1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for C++ lambda expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "clang/Sema/DeclSpec.h" 14 #include "TypeLocBuilder.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Sema/Initialization.h" 19 #include "clang/Sema/Lookup.h" 20 #include "clang/Sema/Scope.h" 21 #include "clang/Sema/ScopeInfo.h" 22 #include "clang/Sema/SemaInternal.h" 23 #include "clang/Sema/SemaLambda.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 assert( 70 isa<clang::sema::LambdaScopeInfo>( 71 FunctionScopes[FunctionScopes.size() - 1]) && 72 "The function on the top of sema's function-info stack must be a lambda"); 73 74 // If VarToCapture is null, we are attempting to capture 'this'. 75 const bool IsCapturingThis = !VarToCapture; 76 const bool IsCapturingVariable = !IsCapturingThis; 77 78 // Start with the current lambda at the top of the stack (highest index). 79 unsigned CurScopeIndex = FunctionScopes.size() - 1; 80 DeclContext *EnclosingDC = 81 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 82 83 do { 84 const clang::sema::LambdaScopeInfo *LSI = 85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 86 // IF we have climbed down to an intervening enclosing lambda that contains 87 // the variable declaration - it obviously can/must not capture the 88 // variable. 89 // Since its enclosing DC is dependent, all the lambdas between it and the 90 // innermost nested lambda are dependent (otherwise we wouldn't have 91 // arrived here) - so we don't yet have a lambda that can capture the 92 // variable. 93 if (IsCapturingVariable && 94 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 95 return NoLambdaIsCaptureReady; 96 97 // For an enclosing lambda to be capture ready for an entity, all 98 // intervening lambda's have to be able to capture that entity. If even 99 // one of the intervening lambda's is not capable of capturing the entity 100 // then no enclosing lambda can ever capture that entity. 101 // For e.g. 102 // const int x = 10; 103 // [=](auto a) { #1 104 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 105 // [=](auto c) { #3 106 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 107 // }; }; }; 108 // If they do not have a default implicit capture, check to see 109 // if the entity has already been explicitly captured. 110 // If even a single dependent enclosing lambda lacks the capability 111 // to ever capture this variable, there is no further enclosing 112 // non-dependent lambda that can capture this variable. 113 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 114 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 115 return NoLambdaIsCaptureReady; 116 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 117 return NoLambdaIsCaptureReady; 118 } 119 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 120 121 assert(CurScopeIndex); 122 --CurScopeIndex; 123 } while (!EnclosingDC->isTranslationUnit() && 124 EnclosingDC->isDependentContext() && 125 isLambdaCallOperator(EnclosingDC)); 126 127 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 128 // If the enclosingDC is not dependent, then the immediately nested lambda 129 // (one index above) is capture-ready. 130 if (!EnclosingDC->isDependentContext()) 131 return CurScopeIndex + 1; 132 return NoLambdaIsCaptureReady; 133 } 134 135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest 136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 137 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 138 /// If successful, returns the index into Sema's FunctionScopeInfo stack 139 /// of the capture-capable lambda's LambdaScopeInfo. 140 /// 141 /// Given the current stack of lambdas being processed by Sema and 142 /// the variable of interest, to identify the nearest enclosing lambda (to the 143 /// current lambda at the top of the stack) that can truly capture 144 /// a variable, it has to have the following two properties: 145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 146 /// - climb down the stack (i.e. starting from the innermost and examining 147 /// each outer lambda step by step) checking if each enclosing 148 /// lambda can either implicitly or explicitly capture the variable. 149 /// Record the first such lambda that is enclosed in a non-dependent 150 /// context. If no such lambda currently exists return failure. 151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 152 /// capture the variable by checking all its enclosing lambdas: 153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 154 /// identified above in 'a' can also capture the variable (this is done 155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 156 /// 'this' by passing in the index of the Lambda identified in step 'a') 157 /// 158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 160 /// is at the top of the stack. 161 /// 162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 163 /// 164 /// 165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 167 /// which is capture-capable. If the return value evaluates to 'false' then 168 /// no lambda is capture-capable for \p VarToCapture. 169 170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 171 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 172 VarDecl *VarToCapture, Sema &S) { 173 174 const Optional<unsigned> NoLambdaIsCaptureCapable; 175 176 const Optional<unsigned> OptionalStackIndex = 177 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 178 VarToCapture); 179 if (!OptionalStackIndex) 180 return NoLambdaIsCaptureCapable; 181 182 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 183 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 184 S.getCurGenericLambda()) && 185 "The capture ready lambda for a potential capture can only be the " 186 "current lambda if it is a generic lambda"); 187 188 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 189 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 190 191 // If VarToCapture is null, we are attempting to capture 'this' 192 const bool IsCapturingThis = !VarToCapture; 193 const bool IsCapturingVariable = !IsCapturingThis; 194 195 if (IsCapturingVariable) { 196 // Check if the capture-ready lambda can truly capture the variable, by 197 // checking whether all enclosing lambdas of the capture-ready lambda allow 198 // the capture - i.e. make sure it is capture-capable. 199 QualType CaptureType, DeclRefType; 200 const bool CanCaptureVariable = 201 !S.tryCaptureVariable(VarToCapture, 202 /*ExprVarIsUsedInLoc*/ SourceLocation(), 203 clang::Sema::TryCapture_Implicit, 204 /*EllipsisLoc*/ SourceLocation(), 205 /*BuildAndDiagnose*/ false, CaptureType, 206 DeclRefType, &IndexOfCaptureReadyLambda); 207 if (!CanCaptureVariable) 208 return NoLambdaIsCaptureCapable; 209 } else { 210 // Check if the capture-ready lambda can truly capture 'this' by checking 211 // whether all enclosing lambdas of the capture-ready lambda can capture 212 // 'this'. 213 const bool CanCaptureThis = 214 !S.CheckCXXThisCapture( 215 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 216 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 217 &IndexOfCaptureReadyLambda); 218 if (!CanCaptureThis) 219 return NoLambdaIsCaptureCapable; 220 } 221 return IndexOfCaptureReadyLambda; 222 } 223 224 static inline TemplateParameterList * 225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 226 if (LSI->GLTemplateParameterList) 227 return LSI->GLTemplateParameterList; 228 229 if (!LSI->AutoTemplateParams.empty()) { 230 SourceRange IntroRange = LSI->IntroducerRange; 231 SourceLocation LAngleLoc = IntroRange.getBegin(); 232 SourceLocation RAngleLoc = IntroRange.getEnd(); 233 LSI->GLTemplateParameterList = TemplateParameterList::Create( 234 SemaRef.Context, 235 /*Template kw loc*/ SourceLocation(), LAngleLoc, 236 llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(), 237 LSI->AutoTemplateParams.size()), 238 RAngleLoc); 239 } 240 return LSI->GLTemplateParameterList; 241 } 242 243 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 244 TypeSourceInfo *Info, 245 bool KnownDependent, 246 LambdaCaptureDefault CaptureDefault) { 247 DeclContext *DC = CurContext; 248 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 249 DC = DC->getParent(); 250 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 251 *this); 252 // Start constructing the lambda class. 253 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 254 IntroducerRange.getBegin(), 255 KnownDependent, 256 IsGenericLambda, 257 CaptureDefault); 258 DC->addDecl(Class); 259 260 return Class; 261 } 262 263 /// \brief Determine whether the given context is or is enclosed in an inline 264 /// function. 265 static bool isInInlineFunction(const DeclContext *DC) { 266 while (!DC->isFileContext()) { 267 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 268 if (FD->isInlined()) 269 return true; 270 271 DC = DC->getLexicalParent(); 272 } 273 274 return false; 275 } 276 277 MangleNumberingContext * 278 Sema::getCurrentMangleNumberContext(const DeclContext *DC, 279 Decl *&ManglingContextDecl) { 280 // Compute the context for allocating mangling numbers in the current 281 // expression, if the ABI requires them. 282 ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 283 284 enum ContextKind { 285 Normal, 286 DefaultArgument, 287 DataMember, 288 StaticDataMember 289 } Kind = Normal; 290 291 // Default arguments of member function parameters that appear in a class 292 // definition, as well as the initializers of data members, receive special 293 // treatment. Identify them. 294 if (ManglingContextDecl) { 295 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 296 if (const DeclContext *LexicalDC 297 = Param->getDeclContext()->getLexicalParent()) 298 if (LexicalDC->isRecord()) 299 Kind = DefaultArgument; 300 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 301 if (Var->getDeclContext()->isRecord()) 302 Kind = StaticDataMember; 303 } else if (isa<FieldDecl>(ManglingContextDecl)) { 304 Kind = DataMember; 305 } 306 } 307 308 // Itanium ABI [5.1.7]: 309 // In the following contexts [...] the one-definition rule requires closure 310 // types in different translation units to "correspond": 311 bool IsInNonspecializedTemplate = 312 !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext(); 313 switch (Kind) { 314 case Normal: 315 // -- the bodies of non-exported nonspecialized template functions 316 // -- the bodies of inline functions 317 if ((IsInNonspecializedTemplate && 318 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 319 isInInlineFunction(CurContext)) { 320 ManglingContextDecl = nullptr; 321 return &Context.getManglingNumberContext(DC); 322 } 323 324 ManglingContextDecl = nullptr; 325 return nullptr; 326 327 case StaticDataMember: 328 // -- the initializers of nonspecialized static members of template classes 329 if (!IsInNonspecializedTemplate) { 330 ManglingContextDecl = nullptr; 331 return nullptr; 332 } 333 // Fall through to get the current context. 334 335 case DataMember: 336 // -- the in-class initializers of class members 337 case DefaultArgument: 338 // -- default arguments appearing in class definitions 339 return &ExprEvalContexts.back().getMangleNumberingContext(Context); 340 } 341 342 llvm_unreachable("unexpected context"); 343 } 344 345 MangleNumberingContext & 346 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext( 347 ASTContext &Ctx) { 348 assert(ManglingContextDecl && "Need to have a context declaration"); 349 if (!MangleNumbering) 350 MangleNumbering = Ctx.createMangleNumberingContext(); 351 return *MangleNumbering; 352 } 353 354 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 355 SourceRange IntroducerRange, 356 TypeSourceInfo *MethodTypeInfo, 357 SourceLocation EndLoc, 358 ArrayRef<ParmVarDecl *> Params, 359 const bool IsConstexprSpecified) { 360 QualType MethodType = MethodTypeInfo->getType(); 361 TemplateParameterList *TemplateParams = 362 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 363 // If a lambda appears in a dependent context or is a generic lambda (has 364 // template parameters) and has an 'auto' return type, deduce it to a 365 // dependent type. 366 if (Class->isDependentContext() || TemplateParams) { 367 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 368 QualType Result = FPT->getReturnType(); 369 if (Result->isUndeducedType()) { 370 Result = SubstAutoType(Result, Context.DependentTy); 371 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 372 FPT->getExtProtoInfo()); 373 } 374 } 375 376 // C++11 [expr.prim.lambda]p5: 377 // The closure type for a lambda-expression has a public inline function 378 // call operator (13.5.4) whose parameters and return type are described by 379 // the lambda-expression's parameter-declaration-clause and 380 // trailing-return-type respectively. 381 DeclarationName MethodName 382 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 383 DeclarationNameLoc MethodNameLoc; 384 MethodNameLoc.CXXOperatorName.BeginOpNameLoc 385 = IntroducerRange.getBegin().getRawEncoding(); 386 MethodNameLoc.CXXOperatorName.EndOpNameLoc 387 = IntroducerRange.getEnd().getRawEncoding(); 388 CXXMethodDecl *Method 389 = CXXMethodDecl::Create(Context, Class, EndLoc, 390 DeclarationNameInfo(MethodName, 391 IntroducerRange.getBegin(), 392 MethodNameLoc), 393 MethodType, MethodTypeInfo, 394 SC_None, 395 /*isInline=*/true, 396 IsConstexprSpecified, 397 EndLoc); 398 Method->setAccess(AS_public); 399 400 // Temporarily set the lexical declaration context to the current 401 // context, so that the Scope stack matches the lexical nesting. 402 Method->setLexicalDeclContext(CurContext); 403 // Create a function template if we have a template parameter list 404 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 405 FunctionTemplateDecl::Create(Context, Class, 406 Method->getLocation(), MethodName, 407 TemplateParams, 408 Method) : nullptr; 409 if (TemplateMethod) { 410 TemplateMethod->setLexicalDeclContext(CurContext); 411 TemplateMethod->setAccess(AS_public); 412 Method->setDescribedFunctionTemplate(TemplateMethod); 413 } 414 415 // Add parameters. 416 if (!Params.empty()) { 417 Method->setParams(Params); 418 CheckParmsForFunctionDef(Params, 419 /*CheckParameterNames=*/false); 420 421 for (auto P : Method->parameters()) 422 P->setOwningFunction(Method); 423 } 424 425 Decl *ManglingContextDecl; 426 if (MangleNumberingContext *MCtx = 427 getCurrentMangleNumberContext(Class->getDeclContext(), 428 ManglingContextDecl)) { 429 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 430 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl); 431 } 432 433 return Method; 434 } 435 436 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 437 CXXMethodDecl *CallOperator, 438 SourceRange IntroducerRange, 439 LambdaCaptureDefault CaptureDefault, 440 SourceLocation CaptureDefaultLoc, 441 bool ExplicitParams, 442 bool ExplicitResultType, 443 bool Mutable) { 444 LSI->CallOperator = CallOperator; 445 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 446 LSI->Lambda = LambdaClass; 447 if (CaptureDefault == LCD_ByCopy) 448 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 449 else if (CaptureDefault == LCD_ByRef) 450 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 451 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 452 LSI->IntroducerRange = IntroducerRange; 453 LSI->ExplicitParams = ExplicitParams; 454 LSI->Mutable = Mutable; 455 456 if (ExplicitResultType) { 457 LSI->ReturnType = CallOperator->getReturnType(); 458 459 if (!LSI->ReturnType->isDependentType() && 460 !LSI->ReturnType->isVoidType()) { 461 if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType, 462 diag::err_lambda_incomplete_result)) { 463 // Do nothing. 464 } 465 } 466 } else { 467 LSI->HasImplicitReturnType = true; 468 } 469 } 470 471 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 472 LSI->finishedExplicitCaptures(); 473 } 474 475 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) { 476 // Introduce our parameters into the function scope 477 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 478 p < NumParams; ++p) { 479 ParmVarDecl *Param = CallOperator->getParamDecl(p); 480 481 // If this has an identifier, add it to the scope stack. 482 if (CurScope && Param->getIdentifier()) { 483 CheckShadow(CurScope, Param); 484 485 PushOnScopeChains(Param, CurScope); 486 } 487 } 488 } 489 490 /// If this expression is an enumerator-like expression of some type 491 /// T, return the type T; otherwise, return null. 492 /// 493 /// Pointer comparisons on the result here should always work because 494 /// it's derived from either the parent of an EnumConstantDecl 495 /// (i.e. the definition) or the declaration returned by 496 /// EnumType::getDecl() (i.e. the definition). 497 static EnumDecl *findEnumForBlockReturn(Expr *E) { 498 // An expression is an enumerator-like expression of type T if, 499 // ignoring parens and parens-like expressions: 500 E = E->IgnoreParens(); 501 502 // - it is an enumerator whose enum type is T or 503 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 504 if (EnumConstantDecl *D 505 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 506 return cast<EnumDecl>(D->getDeclContext()); 507 } 508 return nullptr; 509 } 510 511 // - it is a comma expression whose RHS is an enumerator-like 512 // expression of type T or 513 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 514 if (BO->getOpcode() == BO_Comma) 515 return findEnumForBlockReturn(BO->getRHS()); 516 return nullptr; 517 } 518 519 // - it is a statement-expression whose value expression is an 520 // enumerator-like expression of type T or 521 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 522 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 523 return findEnumForBlockReturn(last); 524 return nullptr; 525 } 526 527 // - it is a ternary conditional operator (not the GNU ?: 528 // extension) whose second and third operands are 529 // enumerator-like expressions of type T or 530 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 531 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 532 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 533 return ED; 534 return nullptr; 535 } 536 537 // (implicitly:) 538 // - it is an implicit integral conversion applied to an 539 // enumerator-like expression of type T or 540 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 541 // We can sometimes see integral conversions in valid 542 // enumerator-like expressions. 543 if (ICE->getCastKind() == CK_IntegralCast) 544 return findEnumForBlockReturn(ICE->getSubExpr()); 545 546 // Otherwise, just rely on the type. 547 } 548 549 // - it is an expression of that formal enum type. 550 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 551 return ET->getDecl(); 552 } 553 554 // Otherwise, nope. 555 return nullptr; 556 } 557 558 /// Attempt to find a type T for which the returned expression of the 559 /// given statement is an enumerator-like expression of that type. 560 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 561 if (Expr *retValue = ret->getRetValue()) 562 return findEnumForBlockReturn(retValue); 563 return nullptr; 564 } 565 566 /// Attempt to find a common type T for which all of the returned 567 /// expressions in a block are enumerator-like expressions of that 568 /// type. 569 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 570 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 571 572 // Try to find one for the first return. 573 EnumDecl *ED = findEnumForBlockReturn(*i); 574 if (!ED) return nullptr; 575 576 // Check that the rest of the returns have the same enum. 577 for (++i; i != e; ++i) { 578 if (findEnumForBlockReturn(*i) != ED) 579 return nullptr; 580 } 581 582 // Never infer an anonymous enum type. 583 if (!ED->hasNameForLinkage()) return nullptr; 584 585 return ED; 586 } 587 588 /// Adjust the given return statements so that they formally return 589 /// the given type. It should require, at most, an IntegralCast. 590 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 591 QualType returnType) { 592 for (ArrayRef<ReturnStmt*>::iterator 593 i = returns.begin(), e = returns.end(); i != e; ++i) { 594 ReturnStmt *ret = *i; 595 Expr *retValue = ret->getRetValue(); 596 if (S.Context.hasSameType(retValue->getType(), returnType)) 597 continue; 598 599 // Right now we only support integral fixup casts. 600 assert(returnType->isIntegralOrUnscopedEnumerationType()); 601 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 602 603 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 604 605 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 606 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, 607 E, /*base path*/ nullptr, VK_RValue); 608 if (cleanups) { 609 cleanups->setSubExpr(E); 610 } else { 611 ret->setRetValue(E); 612 } 613 } 614 } 615 616 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 617 assert(CSI.HasImplicitReturnType); 618 // If it was ever a placeholder, it had to been deduced to DependentTy. 619 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 620 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) && 621 "lambda expressions use auto deduction in C++14 onwards"); 622 623 // C++ core issue 975: 624 // If a lambda-expression does not include a trailing-return-type, 625 // it is as if the trailing-return-type denotes the following type: 626 // - if there are no return statements in the compound-statement, 627 // or all return statements return either an expression of type 628 // void or no expression or braced-init-list, the type void; 629 // - otherwise, if all return statements return an expression 630 // and the types of the returned expressions after 631 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 632 // array-to-pointer conversion (4.2 [conv.array]), and 633 // function-to-pointer conversion (4.3 [conv.func]) are the 634 // same, that common type; 635 // - otherwise, the program is ill-formed. 636 // 637 // C++ core issue 1048 additionally removes top-level cv-qualifiers 638 // from the types of returned expressions to match the C++14 auto 639 // deduction rules. 640 // 641 // In addition, in blocks in non-C++ modes, if all of the return 642 // statements are enumerator-like expressions of some type T, where 643 // T has a name for linkage, then we infer the return type of the 644 // block to be that type. 645 646 // First case: no return statements, implicit void return type. 647 ASTContext &Ctx = getASTContext(); 648 if (CSI.Returns.empty()) { 649 // It's possible there were simply no /valid/ return statements. 650 // In this case, the first one we found may have at least given us a type. 651 if (CSI.ReturnType.isNull()) 652 CSI.ReturnType = Ctx.VoidTy; 653 return; 654 } 655 656 // Second case: at least one return statement has dependent type. 657 // Delay type checking until instantiation. 658 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 659 if (CSI.ReturnType->isDependentType()) 660 return; 661 662 // Try to apply the enum-fuzz rule. 663 if (!getLangOpts().CPlusPlus) { 664 assert(isa<BlockScopeInfo>(CSI)); 665 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 666 if (ED) { 667 CSI.ReturnType = Context.getTypeDeclType(ED); 668 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 669 return; 670 } 671 } 672 673 // Third case: only one return statement. Don't bother doing extra work! 674 SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(), 675 E = CSI.Returns.end(); 676 if (I+1 == E) 677 return; 678 679 // General case: many return statements. 680 // Check that they all have compatible return types. 681 682 // We require the return types to strictly match here. 683 // Note that we've already done the required promotions as part of 684 // processing the return statement. 685 for (; I != E; ++I) { 686 const ReturnStmt *RS = *I; 687 const Expr *RetE = RS->getRetValue(); 688 689 QualType ReturnType = 690 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType(); 691 if (Context.getCanonicalFunctionResultType(ReturnType) == 692 Context.getCanonicalFunctionResultType(CSI.ReturnType)) 693 continue; 694 695 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 696 // TODO: It's possible that the *first* return is the divergent one. 697 Diag(RS->getLocStart(), 698 diag::err_typecheck_missing_return_type_incompatible) 699 << ReturnType << CSI.ReturnType 700 << isa<LambdaScopeInfo>(CSI); 701 // Continue iterating so that we keep emitting diagnostics. 702 } 703 } 704 705 QualType Sema::buildLambdaInitCaptureInitialization(SourceLocation Loc, 706 bool ByRef, 707 IdentifierInfo *Id, 708 bool IsDirectInit, 709 Expr *&Init) { 710 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 711 // deduce against. 712 QualType DeductType = Context.getAutoDeductType(); 713 TypeLocBuilder TLB; 714 TLB.pushTypeSpec(DeductType).setNameLoc(Loc); 715 if (ByRef) { 716 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 717 assert(!DeductType.isNull() && "can't build reference to auto"); 718 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 719 } 720 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 721 722 // Deduce the type of the init capture. 723 QualType DeducedType = deduceVarTypeFromInitializer( 724 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI, 725 SourceRange(Loc, Loc), IsDirectInit, Init); 726 if (DeducedType.isNull()) 727 return QualType(); 728 729 // Are we a non-list direct initialization? 730 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 731 732 // Perform initialization analysis and ensure any implicit conversions 733 // (such as lvalue-to-rvalue) are enforced. 734 InitializedEntity Entity = 735 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 736 InitializationKind Kind = 737 IsDirectInit 738 ? (CXXDirectInit ? InitializationKind::CreateDirect( 739 Loc, Init->getLocStart(), Init->getLocEnd()) 740 : InitializationKind::CreateDirectList(Loc)) 741 : InitializationKind::CreateCopy(Loc, Init->getLocStart()); 742 743 MultiExprArg Args = Init; 744 if (CXXDirectInit) 745 Args = 746 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 747 QualType DclT; 748 InitializationSequence InitSeq(*this, Entity, Kind, Args); 749 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 750 751 if (Result.isInvalid()) 752 return QualType(); 753 Init = Result.getAs<Expr>(); 754 755 // The init-capture initialization is a full-expression that must be 756 // processed as one before we enter the declcontext of the lambda's 757 // call-operator. 758 Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false, 759 /*IsConstexpr*/ false, 760 /*IsLambdaInitCaptureInitalizer*/ true); 761 if (Result.isInvalid()) 762 return QualType(); 763 764 Init = Result.getAs<Expr>(); 765 return DeducedType; 766 } 767 768 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 769 QualType InitCaptureType, 770 IdentifierInfo *Id, 771 unsigned InitStyle, Expr *Init) { 772 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, 773 Loc); 774 // Create a dummy variable representing the init-capture. This is not actually 775 // used as a variable, and only exists as a way to name and refer to the 776 // init-capture. 777 // FIXME: Pass in separate source locations for '&' and identifier. 778 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 779 Loc, Id, InitCaptureType, TSI, SC_Auto); 780 NewVD->setInitCapture(true); 781 NewVD->setReferenced(true); 782 // FIXME: Pass in a VarDecl::InitializationStyle. 783 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle)); 784 NewVD->markUsed(Context); 785 NewVD->setInit(Init); 786 return NewVD; 787 } 788 789 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) { 790 FieldDecl *Field = FieldDecl::Create( 791 Context, LSI->Lambda, Var->getLocation(), Var->getLocation(), 792 nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false, 793 ICIS_NoInit); 794 Field->setImplicit(true); 795 Field->setAccess(AS_private); 796 LSI->Lambda->addDecl(Field); 797 798 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 799 /*isNested*/false, Var->getLocation(), SourceLocation(), 800 Var->getType(), Var->getInit()); 801 return Field; 802 } 803 804 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 805 Declarator &ParamInfo, 806 Scope *CurScope) { 807 // Determine if we're within a context where we know that the lambda will 808 // be dependent, because there are template parameters in scope. 809 bool KnownDependent = false; 810 LambdaScopeInfo *const LSI = getCurLambda(); 811 assert(LSI && "LambdaScopeInfo should be on stack!"); 812 813 // The lambda-expression's closure type might be dependent even if its 814 // semantic context isn't, if it appears within a default argument of a 815 // function template. 816 if (CurScope->getTemplateParamParent()) 817 KnownDependent = true; 818 819 // Determine the signature of the call operator. 820 TypeSourceInfo *MethodTyInfo; 821 bool ExplicitParams = true; 822 bool ExplicitResultType = true; 823 bool ContainsUnexpandedParameterPack = false; 824 SourceLocation EndLoc; 825 SmallVector<ParmVarDecl *, 8> Params; 826 if (ParamInfo.getNumTypeObjects() == 0) { 827 // C++11 [expr.prim.lambda]p4: 828 // If a lambda-expression does not include a lambda-declarator, it is as 829 // if the lambda-declarator were (). 830 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 831 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 832 EPI.HasTrailingReturn = true; 833 EPI.TypeQuals |= DeclSpec::TQ_const; 834 // C++1y [expr.prim.lambda]: 835 // The lambda return type is 'auto', which is replaced by the 836 // trailing-return type if provided and/or deduced from 'return' 837 // statements 838 // We don't do this before C++1y, because we don't support deduced return 839 // types there. 840 QualType DefaultTypeForNoTrailingReturn = 841 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType() 842 : Context.DependentTy; 843 QualType MethodTy = 844 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 845 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 846 ExplicitParams = false; 847 ExplicitResultType = false; 848 EndLoc = Intro.Range.getEnd(); 849 } else { 850 assert(ParamInfo.isFunctionDeclarator() && 851 "lambda-declarator is a function"); 852 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 853 854 // C++11 [expr.prim.lambda]p5: 855 // This function call operator is declared const (9.3.1) if and only if 856 // the lambda-expression's parameter-declaration-clause is not followed 857 // by mutable. It is neither virtual nor declared volatile. [...] 858 if (!FTI.hasMutableQualifier()) 859 FTI.TypeQuals |= DeclSpec::TQ_const; 860 861 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 862 assert(MethodTyInfo && "no type from lambda-declarator"); 863 EndLoc = ParamInfo.getSourceRange().getEnd(); 864 865 ExplicitResultType = FTI.hasTrailingReturnType(); 866 867 if (FTIHasNonVoidParameters(FTI)) { 868 Params.reserve(FTI.NumParams); 869 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 870 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 871 } 872 873 // Check for unexpanded parameter packs in the method type. 874 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 875 ContainsUnexpandedParameterPack = true; 876 } 877 878 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 879 KnownDependent, Intro.Default); 880 881 CXXMethodDecl *Method = 882 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params, 883 ParamInfo.getDeclSpec().isConstexprSpecified()); 884 if (ExplicitParams) 885 CheckCXXDefaultArguments(Method); 886 887 // Attributes on the lambda apply to the method. 888 ProcessDeclAttributes(CurScope, Method, ParamInfo); 889 890 // Introduce the function call operator as the current declaration context. 891 PushDeclContext(CurScope, Method); 892 893 // Build the lambda scope. 894 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc, 895 ExplicitParams, ExplicitResultType, !Method->isConst()); 896 897 // C++11 [expr.prim.lambda]p9: 898 // A lambda-expression whose smallest enclosing scope is a block scope is a 899 // local lambda expression; any other lambda expression shall not have a 900 // capture-default or simple-capture in its lambda-introducer. 901 // 902 // For simple-captures, this is covered by the check below that any named 903 // entity is a variable that can be captured. 904 // 905 // For DR1632, we also allow a capture-default in any context where we can 906 // odr-use 'this' (in particular, in a default initializer for a non-static 907 // data member). 908 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 909 (getCurrentThisType().isNull() || 910 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 911 /*BuildAndDiagnose*/false))) 912 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 913 914 // Distinct capture names, for diagnostics. 915 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 916 917 // Handle explicit captures. 918 SourceLocation PrevCaptureLoc 919 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 920 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 921 PrevCaptureLoc = C->Loc, ++C) { 922 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) { 923 if (C->Kind == LCK_StarThis) 924 Diag(C->Loc, !getLangOpts().CPlusPlus1z 925 ? diag::ext_star_this_lambda_capture_cxx1z 926 : diag::warn_cxx14_compat_star_this_lambda_capture); 927 928 // C++11 [expr.prim.lambda]p8: 929 // An identifier or this shall not appear more than once in a 930 // lambda-capture. 931 if (LSI->isCXXThisCaptured()) { 932 Diag(C->Loc, diag::err_capture_more_than_once) 933 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 934 << FixItHint::CreateRemoval( 935 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 936 continue; 937 } 938 939 // C++1z [expr.prim.lambda]p8: 940 // If a lambda-capture includes a capture-default that is =, each 941 // simple-capture of that lambda-capture shall be of the form "& 942 // identifier" or "* this". [ Note: The form [&,this] is redundant but 943 // accepted for compatibility with ISO C++14. --end note ] 944 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) { 945 Diag(C->Loc, diag::err_this_capture_with_copy_default) 946 << FixItHint::CreateRemoval( 947 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 948 continue; 949 } 950 951 // C++11 [expr.prim.lambda]p12: 952 // If this is captured by a local lambda expression, its nearest 953 // enclosing function shall be a non-static member function. 954 QualType ThisCaptureType = getCurrentThisType(); 955 if (ThisCaptureType.isNull()) { 956 Diag(C->Loc, diag::err_this_capture) << true; 957 continue; 958 } 959 960 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true, 961 /*FunctionScopeIndexToStopAtPtr*/ nullptr, 962 C->Kind == LCK_StarThis); 963 continue; 964 } 965 966 assert(C->Id && "missing identifier for capture"); 967 968 if (C->Init.isInvalid()) 969 continue; 970 971 VarDecl *Var = nullptr; 972 if (C->Init.isUsable()) { 973 Diag(C->Loc, getLangOpts().CPlusPlus14 974 ? diag::warn_cxx11_compat_init_capture 975 : diag::ext_init_capture); 976 977 if (C->Init.get()->containsUnexpandedParameterPack()) 978 ContainsUnexpandedParameterPack = true; 979 // If the initializer expression is usable, but the InitCaptureType 980 // is not, then an error has occurred - so ignore the capture for now. 981 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 982 // FIXME: we should create the init capture variable and mark it invalid 983 // in this case. 984 if (C->InitCaptureType.get().isNull()) 985 continue; 986 987 unsigned InitStyle; 988 switch (C->InitKind) { 989 case LambdaCaptureInitKind::NoInit: 990 llvm_unreachable("not an init-capture?"); 991 case LambdaCaptureInitKind::CopyInit: 992 InitStyle = VarDecl::CInit; 993 break; 994 case LambdaCaptureInitKind::DirectInit: 995 InitStyle = VarDecl::CallInit; 996 break; 997 case LambdaCaptureInitKind::ListInit: 998 InitStyle = VarDecl::ListInit; 999 break; 1000 } 1001 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1002 C->Id, InitStyle, C->Init.get()); 1003 // C++1y [expr.prim.lambda]p11: 1004 // An init-capture behaves as if it declares and explicitly 1005 // captures a variable [...] whose declarative region is the 1006 // lambda-expression's compound-statement 1007 if (Var) 1008 PushOnScopeChains(Var, CurScope, false); 1009 } else { 1010 assert(C->InitKind == LambdaCaptureInitKind::NoInit && 1011 "init capture has valid but null init?"); 1012 1013 // C++11 [expr.prim.lambda]p8: 1014 // If a lambda-capture includes a capture-default that is &, the 1015 // identifiers in the lambda-capture shall not be preceded by &. 1016 // If a lambda-capture includes a capture-default that is =, [...] 1017 // each identifier it contains shall be preceded by &. 1018 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1019 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1020 << FixItHint::CreateRemoval( 1021 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1022 continue; 1023 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1024 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1025 << FixItHint::CreateRemoval( 1026 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1027 continue; 1028 } 1029 1030 // C++11 [expr.prim.lambda]p10: 1031 // The identifiers in a capture-list are looked up using the usual 1032 // rules for unqualified name lookup (3.4.1) 1033 DeclarationNameInfo Name(C->Id, C->Loc); 1034 LookupResult R(*this, Name, LookupOrdinaryName); 1035 LookupName(R, CurScope); 1036 if (R.isAmbiguous()) 1037 continue; 1038 if (R.empty()) { 1039 // FIXME: Disable corrections that would add qualification? 1040 CXXScopeSpec ScopeSpec; 1041 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, 1042 llvm::make_unique<DeclFilterCCC<VarDecl>>())) 1043 continue; 1044 } 1045 1046 Var = R.getAsSingle<VarDecl>(); 1047 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1048 continue; 1049 } 1050 1051 // C++11 [expr.prim.lambda]p8: 1052 // An identifier or this shall not appear more than once in a 1053 // lambda-capture. 1054 if (!CaptureNames.insert(C->Id).second) { 1055 if (Var && LSI->isCaptured(Var)) { 1056 Diag(C->Loc, diag::err_capture_more_than_once) 1057 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1058 << FixItHint::CreateRemoval( 1059 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1060 } else 1061 // Previous capture captured something different (one or both was 1062 // an init-cpature): no fixit. 1063 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1064 continue; 1065 } 1066 1067 // C++11 [expr.prim.lambda]p10: 1068 // [...] each such lookup shall find a variable with automatic storage 1069 // duration declared in the reaching scope of the local lambda expression. 1070 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1071 if (!Var) { 1072 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1073 continue; 1074 } 1075 1076 // Ignore invalid decls; they'll just confuse the code later. 1077 if (Var->isInvalidDecl()) 1078 continue; 1079 1080 if (!Var->hasLocalStorage()) { 1081 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1082 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1083 continue; 1084 } 1085 1086 // C++11 [expr.prim.lambda]p23: 1087 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1088 SourceLocation EllipsisLoc; 1089 if (C->EllipsisLoc.isValid()) { 1090 if (Var->isParameterPack()) { 1091 EllipsisLoc = C->EllipsisLoc; 1092 } else { 1093 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1094 << SourceRange(C->Loc); 1095 1096 // Just ignore the ellipsis. 1097 } 1098 } else if (Var->isParameterPack()) { 1099 ContainsUnexpandedParameterPack = true; 1100 } 1101 1102 if (C->Init.isUsable()) { 1103 buildInitCaptureField(LSI, Var); 1104 } else { 1105 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1106 TryCapture_ExplicitByVal; 1107 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1108 } 1109 } 1110 finishLambdaExplicitCaptures(LSI); 1111 1112 LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack; 1113 1114 // Add lambda parameters into scope. 1115 addLambdaParameters(Method, CurScope); 1116 1117 // Enter a new evaluation context to insulate the lambda from any 1118 // cleanups from the enclosing full-expression. 1119 PushExpressionEvaluationContext(PotentiallyEvaluated); 1120 } 1121 1122 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1123 bool IsInstantiation) { 1124 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back()); 1125 1126 // Leave the expression-evaluation context. 1127 DiscardCleanupsInEvaluationContext(); 1128 PopExpressionEvaluationContext(); 1129 1130 // Leave the context of the lambda. 1131 if (!IsInstantiation) 1132 PopDeclContext(); 1133 1134 // Finalize the lambda. 1135 CXXRecordDecl *Class = LSI->Lambda; 1136 Class->setInvalidDecl(); 1137 SmallVector<Decl*, 4> Fields(Class->fields()); 1138 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1139 SourceLocation(), nullptr); 1140 CheckCompletedCXXClass(Class); 1141 1142 PopFunctionScopeInfo(); 1143 } 1144 1145 /// \brief Add a lambda's conversion to function pointer, as described in 1146 /// C++11 [expr.prim.lambda]p6. 1147 static void addFunctionPointerConversion(Sema &S, 1148 SourceRange IntroducerRange, 1149 CXXRecordDecl *Class, 1150 CXXMethodDecl *CallOperator) { 1151 // This conversion is explicitly disabled if the lambda's function has 1152 // pass_object_size attributes on any of its parameters. 1153 if (llvm::any_of(CallOperator->parameters(), 1154 std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>))) 1155 return; 1156 1157 // Add the conversion to function pointer. 1158 const FunctionProtoType *CallOpProto = 1159 CallOperator->getType()->getAs<FunctionProtoType>(); 1160 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1161 CallOpProto->getExtProtoInfo(); 1162 QualType PtrToFunctionTy; 1163 QualType InvokerFunctionTy; 1164 { 1165 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1166 CallingConv CC = S.Context.getDefaultCallingConvention( 1167 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1168 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1169 InvokerExtInfo.TypeQuals = 0; 1170 assert(InvokerExtInfo.RefQualifier == RQ_None && 1171 "Lambda's call operator should not have a reference qualifier"); 1172 InvokerFunctionTy = 1173 S.Context.getFunctionType(CallOpProto->getReturnType(), 1174 CallOpProto->getParamTypes(), InvokerExtInfo); 1175 PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1176 } 1177 1178 // Create the type of the conversion function. 1179 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1180 S.Context.getDefaultCallingConvention( 1181 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1182 // The conversion function is always const. 1183 ConvExtInfo.TypeQuals = Qualifiers::Const; 1184 QualType ConvTy = 1185 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1186 1187 SourceLocation Loc = IntroducerRange.getBegin(); 1188 DeclarationName ConversionName 1189 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1190 S.Context.getCanonicalType(PtrToFunctionTy)); 1191 DeclarationNameLoc ConvNameLoc; 1192 // Construct a TypeSourceInfo for the conversion function, and wire 1193 // all the parameters appropriately for the FunctionProtoTypeLoc 1194 // so that everything works during transformation/instantiation of 1195 // generic lambdas. 1196 // The main reason for wiring up the parameters of the conversion 1197 // function with that of the call operator is so that constructs 1198 // like the following work: 1199 // auto L = [](auto b) { <-- 1 1200 // return [](auto a) -> decltype(a) { <-- 2 1201 // return a; 1202 // }; 1203 // }; 1204 // int (*fp)(int) = L(5); 1205 // Because the trailing return type can contain DeclRefExprs that refer 1206 // to the original call operator's variables, we hijack the call 1207 // operators ParmVarDecls below. 1208 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1209 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1210 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI; 1211 1212 // The conversion function is a conversion to a pointer-to-function. 1213 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1214 FunctionProtoTypeLoc ConvTL = 1215 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1216 // Get the result of the conversion function which is a pointer-to-function. 1217 PointerTypeLoc PtrToFunctionTL = 1218 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1219 // Do the same for the TypeSourceInfo that is used to name the conversion 1220 // operator. 1221 PointerTypeLoc ConvNamePtrToFunctionTL = 1222 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1223 1224 // Get the underlying function types that the conversion function will 1225 // be converting to (should match the type of the call operator). 1226 FunctionProtoTypeLoc CallOpConvTL = 1227 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1228 FunctionProtoTypeLoc CallOpConvNameTL = 1229 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1230 1231 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1232 // These parameter's are essentially used to transform the name and 1233 // the type of the conversion operator. By using the same parameters 1234 // as the call operator's we don't have to fix any back references that 1235 // the trailing return type of the call operator's uses (such as 1236 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1237 // - we can simply use the return type of the call operator, and 1238 // everything should work. 1239 SmallVector<ParmVarDecl *, 4> InvokerParams; 1240 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1241 ParmVarDecl *From = CallOperator->getParamDecl(I); 1242 1243 InvokerParams.push_back(ParmVarDecl::Create(S.Context, 1244 // Temporarily add to the TU. This is set to the invoker below. 1245 S.Context.getTranslationUnitDecl(), 1246 From->getLocStart(), 1247 From->getLocation(), 1248 From->getIdentifier(), 1249 From->getType(), 1250 From->getTypeSourceInfo(), 1251 From->getStorageClass(), 1252 /*DefaultArg=*/nullptr)); 1253 CallOpConvTL.setParam(I, From); 1254 CallOpConvNameTL.setParam(I, From); 1255 } 1256 1257 CXXConversionDecl *Conversion 1258 = CXXConversionDecl::Create(S.Context, Class, Loc, 1259 DeclarationNameInfo(ConversionName, 1260 Loc, ConvNameLoc), 1261 ConvTy, 1262 ConvTSI, 1263 /*isInline=*/true, /*isExplicit=*/false, 1264 /*isConstexpr=*/false, 1265 CallOperator->getBody()->getLocEnd()); 1266 Conversion->setAccess(AS_public); 1267 Conversion->setImplicit(true); 1268 1269 if (Class->isGenericLambda()) { 1270 // Create a template version of the conversion operator, using the template 1271 // parameter list of the function call operator. 1272 FunctionTemplateDecl *TemplateCallOperator = 1273 CallOperator->getDescribedFunctionTemplate(); 1274 FunctionTemplateDecl *ConversionTemplate = 1275 FunctionTemplateDecl::Create(S.Context, Class, 1276 Loc, ConversionName, 1277 TemplateCallOperator->getTemplateParameters(), 1278 Conversion); 1279 ConversionTemplate->setAccess(AS_public); 1280 ConversionTemplate->setImplicit(true); 1281 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1282 Class->addDecl(ConversionTemplate); 1283 } else 1284 Class->addDecl(Conversion); 1285 // Add a non-static member function that will be the result of 1286 // the conversion with a certain unique ID. 1287 DeclarationName InvokerName = &S.Context.Idents.get( 1288 getLambdaStaticInvokerName()); 1289 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1290 // we should get a prebuilt TrivialTypeSourceInfo from Context 1291 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1292 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1293 // loop below and then use its Params to set Invoke->setParams(...) below. 1294 // This would avoid the 'const' qualifier of the calloperator from 1295 // contaminating the type of the invoker, which is currently adjusted 1296 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1297 // trailing return type of the invoker would require a visitor to rebuild 1298 // the trailing return type and adjusting all back DeclRefExpr's to refer 1299 // to the new static invoker parameters - not the call operator's. 1300 CXXMethodDecl *Invoke 1301 = CXXMethodDecl::Create(S.Context, Class, Loc, 1302 DeclarationNameInfo(InvokerName, Loc), 1303 InvokerFunctionTy, 1304 CallOperator->getTypeSourceInfo(), 1305 SC_Static, /*IsInline=*/true, 1306 /*IsConstexpr=*/false, 1307 CallOperator->getBody()->getLocEnd()); 1308 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1309 InvokerParams[I]->setOwningFunction(Invoke); 1310 Invoke->setParams(InvokerParams); 1311 Invoke->setAccess(AS_private); 1312 Invoke->setImplicit(true); 1313 if (Class->isGenericLambda()) { 1314 FunctionTemplateDecl *TemplateCallOperator = 1315 CallOperator->getDescribedFunctionTemplate(); 1316 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1317 S.Context, Class, Loc, InvokerName, 1318 TemplateCallOperator->getTemplateParameters(), 1319 Invoke); 1320 StaticInvokerTemplate->setAccess(AS_private); 1321 StaticInvokerTemplate->setImplicit(true); 1322 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1323 Class->addDecl(StaticInvokerTemplate); 1324 } else 1325 Class->addDecl(Invoke); 1326 } 1327 1328 /// \brief Add a lambda's conversion to block pointer. 1329 static void addBlockPointerConversion(Sema &S, 1330 SourceRange IntroducerRange, 1331 CXXRecordDecl *Class, 1332 CXXMethodDecl *CallOperator) { 1333 const FunctionProtoType *Proto = 1334 CallOperator->getType()->getAs<FunctionProtoType>(); 1335 1336 // The function type inside the block pointer type is the same as the call 1337 // operator with some tweaks. The calling convention is the default free 1338 // function convention, and the type qualifications are lost. 1339 FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo(); 1340 BlockEPI.ExtInfo = 1341 BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention( 1342 Proto->isVariadic(), /*IsCXXMethod=*/false)); 1343 BlockEPI.TypeQuals = 0; 1344 QualType FunctionTy = S.Context.getFunctionType( 1345 Proto->getReturnType(), Proto->getParamTypes(), BlockEPI); 1346 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1347 1348 FunctionProtoType::ExtProtoInfo ConversionEPI( 1349 S.Context.getDefaultCallingConvention( 1350 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1351 ConversionEPI.TypeQuals = Qualifiers::Const; 1352 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI); 1353 1354 SourceLocation Loc = IntroducerRange.getBegin(); 1355 DeclarationName Name 1356 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1357 S.Context.getCanonicalType(BlockPtrTy)); 1358 DeclarationNameLoc NameLoc; 1359 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc); 1360 CXXConversionDecl *Conversion 1361 = CXXConversionDecl::Create(S.Context, Class, Loc, 1362 DeclarationNameInfo(Name, Loc, NameLoc), 1363 ConvTy, 1364 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1365 /*isInline=*/true, /*isExplicit=*/false, 1366 /*isConstexpr=*/false, 1367 CallOperator->getBody()->getLocEnd()); 1368 Conversion->setAccess(AS_public); 1369 Conversion->setImplicit(true); 1370 Class->addDecl(Conversion); 1371 } 1372 1373 static ExprResult performLambdaVarCaptureInitialization( 1374 Sema &S, LambdaScopeInfo::Capture &Capture, 1375 FieldDecl *Field, 1376 SmallVectorImpl<VarDecl *> &ArrayIndexVars, 1377 SmallVectorImpl<unsigned> &ArrayIndexStarts) { 1378 assert(Capture.isVariableCapture() && "not a variable capture"); 1379 1380 auto *Var = Capture.getVariable(); 1381 SourceLocation Loc = Capture.getLocation(); 1382 1383 // C++11 [expr.prim.lambda]p21: 1384 // When the lambda-expression is evaluated, the entities that 1385 // are captured by copy are used to direct-initialize each 1386 // corresponding non-static data member of the resulting closure 1387 // object. (For array members, the array elements are 1388 // direct-initialized in increasing subscript order.) These 1389 // initializations are performed in the (unspecified) order in 1390 // which the non-static data members are declared. 1391 1392 // C++ [expr.prim.lambda]p12: 1393 // An entity captured by a lambda-expression is odr-used (3.2) in 1394 // the scope containing the lambda-expression. 1395 ExprResult RefResult = S.BuildDeclarationNameExpr( 1396 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var); 1397 if (RefResult.isInvalid()) 1398 return ExprError(); 1399 Expr *Ref = RefResult.get(); 1400 1401 QualType FieldType = Field->getType(); 1402 1403 // When the variable has array type, create index variables for each 1404 // dimension of the array. We use these index variables to subscript 1405 // the source array, and other clients (e.g., CodeGen) will perform 1406 // the necessary iteration with these index variables. 1407 // 1408 // FIXME: This is dumb. Add a proper AST representation for array 1409 // copy-construction and use it here. 1410 SmallVector<VarDecl *, 4> IndexVariables; 1411 QualType BaseType = FieldType; 1412 QualType SizeType = S.Context.getSizeType(); 1413 ArrayIndexStarts.push_back(ArrayIndexVars.size()); 1414 while (const ConstantArrayType *Array 1415 = S.Context.getAsConstantArrayType(BaseType)) { 1416 // Create the iteration variable for this array index. 1417 IdentifierInfo *IterationVarName = nullptr; 1418 { 1419 SmallString<8> Str; 1420 llvm::raw_svector_ostream OS(Str); 1421 OS << "__i" << IndexVariables.size(); 1422 IterationVarName = &S.Context.Idents.get(OS.str()); 1423 } 1424 VarDecl *IterationVar = VarDecl::Create( 1425 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType, 1426 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None); 1427 IterationVar->setImplicit(); 1428 IndexVariables.push_back(IterationVar); 1429 ArrayIndexVars.push_back(IterationVar); 1430 1431 // Create a reference to the iteration variable. 1432 ExprResult IterationVarRef = 1433 S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc); 1434 assert(!IterationVarRef.isInvalid() && 1435 "Reference to invented variable cannot fail!"); 1436 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get()); 1437 assert(!IterationVarRef.isInvalid() && 1438 "Conversion of invented variable cannot fail!"); 1439 1440 // Subscript the array with this iteration variable. 1441 ExprResult Subscript = 1442 S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc); 1443 if (Subscript.isInvalid()) 1444 return ExprError(); 1445 1446 Ref = Subscript.get(); 1447 BaseType = Array->getElementType(); 1448 } 1449 1450 // Construct the entity that we will be initializing. For an array, this 1451 // will be first element in the array, which may require several levels 1452 // of array-subscript entities. 1453 SmallVector<InitializedEntity, 4> Entities; 1454 Entities.reserve(1 + IndexVariables.size()); 1455 Entities.push_back(InitializedEntity::InitializeLambdaCapture( 1456 Var->getIdentifier(), FieldType, Loc)); 1457 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) 1458 Entities.push_back( 1459 InitializedEntity::InitializeElement(S.Context, 0, Entities.back())); 1460 1461 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc); 1462 InitializationSequence Init(S, Entities.back(), InitKind, Ref); 1463 return Init.Perform(S, Entities.back(), InitKind, Ref); 1464 } 1465 1466 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1467 Scope *CurScope) { 1468 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back()); 1469 ActOnFinishFunctionBody(LSI.CallOperator, Body); 1470 return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI); 1471 } 1472 1473 static LambdaCaptureDefault 1474 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) { 1475 switch (ICS) { 1476 case CapturingScopeInfo::ImpCap_None: 1477 return LCD_None; 1478 case CapturingScopeInfo::ImpCap_LambdaByval: 1479 return LCD_ByCopy; 1480 case CapturingScopeInfo::ImpCap_CapturedRegion: 1481 case CapturingScopeInfo::ImpCap_LambdaByref: 1482 return LCD_ByRef; 1483 case CapturingScopeInfo::ImpCap_Block: 1484 llvm_unreachable("block capture in lambda"); 1485 } 1486 llvm_unreachable("Unknown implicit capture style"); 1487 } 1488 1489 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, 1490 LambdaScopeInfo *LSI) { 1491 // Collect information from the lambda scope. 1492 SmallVector<LambdaCapture, 4> Captures; 1493 SmallVector<Expr *, 4> CaptureInits; 1494 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1495 LambdaCaptureDefault CaptureDefault = 1496 mapImplicitCaptureStyle(LSI->ImpCaptureStyle); 1497 CXXRecordDecl *Class; 1498 CXXMethodDecl *CallOperator; 1499 SourceRange IntroducerRange; 1500 bool ExplicitParams; 1501 bool ExplicitResultType; 1502 CleanupInfo LambdaCleanup; 1503 bool ContainsUnexpandedParameterPack; 1504 SmallVector<VarDecl *, 4> ArrayIndexVars; 1505 SmallVector<unsigned, 4> ArrayIndexStarts; 1506 { 1507 CallOperator = LSI->CallOperator; 1508 Class = LSI->Lambda; 1509 IntroducerRange = LSI->IntroducerRange; 1510 ExplicitParams = LSI->ExplicitParams; 1511 ExplicitResultType = !LSI->HasImplicitReturnType; 1512 LambdaCleanup = LSI->Cleanup; 1513 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1514 1515 CallOperator->setLexicalDeclContext(Class); 1516 Decl *TemplateOrNonTemplateCallOperatorDecl = 1517 CallOperator->getDescribedFunctionTemplate() 1518 ? CallOperator->getDescribedFunctionTemplate() 1519 : cast<Decl>(CallOperator); 1520 1521 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1522 Class->addDecl(TemplateOrNonTemplateCallOperatorDecl); 1523 1524 PopExpressionEvaluationContext(); 1525 1526 // Translate captures. 1527 auto CurField = Class->field_begin(); 1528 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) { 1529 LambdaScopeInfo::Capture From = LSI->Captures[I]; 1530 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1531 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1532 1533 // Handle 'this' capture. 1534 if (From.isThisCapture()) { 1535 Captures.push_back( 1536 LambdaCapture(From.getLocation(), IsImplicit, 1537 From.isCopyCapture() ? LCK_StarThis : LCK_This)); 1538 CaptureInits.push_back(From.getInitExpr()); 1539 ArrayIndexStarts.push_back(ArrayIndexVars.size()); 1540 continue; 1541 } 1542 if (From.isVLATypeCapture()) { 1543 Captures.push_back( 1544 LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType)); 1545 CaptureInits.push_back(nullptr); 1546 ArrayIndexStarts.push_back(ArrayIndexVars.size()); 1547 continue; 1548 } 1549 1550 VarDecl *Var = From.getVariable(); 1551 LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef; 1552 Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind, 1553 Var, From.getEllipsisLoc())); 1554 Expr *Init = From.getInitExpr(); 1555 if (!Init) { 1556 auto InitResult = performLambdaVarCaptureInitialization( 1557 *this, From, *CurField, ArrayIndexVars, ArrayIndexStarts); 1558 if (InitResult.isInvalid()) 1559 return ExprError(); 1560 Init = InitResult.get(); 1561 } else { 1562 ArrayIndexStarts.push_back(ArrayIndexVars.size()); 1563 } 1564 CaptureInits.push_back(Init); 1565 } 1566 1567 // C++11 [expr.prim.lambda]p6: 1568 // The closure type for a lambda-expression with no lambda-capture 1569 // has a public non-virtual non-explicit const conversion function 1570 // to pointer to function having the same parameter and return 1571 // types as the closure type's function call operator. 1572 if (Captures.empty() && CaptureDefault == LCD_None) 1573 addFunctionPointerConversion(*this, IntroducerRange, Class, 1574 CallOperator); 1575 1576 // Objective-C++: 1577 // The closure type for a lambda-expression has a public non-virtual 1578 // non-explicit const conversion function to a block pointer having the 1579 // same parameter and return types as the closure type's function call 1580 // operator. 1581 // FIXME: Fix generic lambda to block conversions. 1582 if (getLangOpts().Blocks && getLangOpts().ObjC1 && 1583 !Class->isGenericLambda()) 1584 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1585 1586 // Finalize the lambda class. 1587 SmallVector<Decl*, 4> Fields(Class->fields()); 1588 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1589 SourceLocation(), nullptr); 1590 CheckCompletedCXXClass(Class); 1591 } 1592 1593 Cleanup.mergeFrom(LambdaCleanup); 1594 1595 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1596 CaptureDefault, CaptureDefaultLoc, 1597 Captures, 1598 ExplicitParams, ExplicitResultType, 1599 CaptureInits, ArrayIndexVars, 1600 ArrayIndexStarts, EndLoc, 1601 ContainsUnexpandedParameterPack); 1602 // If the lambda expression's call operator is not explicitly marked constexpr 1603 // and we are not in a dependent context, analyze the call operator to infer 1604 // its constexpr-ness, supressing diagnostics while doing so. 1605 if (getLangOpts().CPlusPlus1z && !CallOperator->isInvalidDecl() && 1606 !CallOperator->isConstexpr() && 1607 !Class->getDeclContext()->isDependentContext()) { 1608 TentativeAnalysisScope DiagnosticScopeGuard(*this); 1609 CallOperator->setConstexpr( 1610 CheckConstexprFunctionDecl(CallOperator) && 1611 CheckConstexprFunctionBody(CallOperator, CallOperator->getBody())); 1612 } 1613 1614 if (!CurContext->isDependentContext()) { 1615 switch (ExprEvalContexts.back().Context) { 1616 // C++11 [expr.prim.lambda]p2: 1617 // A lambda-expression shall not appear in an unevaluated operand 1618 // (Clause 5). 1619 case Unevaluated: 1620 case UnevaluatedAbstract: 1621 // C++1y [expr.const]p2: 1622 // A conditional-expression e is a core constant expression unless the 1623 // evaluation of e, following the rules of the abstract machine, would 1624 // evaluate [...] a lambda-expression. 1625 // 1626 // This is technically incorrect, there are some constant evaluated contexts 1627 // where this should be allowed. We should probably fix this when DR1607 is 1628 // ratified, it lays out the exact set of conditions where we shouldn't 1629 // allow a lambda-expression. 1630 case ConstantEvaluated: 1631 // We don't actually diagnose this case immediately, because we 1632 // could be within a context where we might find out later that 1633 // the expression is potentially evaluated (e.g., for typeid). 1634 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1635 break; 1636 1637 case DiscardedStatement: 1638 case PotentiallyEvaluated: 1639 case PotentiallyEvaluatedIfUsed: 1640 break; 1641 } 1642 } 1643 1644 return MaybeBindToTemporary(Lambda); 1645 } 1646 1647 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1648 SourceLocation ConvLocation, 1649 CXXConversionDecl *Conv, 1650 Expr *Src) { 1651 // Make sure that the lambda call operator is marked used. 1652 CXXRecordDecl *Lambda = Conv->getParent(); 1653 CXXMethodDecl *CallOperator 1654 = cast<CXXMethodDecl>( 1655 Lambda->lookup( 1656 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1657 CallOperator->setReferenced(); 1658 CallOperator->markUsed(Context); 1659 1660 ExprResult Init = PerformCopyInitialization( 1661 InitializedEntity::InitializeBlock(ConvLocation, 1662 Src->getType(), 1663 /*NRVO=*/false), 1664 CurrentLocation, Src); 1665 if (!Init.isInvalid()) 1666 Init = ActOnFinishFullExpr(Init.get()); 1667 1668 if (Init.isInvalid()) 1669 return ExprError(); 1670 1671 // Create the new block to be returned. 1672 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1673 1674 // Set the type information. 1675 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1676 Block->setIsVariadic(CallOperator->isVariadic()); 1677 Block->setBlockMissingReturnType(false); 1678 1679 // Add parameters. 1680 SmallVector<ParmVarDecl *, 4> BlockParams; 1681 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1682 ParmVarDecl *From = CallOperator->getParamDecl(I); 1683 BlockParams.push_back(ParmVarDecl::Create(Context, Block, 1684 From->getLocStart(), 1685 From->getLocation(), 1686 From->getIdentifier(), 1687 From->getType(), 1688 From->getTypeSourceInfo(), 1689 From->getStorageClass(), 1690 /*DefaultArg=*/nullptr)); 1691 } 1692 Block->setParams(BlockParams); 1693 1694 Block->setIsConversionFromLambda(true); 1695 1696 // Add capture. The capture uses a fake variable, which doesn't correspond 1697 // to any actual memory location. However, the initializer copy-initializes 1698 // the lambda object. 1699 TypeSourceInfo *CapVarTSI = 1700 Context.getTrivialTypeSourceInfo(Src->getType()); 1701 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 1702 ConvLocation, nullptr, 1703 Src->getType(), CapVarTSI, 1704 SC_None); 1705 BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false, 1706 /*Nested=*/false, /*Copy=*/Init.get()); 1707 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false); 1708 1709 // Add a fake function body to the block. IR generation is responsible 1710 // for filling in the actual body, which cannot be expressed as an AST. 1711 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 1712 1713 // Create the block literal expression. 1714 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 1715 ExprCleanupObjects.push_back(Block); 1716 Cleanup.setExprNeedsCleanups(true); 1717 1718 return BuildBlock; 1719 } 1720