Record the first such lambda that is enclosed in a non-dependent
    150 ///       context. If no such lambda currently exists return failure.
    151 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
    152 ///  capture the variable by checking all its enclosing lambdas:
    153 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
    154 ///       identified above in 'a' can also capture the variable (this is done
    155 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
    156 ///       'this' by passing in the index of the Lambda identified in step 'a')
    157 ///
    158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
    159 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
    160 /// is at the top of the stack.
    161 ///
    162 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
    163 ///
    164 ///
    165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
    166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
    167 /// which is capture-capable.  If the return value evaluates to 'false' then
    168 /// no lambda is capture-capable for \p VarToCapture.
    169 
    170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
    171     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
    172     VarDecl *VarToCapture, Sema &S) {
    173 
    174   const Optional<unsigned> NoLambdaIsCaptureCapable;
    175 
    176   const Optional<unsigned> OptionalStackIndex =
    177       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
    178                                                         VarToCapture);
    179   if (!OptionalStackIndex)
    180     return NoLambdaIsCaptureCapable;
    181 
    182   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
    183   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
    184           S.getCurGenericLambda()) &&
    185          "The capture ready lambda for a potential capture can only be the "
    186          "current lambda if it is a generic lambda");
    187 
    188   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
    189       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
    190 
    191   // If VarToCapture is null, we are attempting to capture 'this'
    192   const bool IsCapturingThis = !VarToCapture;
    193   const bool IsCapturingVariable = !IsCapturingThis;
    194 
    195   if (IsCapturingVariable) {
    196     // Check if the capture-ready lambda can truly capture the variable, by
    197     // checking whether all enclosing lambdas of the capture-ready lambda allow
    198     // the capture - i.e. make sure it is capture-capable.
    199     QualType CaptureType, DeclRefType;
    200     const bool CanCaptureVariable =
    201         !S.tryCaptureVariable(VarToCapture,
    202                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
    203                               clang::Sema::TryCapture_Implicit,
    204                               /*EllipsisLoc*/ SourceLocation(),
    205                               /*BuildAndDiagnose*/ false, CaptureType,
    206                               DeclRefType, &IndexOfCaptureReadyLambda);
    207     if (!CanCaptureVariable)
    208       return NoLambdaIsCaptureCapable;
    209   } else {
    210     // Check if the capture-ready lambda can truly capture 'this' by checking
    211     // whether all enclosing lambdas of the capture-ready lambda can capture
    212     // 'this'.
    213     const bool CanCaptureThis =
    214         !S.CheckCXXThisCapture(
    215              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
    216              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
    217              &IndexOfCaptureReadyLambda);
    218     if (!CanCaptureThis)
    219       return NoLambdaIsCaptureCapable;
    220   }
    221   return IndexOfCaptureReadyLambda;
    222 }
    223 
    224 static inline TemplateParameterList *
    225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
    226   if (LSI->GLTemplateParameterList)
    227     return LSI->GLTemplateParameterList;
    228 
    229   if (!LSI->AutoTemplateParams.empty()) {
    230     SourceRange IntroRange = LSI->IntroducerRange;
    231     SourceLocation LAngleLoc = IntroRange.getBegin();
    232     SourceLocation RAngleLoc = IntroRange.getEnd();
    233     LSI->GLTemplateParameterList = TemplateParameterList::Create(
    234         SemaRef.Context,
    235         /*Template kw loc*/ SourceLocation(), LAngleLoc,
    236         llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(),
    237                            LSI->AutoTemplateParams.size()),
    238         RAngleLoc);
    239   }
    240   return LSI->GLTemplateParameterList;
    241 }
    242 
    243 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
    244                                              TypeSourceInfo *Info,
    245                                              bool KnownDependent,
    246                                              LambdaCaptureDefault CaptureDefault) {
    247   DeclContext *DC = CurContext;
    248   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
    249     DC = DC->getParent();
    250   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
    251                                                                *this);
    252   // Start constructing the lambda class.
    253   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
    254                                                      IntroducerRange.getBegin(),
    255                                                      KnownDependent,
    256                                                      IsGenericLambda,
    257                                                      CaptureDefault);
    258   DC->addDecl(Class);
    259 
    260   return Class;
    261 }
    262 
    263 /// \brief Determine whether the given context is or is enclosed in an inline
    264 /// function.
    265 static bool isInInlineFunction(const DeclContext *DC) {
    266   while (!DC->isFileContext()) {
    267     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
    268       if (FD->isInlined())
    269         return true;
    270 
    271     DC = DC->getLexicalParent();
    272   }
    273 
    274   return false;
    275 }
    276 
    277 MangleNumberingContext *
    278 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
    279                                     Decl *&ManglingContextDecl) {
    280   // Compute the context for allocating mangling numbers in the current
    281   // expression, if the ABI requires them.
    282   ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
    283 
    284   enum ContextKind {
    285     Normal,
    286     DefaultArgument,
    287     DataMember,
    288     StaticDataMember
    289   } Kind = Normal;
    290 
    291   // Default arguments of member function parameters that appear in a class
    292   // definition, as well as the initializers of data members, receive special
    293   // treatment. Identify them.
    294   if (ManglingContextDecl) {
    295     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
    296       if (const DeclContext *LexicalDC
    297           = Param->getDeclContext()->getLexicalParent())
    298         if (LexicalDC->isRecord())
    299           Kind = DefaultArgument;
    300     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
    301       if (Var->getDeclContext()->isRecord())
    302         Kind = StaticDataMember;
    303     } else if (isa<FieldDecl>(ManglingContextDecl)) {
    304       Kind = DataMember;
    305     }
    306   }
    307 
    308   // Itanium ABI [5.1.7]:
    309   //   In the following contexts [...] the one-definition rule requires closure
    310   //   types in different translation units to "correspond":
    311   bool IsInNonspecializedTemplate =
    312     !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
    313   switch (Kind) {
    314   case Normal:
    315     //  -- the bodies of non-exported nonspecialized template functions
    316     //  -- the bodies of inline functions
    317     if ((IsInNonspecializedTemplate &&
    318          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
    319         isInInlineFunction(CurContext)) {
    320       ManglingContextDecl = nullptr;
    321       return &Context.getManglingNumberContext(DC);
    322     }
    323 
    324     ManglingContextDecl = nullptr;
    325     return nullptr;
    326 
    327   case StaticDataMember:
    328     //  -- the initializers of nonspecialized static members of template classes
    329     if (!IsInNonspecializedTemplate) {
    330       ManglingContextDecl = nullptr;
    331       return nullptr;
    332     }
    333     // Fall through to get the current context.
    334 
    335   case DataMember:
    336     //  -- the in-class initializers of class members
    337   case DefaultArgument:
    338     //  -- default arguments appearing in class definitions
    339     return &ExprEvalContexts.back().getMangleNumberingContext(Context);
    340   }
    341 
    342   llvm_unreachable("unexpected context");
    343 }
    344 
    345 MangleNumberingContext &
    346 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
    347     ASTContext &Ctx) {
    348   assert(ManglingContextDecl && "Need to have a context declaration");
    349   if (!MangleNumbering)
    350     MangleNumbering = Ctx.createMangleNumberingContext();
    351   return *MangleNumbering;
    352 }
    353 
    354 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
    355                                            SourceRange IntroducerRange,
    356                                            TypeSourceInfo *MethodTypeInfo,
    357                                            SourceLocation EndLoc,
    358                                            ArrayRef<ParmVarDecl *> Params,
    359                                            const bool IsConstexprSpecified) {
    360   QualType MethodType = MethodTypeInfo->getType();
    361   TemplateParameterList *TemplateParams =
    362             getGenericLambdaTemplateParameterList(getCurLambda(), *this);
    363   // If a lambda appears in a dependent context or is a generic lambda (has
    364   // template parameters) and has an 'auto' return type, deduce it to a
    365   // dependent type.
    366   if (Class->isDependentContext() || TemplateParams) {
    367     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
    368     QualType Result = FPT->getReturnType();
    369     if (Result->isUndeducedType()) {
    370       Result = SubstAutoType(Result, Context.DependentTy);
    371       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
    372                                            FPT->getExtProtoInfo());
    373     }
    374   }
    375 
    376   // C++11 [expr.prim.lambda]p5:
    377   //   The closure type for a lambda-expression has a public inline function
    378   //   call operator (13.5.4) whose parameters and return type are described by
    379   //   the lambda-expression's parameter-declaration-clause and
    380   //   trailing-return-type respectively.
    381   DeclarationName MethodName
    382     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
    383   DeclarationNameLoc MethodNameLoc;
    384   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
    385     = IntroducerRange.getBegin().getRawEncoding();
    386   MethodNameLoc.CXXOperatorName.EndOpNameLoc
    387     = IntroducerRange.getEnd().getRawEncoding();
    388   CXXMethodDecl *Method
    389     = CXXMethodDecl::Create(Context, Class, EndLoc,
    390                             DeclarationNameInfo(MethodName,
    391                                                 IntroducerRange.getBegin(),
    392                                                 MethodNameLoc),
    393                             MethodType, MethodTypeInfo,
    394                             SC_None,
    395                             /*isInline=*/true,
    396                             IsConstexprSpecified,
    397                             EndLoc);
    398   Method->setAccess(AS_public);
    399 
    400   // Temporarily set the lexical declaration context to the current
    401   // context, so that the Scope stack matches the lexical nesting.
    402   Method->setLexicalDeclContext(CurContext);
    403   // Create a function template if we have a template parameter list
    404   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
    405             FunctionTemplateDecl::Create(Context, Class,
    406                                          Method->getLocation(), MethodName,
    407                                          TemplateParams,
    408                                          Method) : nullptr;
    409   if (TemplateMethod) {
    410     TemplateMethod->setLexicalDeclContext(CurContext);
    411     TemplateMethod->setAccess(AS_public);
    412     Method->setDescribedFunctionTemplate(TemplateMethod);
    413   }
    414 
    415   // Add parameters.
    416   if (!Params.empty()) {
    417     Method->setParams(Params);
    418     CheckParmsForFunctionDef(Params,
    419                              /*CheckParameterNames=*/false);
    420 
    421     for (auto P : Method->parameters())
    422       P->setOwningFunction(Method);
    423   }
    424 
    425   Decl *ManglingContextDecl;
    426   if (MangleNumberingContext *MCtx =
    427           getCurrentMangleNumberContext(Class->getDeclContext(),
    428                                         ManglingContextDecl)) {
    429     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
    430     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
    431   }
    432 
    433   return Method;
    434 }
    435 
    436 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
    437                                         CXXMethodDecl *CallOperator,
    438                                         SourceRange IntroducerRange,
    439                                         LambdaCaptureDefault CaptureDefault,
    440                                         SourceLocation CaptureDefaultLoc,
    441                                         bool ExplicitParams,
    442                                         bool ExplicitResultType,
    443                                         bool Mutable) {
    444   LSI->CallOperator = CallOperator;
    445   CXXRecordDecl *LambdaClass = CallOperator->getParent();
    446   LSI->Lambda = LambdaClass;
    447   if (CaptureDefault == LCD_ByCopy)
    448     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
    449   else if (CaptureDefault == LCD_ByRef)
    450     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
    451   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
    452   LSI->IntroducerRange = IntroducerRange;
    453   LSI->ExplicitParams = ExplicitParams;
    454   LSI->Mutable = Mutable;
    455 
    456   if (ExplicitResultType) {
    457     LSI->ReturnType = CallOperator->getReturnType();
    458 
    459     if (!LSI->ReturnType->isDependentType() &&
    460         !LSI->ReturnType->isVoidType()) {
    461       if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
    462                               diag::err_lambda_incomplete_result)) {
    463         // Do nothing.
    464       }
    465     }
    466   } else {
    467     LSI->HasImplicitReturnType = true;
    468   }
    469 }
    470 
    471 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
    472   LSI->finishedExplicitCaptures();
    473 }
    474 
    475 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
    476   // Introduce our parameters into the function scope
    477   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
    478        p < NumParams; ++p) {
    479     ParmVarDecl *Param = CallOperator->getParamDecl(p);
    480 
    481     // If this has an identifier, add it to the scope stack.
    482     if (CurScope && Param->getIdentifier()) {
    483       CheckShadow(CurScope, Param);
    484 
    485       PushOnScopeChains(Param, CurScope);
    486     }
    487   }
    488 }
    489 
    490 /// If this expression is an enumerator-like expression of some type
    491 /// T, return the type T; otherwise, return null.
    492 ///
    493 /// Pointer comparisons on the result here should always work because
    494 /// it's derived from either the parent of an EnumConstantDecl
    495 /// (i.e. the definition) or the declaration returned by
    496 /// EnumType::getDecl() (i.e. the definition).
    497 static EnumDecl *findEnumForBlockReturn(Expr *E) {
    498   // An expression is an enumerator-like expression of type T if,
    499   // ignoring parens and parens-like expressions:
    500   E = E->IgnoreParens();
    501 
    502   //  - it is an enumerator whose enum type is T or
    503   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    504     if (EnumConstantDecl *D
    505           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
    506       return cast<EnumDecl>(D->getDeclContext());
    507     }
    508     return nullptr;
    509   }
    510 
    511   //  - it is a comma expression whose RHS is an enumerator-like
    512   //    expression of type T or
    513   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    514     if (BO->getOpcode() == BO_Comma)
    515       return findEnumForBlockReturn(BO->getRHS());
    516     return nullptr;
    517   }
    518 
    519   //  - it is a statement-expression whose value expression is an
    520   //    enumerator-like expression of type T or
    521   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    522     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
    523       return findEnumForBlockReturn(last);
    524     return nullptr;
    525   }
    526 
    527   //   - it is a ternary conditional operator (not the GNU ?:
    528   //     extension) whose second and third operands are
    529   //     enumerator-like expressions of type T or
    530   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    531     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
    532       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
    533         return ED;
    534     return nullptr;
    535   }
    536 
    537   // (implicitly:)
    538   //   - it is an implicit integral conversion applied to an
    539   //     enumerator-like expression of type T or
    540   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    541     // We can sometimes see integral conversions in valid
    542     // enumerator-like expressions.
    543     if (ICE->getCastKind() == CK_IntegralCast)
    544       return findEnumForBlockReturn(ICE->getSubExpr());
    545 
    546     // Otherwise, just rely on the type.
    547   }
    548 
    549   //   - it is an expression of that formal enum type.
    550   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
    551     return ET->getDecl();
    552   }
    553 
    554   // Otherwise, nope.
    555   return nullptr;
    556 }
    557 
    558 /// Attempt to find a type T for which the returned expression of the
    559 /// given statement is an enumerator-like expression of that type.
    560 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
    561   if (Expr *retValue = ret->getRetValue())
    562     return findEnumForBlockReturn(retValue);
    563   return nullptr;
    564 }
    565 
    566 /// Attempt to find a common type T for which all of the returned
    567 /// expressions in a block are enumerator-like expressions of that
    568 /// type.
    569 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
    570   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
    571 
    572   // Try to find one for the first return.
    573   EnumDecl *ED = findEnumForBlockReturn(*i);
    574   if (!ED) return nullptr;
    575 
    576   // Check that the rest of the returns have the same enum.
    577   for (++i; i != e; ++i) {
    578     if (findEnumForBlockReturn(*i) != ED)
    579       return nullptr;
    580   }
    581 
    582   // Never infer an anonymous enum type.
    583   if (!ED->hasNameForLinkage()) return nullptr;
    584 
    585   return ED;
    586 }
    587 
    588 /// Adjust the given return statements so that they formally return
    589 /// the given type.  It should require, at most, an IntegralCast.
    590 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
    591                                      QualType returnType) {
    592   for (ArrayRef<ReturnStmt*>::iterator
    593          i = returns.begin(), e = returns.end(); i != e; ++i) {
    594     ReturnStmt *ret = *i;
    595     Expr *retValue = ret->getRetValue();
    596     if (S.Context.hasSameType(retValue->getType(), returnType))
    597       continue;
    598 
    599     // Right now we only support integral fixup casts.
    600     assert(returnType->isIntegralOrUnscopedEnumerationType());
    601     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
    602 
    603     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
    604 
    605     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
    606     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
    607                                  E, /*base path*/ nullptr, VK_RValue);
    608     if (cleanups) {
    609       cleanups->setSubExpr(E);
    610     } else {
    611       ret->setRetValue(E);
    612     }
    613   }
    614 }
    615 
    616 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
    617   assert(CSI.HasImplicitReturnType);
    618   // If it was ever a placeholder, it had to been deduced to DependentTy.
    619   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
    620   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
    621          "lambda expressions use auto deduction in C++14 onwards");
    622 
    623   // C++ core issue 975:
    624   //   If a lambda-expression does not include a trailing-return-type,
    625   //   it is as if the trailing-return-type denotes the following type:
    626   //     - if there are no return statements in the compound-statement,
    627   //       or all return statements return either an expression of type
    628   //       void or no expression or braced-init-list, the type void;
    629   //     - otherwise, if all return statements return an expression
    630   //       and the types of the returned expressions after
    631   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
    632   //       array-to-pointer conversion (4.2 [conv.array]), and
    633   //       function-to-pointer conversion (4.3 [conv.func]) are the
    634   //       same, that common type;
    635   //     - otherwise, the program is ill-formed.
    636   //
    637   // C++ core issue 1048 additionally removes top-level cv-qualifiers
    638   // from the types of returned expressions to match the C++14 auto
    639   // deduction rules.
    640   //
    641   // In addition, in blocks in non-C++ modes, if all of the return
    642   // statements are enumerator-like expressions of some type T, where
    643   // T has a name for linkage, then we infer the return type of the
    644   // block to be that type.
    645 
    646   // First case: no return statements, implicit void return type.
    647   ASTContext &Ctx = getASTContext();
    648   if (CSI.Returns.empty()) {
    649     // It's possible there were simply no /valid/ return statements.
    650     // In this case, the first one we found may have at least given us a type.
    651     if (CSI.ReturnType.isNull())
    652       CSI.ReturnType = Ctx.VoidTy;
    653     return;
    654   }
    655 
    656   // Second case: at least one return statement has dependent type.
    657   // Delay type checking until instantiation.
    658   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
    659   if (CSI.ReturnType->isDependentType())
    660     return;
    661 
    662   // Try to apply the enum-fuzz rule.
    663   if (!getLangOpts().CPlusPlus) {
    664     assert(isa<BlockScopeInfo>(CSI));
    665     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
    666     if (ED) {
    667       CSI.ReturnType = Context.getTypeDeclType(ED);
    668       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
    669       return;
    670     }
    671   }
    672 
    673   // Third case: only one return statement. Don't bother doing extra work!
    674   SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
    675                                          E = CSI.Returns.end();
    676   if (I+1 == E)
    677     return;
    678 
    679   // General case: many return statements.
    680   // Check that they all have compatible return types.
    681 
    682   // We require the return types to strictly match here.
    683   // Note that we've already done the required promotions as part of
    684   // processing the return statement.
    685   for (; I != E; ++I) {
    686     const ReturnStmt *RS = *I;
    687     const Expr *RetE = RS->getRetValue();
    688 
    689     QualType ReturnType =
    690         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
    691     if (Context.getCanonicalFunctionResultType(ReturnType) ==
    692           Context.getCanonicalFunctionResultType(CSI.ReturnType))
    693       continue;
    694 
    695     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
    696     // TODO: It's possible that the *first* return is the divergent one.
    697     Diag(RS->getLocStart(),
    698          diag::err_typecheck_missing_return_type_incompatible)
    699       << ReturnType << CSI.ReturnType
    700       << isa<LambdaScopeInfo>(CSI);
    701     // Continue iterating so that we keep emitting diagnostics.
    702   }
    703 }
    704 
    705 QualType Sema::buildLambdaInitCaptureInitialization(SourceLocation Loc,
    706                                                     bool ByRef,
    707                                                     IdentifierInfo *Id,
    708                                                     bool IsDirectInit,
    709                                                     Expr *&Init) {
    710   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
    711   // deduce against.
    712   QualType DeductType = Context.getAutoDeductType();
    713   TypeLocBuilder TLB;
    714   TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
    715   if (ByRef) {
    716     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
    717     assert(!DeductType.isNull() && "can't build reference to auto");
    718     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
    719   }
    720   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
    721 
    722   // Deduce the type of the init capture.
    723   QualType DeducedType = deduceVarTypeFromInitializer(
    724       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
    725       SourceRange(Loc, Loc), IsDirectInit, Init);
    726   if (DeducedType.isNull())
    727     return QualType();
    728 
    729   // Are we a non-list direct initialization?
    730   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
    731 
    732   // Perform initialization analysis and ensure any implicit conversions
    733   // (such as lvalue-to-rvalue) are enforced.
    734   InitializedEntity Entity =
    735       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
    736   InitializationKind Kind =
    737       IsDirectInit
    738           ? (CXXDirectInit ? InitializationKind::CreateDirect(
    739                                  Loc, Init->getLocStart(), Init->getLocEnd())
    740                            : InitializationKind::CreateDirectList(Loc))
    741           : InitializationKind::CreateCopy(Loc, Init->getLocStart());
    742 
    743   MultiExprArg Args = Init;
    744   if (CXXDirectInit)
    745     Args =
    746         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
    747   QualType DclT;
    748   InitializationSequence InitSeq(*this, Entity, Kind, Args);
    749   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
    750 
    751   if (Result.isInvalid())
    752     return QualType();
    753   Init = Result.getAs<Expr>();
    754 
    755   // The init-capture initialization is a full-expression that must be
    756   // processed as one before we enter the declcontext of the lambda's
    757   // call-operator.
    758   Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
    759                                /*IsConstexpr*/ false,
    760                                /*IsLambdaInitCaptureInitalizer*/ true);
    761   if (Result.isInvalid())
    762     return QualType();
    763 
    764   Init = Result.getAs<Expr>();
    765   return DeducedType;
    766 }
    767 
    768 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
    769                                               QualType InitCaptureType,
    770                                               IdentifierInfo *Id,
    771                                               unsigned InitStyle, Expr *Init) {
    772   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
    773       Loc);
    774   // Create a dummy variable representing the init-capture. This is not actually
    775   // used as a variable, and only exists as a way to name and refer to the
    776   // init-capture.
    777   // FIXME: Pass in separate source locations for '&' and identifier.
    778   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
    779                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
    780   NewVD->setInitCapture(true);
    781   NewVD->setReferenced(true);
    782   // FIXME: Pass in a VarDecl::InitializationStyle.
    783   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
    784   NewVD->markUsed(Context);
    785   NewVD->setInit(Init);
    786   return NewVD;
    787 }
    788 
    789 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
    790   FieldDecl *Field = FieldDecl::Create(
    791       Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
    792       nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
    793       ICIS_NoInit);
    794   Field->setImplicit(true);
    795   Field->setAccess(AS_private);
    796   LSI->Lambda->addDecl(Field);
    797 
    798   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
    799                   /*isNested*/false, Var->getLocation(), SourceLocation(),
    800                   Var->getType(), Var->getInit());
    801   return Field;
    802 }
    803 
    804 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
    805                                         Declarator &ParamInfo,
    806                                         Scope *CurScope) {
    807   // Determine if we're within a context where we know that the lambda will
    808   // be dependent, because there are template parameters in scope.
    809   bool KnownDependent = false;
    810   LambdaScopeInfo *const LSI = getCurLambda();
    811   assert(LSI && "LambdaScopeInfo should be on stack!");
    812 
    813   // The lambda-expression's closure type might be dependent even if its
    814   // semantic context isn't, if it appears within a default argument of a
    815   // function template.
    816   if (CurScope->getTemplateParamParent())
    817     KnownDependent = true;
    818 
    819   // Determine the signature of the call operator.
    820   TypeSourceInfo *MethodTyInfo;
    821   bool ExplicitParams = true;
    822   bool ExplicitResultType = true;
    823   bool ContainsUnexpandedParameterPack = false;
    824   SourceLocation EndLoc;
    825   SmallVector<ParmVarDecl *, 8> Params;
    826   if (ParamInfo.getNumTypeObjects() == 0) {
    827     // C++11 [expr.prim.lambda]p4:
    828     //   If a lambda-expression does not include a lambda-declarator, it is as
    829     //   if the lambda-declarator were ().
    830     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
    831         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
    832     EPI.HasTrailingReturn = true;
    833     EPI.TypeQuals |= DeclSpec::TQ_const;
    834     // C++1y [expr.prim.lambda]:
    835     //   The lambda return type is 'auto', which is replaced by the
    836     //   trailing-return type if provided and/or deduced from 'return'
    837     //   statements
    838     // We don't do this before C++1y, because we don't support deduced return
    839     // types there.
    840     QualType DefaultTypeForNoTrailingReturn =
    841         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
    842                                   : Context.DependentTy;
    843     QualType MethodTy =
    844         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
    845     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
    846     ExplicitParams = false;
    847     ExplicitResultType = false;
    848     EndLoc = Intro.Range.getEnd();
    849   } else {
    850     assert(ParamInfo.isFunctionDeclarator() &&
    851            "lambda-declarator is a function");
    852     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
    853 
    854     // C++11 [expr.prim.lambda]p5:
    855     //   This function call operator is declared const (9.3.1) if and only if
    856     //   the lambda-expression's parameter-declaration-clause is not followed
    857     //   by mutable. It is neither virtual nor declared volatile. [...]
    858     if (!FTI.hasMutableQualifier())
    859       FTI.TypeQuals |= DeclSpec::TQ_const;
    860 
    861     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
    862     assert(MethodTyInfo && "no type from lambda-declarator");
    863     EndLoc = ParamInfo.getSourceRange().getEnd();
    864 
    865     ExplicitResultType = FTI.hasTrailingReturnType();
    866 
    867     if (FTIHasNonVoidParameters(FTI)) {
    868       Params.reserve(FTI.NumParams);
    869       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
    870         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
    871     }
    872 
    873     // Check for unexpanded parameter packs in the method type.
    874     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
    875       ContainsUnexpandedParameterPack = true;
    876   }
    877 
    878   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
    879                                                  KnownDependent, Intro.Default);
    880 
    881   CXXMethodDecl *Method =
    882       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
    883                             ParamInfo.getDeclSpec().isConstexprSpecified());
    884   if (ExplicitParams)
    885     CheckCXXDefaultArguments(Method);
    886 
    887   // Attributes on the lambda apply to the method.
    888   ProcessDeclAttributes(CurScope, Method, ParamInfo);
    889 
    890   // Introduce the function call operator as the current declaration context.
    891   PushDeclContext(CurScope, Method);
    892 
    893   // Build the lambda scope.
    894   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
    895                    ExplicitParams, ExplicitResultType, !Method->isConst());
    896 
    897   // C++11 [expr.prim.lambda]p9:
    898   //   A lambda-expression whose smallest enclosing scope is a block scope is a
    899   //   local lambda expression; any other lambda expression shall not have a
    900   //   capture-default or simple-capture in its lambda-introducer.
    901   //
    902   // For simple-captures, this is covered by the check below that any named
    903   // entity is a variable that can be captured.
    904   //
    905   // For DR1632, we also allow a capture-default in any context where we can
    906   // odr-use 'this' (in particular, in a default initializer for a non-static
    907   // data member).
    908   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
    909       (getCurrentThisType().isNull() ||
    910        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
    911                            /*BuildAndDiagnose*/false)))
    912     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
    913 
    914   // Distinct capture names, for diagnostics.
    915   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
    916 
    917   // Handle explicit captures.
    918   SourceLocation PrevCaptureLoc
    919     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
    920   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
    921        PrevCaptureLoc = C->Loc, ++C) {
    922     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
    923       if (C->Kind == LCK_StarThis)
    924         Diag(C->Loc, !getLangOpts().CPlusPlus1z
    925                              ? diag::ext_star_this_lambda_capture_cxx1z
    926                              : diag::warn_cxx14_compat_star_this_lambda_capture);
    927 
    928       // C++11 [expr.prim.lambda]p8:
    929       //   An identifier or this shall not appear more than once in a
    930       //   lambda-capture.
    931       if (LSI->isCXXThisCaptured()) {
    932         Diag(C->Loc, diag::err_capture_more_than_once)
    933             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
    934             << FixItHint::CreateRemoval(
    935                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
    936         continue;
    937       }
    938 
    939       // C++1z [expr.prim.lambda]p8:
    940       //  If a lambda-capture includes a capture-default that is =, each
    941       //  simple-capture of that lambda-capture shall be of the form "&
    942       //  identifier" or "* this". [ Note: The form [&,this] is redundant but
    943       //  accepted for compatibility with ISO C++14. --end note ]
    944       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) {
    945         Diag(C->Loc, diag::err_this_capture_with_copy_default)
    946             << FixItHint::CreateRemoval(
    947                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
    948         continue;
    949       }
    950 
    951       // C++11 [expr.prim.lambda]p12:
    952       //   If this is captured by a local lambda expression, its nearest
    953       //   enclosing function shall be a non-static member function.
    954       QualType ThisCaptureType = getCurrentThisType();
    955       if (ThisCaptureType.isNull()) {
    956         Diag(C->Loc, diag::err_this_capture) << true;
    957         continue;
    958       }
    959 
    960       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
    961                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
    962                           C->Kind == LCK_StarThis);
    963       continue;
    964     }
    965 
    966     assert(C->Id && "missing identifier for capture");
    967 
    968     if (C->Init.isInvalid())
    969       continue;
    970 
    971     VarDecl *Var = nullptr;
    972     if (C->Init.isUsable()) {
    973       Diag(C->Loc, getLangOpts().CPlusPlus14
    974                        ? diag::warn_cxx11_compat_init_capture
    975                        : diag::ext_init_capture);
    976 
    977       if (C->Init.get()->containsUnexpandedParameterPack())
    978         ContainsUnexpandedParameterPack = true;
    979       // If the initializer expression is usable, but the InitCaptureType
    980       // is not, then an error has occurred - so ignore the capture for now.
    981       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
    982       // FIXME: we should create the init capture variable and mark it invalid
    983       // in this case.
    984       if (C->InitCaptureType.get().isNull())
    985         continue;
    986 
    987       unsigned InitStyle;
    988       switch (C->InitKind) {
    989       case LambdaCaptureInitKind::NoInit:
    990         llvm_unreachable("not an init-capture?");
    991       case LambdaCaptureInitKind::CopyInit:
    992         InitStyle = VarDecl::CInit;
    993         break;
    994       case LambdaCaptureInitKind::DirectInit:
    995         InitStyle = VarDecl::CallInit;
    996         break;
    997       case LambdaCaptureInitKind::ListInit:
    998         InitStyle = VarDecl::ListInit;
    999         break;
   1000       }
   1001       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
   1002                                            C->Id, InitStyle, C->Init.get());
   1003       // C++1y [expr.prim.lambda]p11:
   1004       //   An init-capture behaves as if it declares and explicitly
   1005       //   captures a variable [...] whose declarative region is the
   1006       //   lambda-expression's compound-statement
   1007       if (Var)
   1008         PushOnScopeChains(Var, CurScope, false);
   1009     } else {
   1010       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
   1011              "init capture has valid but null init?");
   1012 
   1013       // C++11 [expr.prim.lambda]p8:
   1014       //   If a lambda-capture includes a capture-default that is &, the
   1015       //   identifiers in the lambda-capture shall not be preceded by &.
   1016       //   If a lambda-capture includes a capture-default that is =, [...]
   1017       //   each identifier it contains shall be preceded by &.
   1018       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
   1019         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
   1020             << FixItHint::CreateRemoval(
   1021                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1022         continue;
   1023       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
   1024         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
   1025             << FixItHint::CreateRemoval(
   1026                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1027         continue;
   1028       }
   1029 
   1030       // C++11 [expr.prim.lambda]p10:
   1031       //   The identifiers in a capture-list are looked up using the usual
   1032       //   rules for unqualified name lookup (3.4.1)
   1033       DeclarationNameInfo Name(C->Id, C->Loc);
   1034       LookupResult R(*this, Name, LookupOrdinaryName);
   1035       LookupName(R, CurScope);
   1036       if (R.isAmbiguous())
   1037         continue;
   1038       if (R.empty()) {
   1039         // FIXME: Disable corrections that would add qualification?
   1040         CXXScopeSpec ScopeSpec;
   1041         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
   1042                                 llvm::make_unique<DeclFilterCCC<VarDecl>>()))
   1043           continue;
   1044       }
   1045 
   1046       Var = R.getAsSingle<VarDecl>();
   1047       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
   1048         continue;
   1049     }
   1050 
   1051     // C++11 [expr.prim.lambda]p8:
   1052     //   An identifier or this shall not appear more than once in a
   1053     //   lambda-capture.
   1054     if (!CaptureNames.insert(C->Id).second) {
   1055       if (Var && LSI->isCaptured(Var)) {
   1056         Diag(C->Loc, diag::err_capture_more_than_once)
   1057             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
   1058             << FixItHint::CreateRemoval(
   1059                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1060       } else
   1061         // Previous capture captured something different (one or both was
   1062         // an init-cpature): no fixit.
   1063         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
   1064       continue;
   1065     }
   1066 
   1067     // C++11 [expr.prim.lambda]p10:
   1068     //   [...] each such lookup shall find a variable with automatic storage
   1069     //   duration declared in the reaching scope of the local lambda expression.
   1070     // Note that the 'reaching scope' check happens in tryCaptureVariable().
   1071     if (!Var) {
   1072       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
   1073       continue;
   1074     }
   1075 
   1076     // Ignore invalid decls; they'll just confuse the code later.
   1077     if (Var->isInvalidDecl())
   1078       continue;
   1079 
   1080     if (!Var->hasLocalStorage()) {
   1081       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
   1082       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
   1083       continue;
   1084     }
   1085 
   1086     // C++11 [expr.prim.lambda]p23:
   1087     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
   1088     SourceLocation EllipsisLoc;
   1089     if (C->EllipsisLoc.isValid()) {
   1090       if (Var->isParameterPack()) {
   1091         EllipsisLoc = C->EllipsisLoc;
   1092       } else {
   1093         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   1094           << SourceRange(C->Loc);
   1095 
   1096         // Just ignore the ellipsis.
   1097       }
   1098     } else if (Var->isParameterPack()) {
   1099       ContainsUnexpandedParameterPack = true;
   1100     }
   1101 
   1102     if (C->Init.isUsable()) {
   1103       buildInitCaptureField(LSI, Var);
   1104     } else {
   1105       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
   1106                                                    TryCapture_ExplicitByVal;
   1107       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
   1108     }
   1109   }
   1110   finishLambdaExplicitCaptures(LSI);
   1111 
   1112   LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1113 
   1114   // Add lambda parameters into scope.
   1115   addLambdaParameters(Method, CurScope);
   1116 
   1117   // Enter a new evaluation context to insulate the lambda from any
   1118   // cleanups from the enclosing full-expression.
   1119   PushExpressionEvaluationContext(PotentiallyEvaluated);
   1120 }
   1121 
   1122 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
   1123                             bool IsInstantiation) {
   1124   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
   1125 
   1126   // Leave the expression-evaluation context.
   1127   DiscardCleanupsInEvaluationContext();
   1128   PopExpressionEvaluationContext();
   1129 
   1130   // Leave the context of the lambda.
   1131   if (!IsInstantiation)
   1132     PopDeclContext();
   1133 
   1134   // Finalize the lambda.
   1135   CXXRecordDecl *Class = LSI->Lambda;
   1136   Class->setInvalidDecl();
   1137   SmallVector<Decl*, 4> Fields(Class->fields());
   1138   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
   1139               SourceLocation(), nullptr);
   1140   CheckCompletedCXXClass(Class);
   1141 
   1142   PopFunctionScopeInfo();
   1143 }
   1144 
   1145 /// \brief Add a lambda's conversion to function pointer, as described in
   1146 /// C++11 [expr.prim.lambda]p6.
   1147 static void addFunctionPointerConversion(Sema &S,
   1148                                          SourceRange IntroducerRange,
   1149                                          CXXRecordDecl *Class,
   1150                                          CXXMethodDecl *CallOperator) {
   1151   // This conversion is explicitly disabled if the lambda's function has
   1152   // pass_object_size attributes on any of its parameters.
   1153   if (llvm::any_of(CallOperator->parameters(),
   1154                    std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>)))
   1155     return;
   1156 
   1157   // Add the conversion to function pointer.
   1158   const FunctionProtoType *CallOpProto =
   1159       CallOperator->getType()->getAs<FunctionProtoType>();
   1160   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
   1161       CallOpProto->getExtProtoInfo();
   1162   QualType PtrToFunctionTy;
   1163   QualType InvokerFunctionTy;
   1164   {
   1165     FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
   1166     CallingConv CC = S.Context.getDefaultCallingConvention(
   1167         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
   1168     InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
   1169     InvokerExtInfo.TypeQuals = 0;
   1170     assert(InvokerExtInfo.RefQualifier == RQ_None &&
   1171         "Lambda's call operator should not have a reference qualifier");
   1172     InvokerFunctionTy =
   1173         S.Context.getFunctionType(CallOpProto->getReturnType(),
   1174                                   CallOpProto->getParamTypes(), InvokerExtInfo);
   1175     PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
   1176   }
   1177 
   1178   // Create the type of the conversion function.
   1179   FunctionProtoType::ExtProtoInfo ConvExtInfo(
   1180       S.Context.getDefaultCallingConvention(
   1181       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
   1182   // The conversion function is always const.
   1183   ConvExtInfo.TypeQuals = Qualifiers::Const;
   1184   QualType ConvTy =
   1185       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
   1186 
   1187   SourceLocation Loc = IntroducerRange.getBegin();
   1188   DeclarationName ConversionName
   1189     = S.Context.DeclarationNames.getCXXConversionFunctionName(
   1190         S.Context.getCanonicalType(PtrToFunctionTy));
   1191   DeclarationNameLoc ConvNameLoc;
   1192   // Construct a TypeSourceInfo for the conversion function, and wire
   1193   // all the parameters appropriately for the FunctionProtoTypeLoc
   1194   // so that everything works during transformation/instantiation of
   1195   // generic lambdas.
   1196   // The main reason for wiring up the parameters of the conversion
   1197   // function with that of the call operator is so that constructs
   1198   // like the following work:
   1199   // auto L = [](auto b) {                <-- 1
   1200   //   return [](auto a) -> decltype(a) { <-- 2
   1201   //      return a;
   1202   //   };
   1203   // };
   1204   // int (*fp)(int) = L(5);
   1205   // Because the trailing return type can contain DeclRefExprs that refer
   1206   // to the original call operator's variables, we hijack the call
   1207   // operators ParmVarDecls below.
   1208   TypeSourceInfo *ConvNamePtrToFunctionTSI =
   1209       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
   1210   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
   1211 
   1212   // The conversion function is a conversion to a pointer-to-function.
   1213   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
   1214   FunctionProtoTypeLoc ConvTL =
   1215       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
   1216   // Get the result of the conversion function which is a pointer-to-function.
   1217   PointerTypeLoc PtrToFunctionTL =
   1218       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
   1219   // Do the same for the TypeSourceInfo that is used to name the conversion
   1220   // operator.
   1221   PointerTypeLoc ConvNamePtrToFunctionTL =
   1222       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
   1223 
   1224   // Get the underlying function types that the conversion function will
   1225   // be converting to (should match the type of the call operator).
   1226   FunctionProtoTypeLoc CallOpConvTL =
   1227       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
   1228   FunctionProtoTypeLoc CallOpConvNameTL =
   1229     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
   1230 
   1231   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
   1232   // These parameter's are essentially used to transform the name and
   1233   // the type of the conversion operator.  By using the same parameters
   1234   // as the call operator's we don't have to fix any back references that
   1235   // the trailing return type of the call operator's uses (such as
   1236   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
   1237   // - we can simply use the return type of the call operator, and
   1238   // everything should work.
   1239   SmallVector<ParmVarDecl *, 4> InvokerParams;
   1240   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
   1241     ParmVarDecl *From = CallOperator->getParamDecl(I);
   1242 
   1243     InvokerParams.push_back(ParmVarDecl::Create(S.Context,
   1244            // Temporarily add to the TU. This is set to the invoker below.
   1245                                              S.Context.getTranslationUnitDecl(),
   1246                                              From->getLocStart(),
   1247                                              From->getLocation(),
   1248                                              From->getIdentifier(),
   1249                                              From->getType(),
   1250                                              From->getTypeSourceInfo(),
   1251                                              From->getStorageClass(),
   1252                                              /*DefaultArg=*/nullptr));
   1253     CallOpConvTL.setParam(I, From);
   1254     CallOpConvNameTL.setParam(I, From);
   1255   }
   1256 
   1257   CXXConversionDecl *Conversion
   1258     = CXXConversionDecl::Create(S.Context, Class, Loc,
   1259                                 DeclarationNameInfo(ConversionName,
   1260                                   Loc, ConvNameLoc),
   1261                                 ConvTy,
   1262                                 ConvTSI,
   1263                                 /*isInline=*/true, /*isExplicit=*/false,
   1264                                 /*isConstexpr=*/false,
   1265                                 CallOperator->getBody()->getLocEnd());
   1266   Conversion->setAccess(AS_public);
   1267   Conversion->setImplicit(true);
   1268 
   1269   if (Class->isGenericLambda()) {
   1270     // Create a template version of the conversion operator, using the template
   1271     // parameter list of the function call operator.
   1272     FunctionTemplateDecl *TemplateCallOperator =
   1273             CallOperator->getDescribedFunctionTemplate();
   1274     FunctionTemplateDecl *ConversionTemplate =
   1275                   FunctionTemplateDecl::Create(S.Context, Class,
   1276                                       Loc, ConversionName,
   1277                                       TemplateCallOperator->getTemplateParameters(),
   1278                                       Conversion);
   1279     ConversionTemplate->setAccess(AS_public);
   1280     ConversionTemplate->setImplicit(true);
   1281     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
   1282     Class->addDecl(ConversionTemplate);
   1283   } else
   1284     Class->addDecl(Conversion);
   1285   // Add a non-static member function that will be the result of
   1286   // the conversion with a certain unique ID.
   1287   DeclarationName InvokerName = &S.Context.Idents.get(
   1288                                                  getLambdaStaticInvokerName());
   1289   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
   1290   // we should get a prebuilt TrivialTypeSourceInfo from Context
   1291   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
   1292   // then rewire the parameters accordingly, by hoisting up the InvokeParams
   1293   // loop below and then use its Params to set Invoke->setParams(...) below.
   1294   // This would avoid the 'const' qualifier of the calloperator from
   1295   // contaminating the type of the invoker, which is currently adjusted
   1296   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
   1297   // trailing return type of the invoker would require a visitor to rebuild
   1298   // the trailing return type and adjusting all back DeclRefExpr's to refer
   1299   // to the new static invoker parameters - not the call operator's.
   1300   CXXMethodDecl *Invoke
   1301     = CXXMethodDecl::Create(S.Context, Class, Loc,
   1302                             DeclarationNameInfo(InvokerName, Loc),
   1303                             InvokerFunctionTy,
   1304                             CallOperator->getTypeSourceInfo(),
   1305                             SC_Static, /*IsInline=*/true,
   1306                             /*IsConstexpr=*/false,
   1307                             CallOperator->getBody()->getLocEnd());
   1308   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
   1309     InvokerParams[I]->setOwningFunction(Invoke);
   1310   Invoke->setParams(InvokerParams);
   1311   Invoke->setAccess(AS_private);
   1312   Invoke->setImplicit(true);
   1313   if (Class->isGenericLambda()) {
   1314     FunctionTemplateDecl *TemplateCallOperator =
   1315             CallOperator->getDescribedFunctionTemplate();
   1316     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
   1317                           S.Context, Class, Loc, InvokerName,
   1318                           TemplateCallOperator->getTemplateParameters(),
   1319                           Invoke);
   1320     StaticInvokerTemplate->setAccess(AS_private);
   1321     StaticInvokerTemplate->setImplicit(true);
   1322     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
   1323     Class->addDecl(StaticInvokerTemplate);
   1324   } else
   1325     Class->addDecl(Invoke);
   1326 }
   1327 
   1328 /// \brief Add a lambda's conversion to block pointer.
   1329 static void addBlockPointerConversion(Sema &S,
   1330                                       SourceRange IntroducerRange,
   1331                                       CXXRecordDecl *Class,
   1332                                       CXXMethodDecl *CallOperator) {
   1333   const FunctionProtoType *Proto =
   1334       CallOperator->getType()->getAs<FunctionProtoType>();
   1335 
   1336   // The function type inside the block pointer type is the same as the call
   1337   // operator with some tweaks. The calling convention is the default free
   1338   // function convention, and the type qualifications are lost.
   1339   FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
   1340   BlockEPI.ExtInfo =
   1341       BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
   1342           Proto->isVariadic(), /*IsCXXMethod=*/false));
   1343   BlockEPI.TypeQuals = 0;
   1344   QualType FunctionTy = S.Context.getFunctionType(
   1345       Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
   1346   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
   1347 
   1348   FunctionProtoType::ExtProtoInfo ConversionEPI(
   1349       S.Context.getDefaultCallingConvention(
   1350           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
   1351   ConversionEPI.TypeQuals = Qualifiers::Const;
   1352   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
   1353 
   1354   SourceLocation Loc = IntroducerRange.getBegin();
   1355   DeclarationName Name
   1356     = S.Context.DeclarationNames.getCXXConversionFunctionName(
   1357         S.Context.getCanonicalType(BlockPtrTy));
   1358   DeclarationNameLoc NameLoc;
   1359   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
   1360   CXXConversionDecl *Conversion
   1361     = CXXConversionDecl::Create(S.Context, Class, Loc,
   1362                                 DeclarationNameInfo(Name, Loc, NameLoc),
   1363                                 ConvTy,
   1364                                 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
   1365                                 /*isInline=*/true, /*isExplicit=*/false,
   1366                                 /*isConstexpr=*/false,
   1367                                 CallOperator->getBody()->getLocEnd());
   1368   Conversion->setAccess(AS_public);
   1369   Conversion->setImplicit(true);
   1370   Class->addDecl(Conversion);
   1371 }
   1372 
   1373 static ExprResult performLambdaVarCaptureInitialization(
   1374     Sema &S, LambdaScopeInfo::Capture &Capture,
   1375     FieldDecl *Field,
   1376     SmallVectorImpl<VarDecl *> &ArrayIndexVars,
   1377     SmallVectorImpl<unsigned> &ArrayIndexStarts) {
   1378   assert(Capture.isVariableCapture() && "not a variable capture");
   1379 
   1380   auto *Var = Capture.getVariable();
   1381   SourceLocation Loc = Capture.getLocation();
   1382 
   1383   // C++11 [expr.prim.lambda]p21:
   1384   //   When the lambda-expression is evaluated, the entities that
   1385   //   are captured by copy are used to direct-initialize each
   1386   //   corresponding non-static data member of the resulting closure
   1387   //   object. (For array members, the array elements are
   1388   //   direct-initialized in increasing subscript order.) These
   1389   //   initializations are performed in the (unspecified) order in
   1390   //   which the non-static data members are declared.
   1391 
   1392   // C++ [expr.prim.lambda]p12:
   1393   //   An entity captured by a lambda-expression is odr-used (3.2) in
   1394   //   the scope containing the lambda-expression.
   1395   ExprResult RefResult = S.BuildDeclarationNameExpr(
   1396       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
   1397   if (RefResult.isInvalid())
   1398     return ExprError();
   1399   Expr *Ref = RefResult.get();
   1400 
   1401   QualType FieldType = Field->getType();
   1402 
   1403   // When the variable has array type, create index variables for each
   1404   // dimension of the array. We use these index variables to subscript
   1405   // the source array, and other clients (e.g., CodeGen) will perform
   1406   // the necessary iteration with these index variables.
   1407   //
   1408   // FIXME: This is dumb. Add a proper AST representation for array
   1409   // copy-construction and use it here.
   1410   SmallVector<VarDecl *, 4> IndexVariables;
   1411   QualType BaseType = FieldType;
   1412   QualType SizeType = S.Context.getSizeType();
   1413   ArrayIndexStarts.push_back(ArrayIndexVars.size());
   1414   while (const ConstantArrayType *Array
   1415                         = S.Context.getAsConstantArrayType(BaseType)) {
   1416     // Create the iteration variable for this array index.
   1417     IdentifierInfo *IterationVarName = nullptr;
   1418     {
   1419       SmallString<8> Str;
   1420       llvm::raw_svector_ostream OS(Str);
   1421       OS << "__i" << IndexVariables.size();
   1422       IterationVarName = &S.Context.Idents.get(OS.str());
   1423     }
   1424     VarDecl *IterationVar = VarDecl::Create(
   1425         S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
   1426         S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
   1427     IterationVar->setImplicit();
   1428     IndexVariables.push_back(IterationVar);
   1429     ArrayIndexVars.push_back(IterationVar);
   1430 
   1431     // Create a reference to the iteration variable.
   1432     ExprResult IterationVarRef =
   1433         S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
   1434     assert(!IterationVarRef.isInvalid() &&
   1435            "Reference to invented variable cannot fail!");
   1436     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
   1437     assert(!IterationVarRef.isInvalid() &&
   1438            "Conversion of invented variable cannot fail!");
   1439 
   1440     // Subscript the array with this iteration variable.
   1441     ExprResult Subscript =
   1442         S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
   1443     if (Subscript.isInvalid())
   1444       return ExprError();
   1445 
   1446     Ref = Subscript.get();
   1447     BaseType = Array->getElementType();
   1448   }
   1449 
   1450   // Construct the entity that we will be initializing. For an array, this
   1451   // will be first element in the array, which may require several levels
   1452   // of array-subscript entities.
   1453   SmallVector<InitializedEntity, 4> Entities;
   1454   Entities.reserve(1 + IndexVariables.size());
   1455   Entities.push_back(InitializedEntity::InitializeLambdaCapture(
   1456       Var->getIdentifier(), FieldType, Loc));
   1457   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   1458     Entities.push_back(
   1459         InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
   1460 
   1461   InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
   1462   InitializationSequence Init(S, Entities.back(), InitKind, Ref);
   1463   return Init.Perform(S, Entities.back(), InitKind, Ref);
   1464 }
   1465 
   1466 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
   1467                                  Scope *CurScope) {
   1468   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
   1469   ActOnFinishFunctionBody(LSI.CallOperator, Body);
   1470   return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
   1471 }
   1472 
   1473 static LambdaCaptureDefault
   1474 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
   1475   switch (ICS) {
   1476   case CapturingScopeInfo::ImpCap_None:
   1477     return LCD_None;
   1478   case CapturingScopeInfo::ImpCap_LambdaByval:
   1479     return LCD_ByCopy;
   1480   case CapturingScopeInfo::ImpCap_CapturedRegion:
   1481   case CapturingScopeInfo::ImpCap_LambdaByref:
   1482     return LCD_ByRef;
   1483   case CapturingScopeInfo::ImpCap_Block:
   1484     llvm_unreachable("block capture in lambda");
   1485   }
   1486   llvm_unreachable("Unknown implicit capture style");
   1487 }
   1488 
   1489 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
   1490                                  LambdaScopeInfo *LSI) {
   1491   // Collect information from the lambda scope.
   1492   SmallVector<LambdaCapture, 4> Captures;
   1493   SmallVector<Expr *, 4> CaptureInits;
   1494   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
   1495   LambdaCaptureDefault CaptureDefault =
   1496       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
   1497   CXXRecordDecl *Class;
   1498   CXXMethodDecl *CallOperator;
   1499   SourceRange IntroducerRange;
   1500   bool ExplicitParams;
   1501   bool ExplicitResultType;
   1502   CleanupInfo LambdaCleanup;
   1503   bool ContainsUnexpandedParameterPack;
   1504   SmallVector<VarDecl *, 4> ArrayIndexVars;
   1505   SmallVector<unsigned, 4> ArrayIndexStarts;
   1506   {
   1507     CallOperator = LSI->CallOperator;
   1508     Class = LSI->Lambda;
   1509     IntroducerRange = LSI->IntroducerRange;
   1510     ExplicitParams = LSI->ExplicitParams;
   1511     ExplicitResultType = !LSI->HasImplicitReturnType;
   1512     LambdaCleanup = LSI->Cleanup;
   1513     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
   1514 
   1515     CallOperator->setLexicalDeclContext(Class);
   1516     Decl *TemplateOrNonTemplateCallOperatorDecl =
   1517         CallOperator->getDescribedFunctionTemplate()
   1518         ? CallOperator->getDescribedFunctionTemplate()
   1519         : cast<Decl>(CallOperator);
   1520 
   1521     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
   1522     Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
   1523 
   1524     PopExpressionEvaluationContext();
   1525 
   1526     // Translate captures.
   1527     auto CurField = Class->field_begin();
   1528     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
   1529       LambdaScopeInfo::Capture From = LSI->Captures[I];
   1530       assert(!From.isBlockCapture() && "Cannot capture __block variables");
   1531       bool IsImplicit = I >= LSI->NumExplicitCaptures;
   1532 
   1533       // Handle 'this' capture.
   1534       if (From.isThisCapture()) {
   1535         Captures.push_back(
   1536             LambdaCapture(From.getLocation(), IsImplicit,
   1537                           From.isCopyCapture() ? LCK_StarThis : LCK_This));
   1538         CaptureInits.push_back(From.getInitExpr());
   1539         ArrayIndexStarts.push_back(ArrayIndexVars.size());
   1540         continue;
   1541       }
   1542       if (From.isVLATypeCapture()) {
   1543         Captures.push_back(
   1544             LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
   1545         CaptureInits.push_back(nullptr);
   1546         ArrayIndexStarts.push_back(ArrayIndexVars.size());
   1547         continue;
   1548       }
   1549 
   1550       VarDecl *Var = From.getVariable();
   1551       LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
   1552       Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
   1553                                        Var, From.getEllipsisLoc()));
   1554       Expr *Init = From.getInitExpr();
   1555       if (!Init) {
   1556         auto InitResult = performLambdaVarCaptureInitialization(
   1557             *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
   1558         if (InitResult.isInvalid())
   1559           return ExprError();
   1560         Init = InitResult.get();
   1561       } else {
   1562         ArrayIndexStarts.push_back(ArrayIndexVars.size());
   1563       }
   1564       CaptureInits.push_back(Init);
   1565     }
   1566 
   1567     // C++11 [expr.prim.lambda]p6:
   1568     //   The closure type for a lambda-expression with no lambda-capture
   1569     //   has a public non-virtual non-explicit const conversion function
   1570     //   to pointer to function having the same parameter and return
   1571     //   types as the closure type's function call operator.
   1572     if (Captures.empty() && CaptureDefault == LCD_None)
   1573       addFunctionPointerConversion(*this, IntroducerRange, Class,
   1574                                    CallOperator);
   1575 
   1576     // Objective-C++:
   1577     //   The closure type for a lambda-expression has a public non-virtual
   1578     //   non-explicit const conversion function to a block pointer having the
   1579     //   same parameter and return types as the closure type's function call
   1580     //   operator.
   1581     // FIXME: Fix generic lambda to block conversions.
   1582     if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
   1583                                               !Class->isGenericLambda())
   1584       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
   1585 
   1586     // Finalize the lambda class.
   1587     SmallVector<Decl*, 4> Fields(Class->fields());
   1588     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
   1589                 SourceLocation(), nullptr);
   1590     CheckCompletedCXXClass(Class);
   1591   }
   1592 
   1593   Cleanup.mergeFrom(LambdaCleanup);
   1594 
   1595   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
   1596                                           CaptureDefault, CaptureDefaultLoc,
   1597                                           Captures,
   1598                                           ExplicitParams, ExplicitResultType,
   1599                                           CaptureInits, ArrayIndexVars,
   1600                                           ArrayIndexStarts, EndLoc,
   1601                                           ContainsUnexpandedParameterPack);
   1602   // If the lambda expression's call operator is not explicitly marked constexpr
   1603   // and we are not in a dependent context, analyze the call operator to infer
   1604   // its constexpr-ness, supressing diagnostics while doing so.
   1605   if (getLangOpts().CPlusPlus1z && !CallOperator->isInvalidDecl() &&
   1606       !CallOperator->isConstexpr() &&
   1607       !Class->getDeclContext()->isDependentContext()) {
   1608     TentativeAnalysisScope DiagnosticScopeGuard(*this);
   1609     CallOperator->setConstexpr(
   1610         CheckConstexprFunctionDecl(CallOperator) &&
   1611         CheckConstexprFunctionBody(CallOperator, CallOperator->getBody()));
   1612   }
   1613 
   1614   if (!CurContext->isDependentContext()) {
   1615     switch (ExprEvalContexts.back().Context) {
   1616     // C++11 [expr.prim.lambda]p2:
   1617     //   A lambda-expression shall not appear in an unevaluated operand
   1618     //   (Clause 5).
   1619     case Unevaluated:
   1620     case UnevaluatedAbstract:
   1621     // C++1y [expr.const]p2:
   1622     //   A conditional-expression e is a core constant expression unless the
   1623     //   evaluation of e, following the rules of the abstract machine, would
   1624     //   evaluate [...] a lambda-expression.
   1625     //
   1626     // This is technically incorrect, there are some constant evaluated contexts
   1627     // where this should be allowed.  We should probably fix this when DR1607 is
   1628     // ratified, it lays out the exact set of conditions where we shouldn't
   1629     // allow a lambda-expression.
   1630     case ConstantEvaluated:
   1631       // We don't actually diagnose this case immediately, because we
   1632       // could be within a context where we might find out later that
   1633       // the expression is potentially evaluated (e.g., for typeid).
   1634       ExprEvalContexts.back().Lambdas.push_back(Lambda);
   1635       break;
   1636 
   1637     case DiscardedStatement:
   1638     case PotentiallyEvaluated:
   1639     case PotentiallyEvaluatedIfUsed:
   1640       break;
   1641     }
   1642   }
   1643 
   1644   return MaybeBindToTemporary(Lambda);
   1645 }
   1646 
   1647 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
   1648                                                SourceLocation ConvLocation,
   1649                                                CXXConversionDecl *Conv,
   1650                                                Expr *Src) {
   1651   // Make sure that the lambda call operator is marked used.
   1652   CXXRecordDecl *Lambda = Conv->getParent();
   1653   CXXMethodDecl *CallOperator
   1654     = cast<CXXMethodDecl>(
   1655         Lambda->lookup(
   1656           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
   1657   CallOperator->setReferenced();
   1658   CallOperator->markUsed(Context);
   1659 
   1660   ExprResult Init = PerformCopyInitialization(
   1661                       InitializedEntity::InitializeBlock(ConvLocation,
   1662                                                          Src->getType(),
   1663                                                          /*NRVO=*/false),
   1664                       CurrentLocation, Src);
   1665   if (!Init.isInvalid())
   1666     Init = ActOnFinishFullExpr(Init.get());
   1667 
   1668   if (Init.isInvalid())
   1669     return ExprError();
   1670 
   1671   // Create the new block to be returned.
   1672   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
   1673 
   1674   // Set the type information.
   1675   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
   1676   Block->setIsVariadic(CallOperator->isVariadic());
   1677   Block->setBlockMissingReturnType(false);
   1678 
   1679   // Add parameters.
   1680   SmallVector<ParmVarDecl *, 4> BlockParams;
   1681   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
   1682     ParmVarDecl *From = CallOperator->getParamDecl(I);
   1683     BlockParams.push_back(ParmVarDecl::Create(Context, Block,
   1684                                               From->getLocStart(),
   1685                                               From->getLocation(),
   1686                                               From->getIdentifier(),
   1687                                               From->getType(),
   1688                                               From->getTypeSourceInfo(),
   1689                                               From->getStorageClass(),
   1690                                               /*DefaultArg=*/nullptr));
   1691   }
   1692   Block->setParams(BlockParams);
   1693 
   1694   Block->setIsConversionFromLambda(true);
   1695 
   1696   // Add capture. The capture uses a fake variable, which doesn't correspond
   1697   // to any actual memory location. However, the initializer copy-initializes
   1698   // the lambda object.
   1699   TypeSourceInfo *CapVarTSI =
   1700       Context.getTrivialTypeSourceInfo(Src->getType());
   1701   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
   1702                                     ConvLocation, nullptr,
   1703                                     Src->getType(), CapVarTSI,
   1704                                     SC_None);
   1705   BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
   1706                              /*Nested=*/false, /*Copy=*/Init.get());
   1707   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
   1708 
   1709   // Add a fake function body to the block. IR generation is responsible
   1710   // for filling in the actual body, which cannot be expressed as an AST.
   1711   Block->setBody(new (Context) CompoundStmt(ConvLocation));
   1712 
   1713   // Create the block literal expression.
   1714   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
   1715   ExprCleanupObjects.push_back(Block);
   1716   Cleanup.setExprNeedsCleanups(true);
   1717 
   1718   return BuildBlock;
   1719 }
   1720