Home | History | Annotate | Download | only in Core
      1 //===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file This file defines CallEvent and its subclasses, which represent path-
     11 /// sensitive instances of different kinds of function and method calls
     12 /// (C, C++, and Objective-C).
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     17 #include "clang/AST/ParentMap.h"
     18 #include "clang/Analysis/ProgramPoint.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
     20 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/StringExtras.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 
     25 using namespace clang;
     26 using namespace ento;
     27 
     28 QualType CallEvent::getResultType() const {
     29   const Expr *E = getOriginExpr();
     30   assert(E && "Calls without origin expressions do not have results");
     31   QualType ResultTy = E->getType();
     32 
     33   ASTContext &Ctx = getState()->getStateManager().getContext();
     34 
     35   // A function that returns a reference to 'int' will have a result type
     36   // of simply 'int'. Check the origin expr's value kind to recover the
     37   // proper type.
     38   switch (E->getValueKind()) {
     39   case VK_LValue:
     40     ResultTy = Ctx.getLValueReferenceType(ResultTy);
     41     break;
     42   case VK_XValue:
     43     ResultTy = Ctx.getRValueReferenceType(ResultTy);
     44     break;
     45   case VK_RValue:
     46     // No adjustment is necessary.
     47     break;
     48   }
     49 
     50   return ResultTy;
     51 }
     52 
     53 static bool isCallback(QualType T) {
     54   // If a parameter is a block or a callback, assume it can modify pointer.
     55   if (T->isBlockPointerType() ||
     56       T->isFunctionPointerType() ||
     57       T->isObjCSelType())
     58     return true;
     59 
     60   // Check if a callback is passed inside a struct (for both, struct passed by
     61   // reference and by value). Dig just one level into the struct for now.
     62 
     63   if (T->isAnyPointerType() || T->isReferenceType())
     64     T = T->getPointeeType();
     65 
     66   if (const RecordType *RT = T->getAsStructureType()) {
     67     const RecordDecl *RD = RT->getDecl();
     68     for (const auto *I : RD->fields()) {
     69       QualType FieldT = I->getType();
     70       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
     71         return true;
     72     }
     73   }
     74   return false;
     75 }
     76 
     77 static bool isVoidPointerToNonConst(QualType T) {
     78   if (const PointerType *PT = T->getAs<PointerType>()) {
     79     QualType PointeeTy = PT->getPointeeType();
     80     if (PointeeTy.isConstQualified())
     81       return false;
     82     return PointeeTy->isVoidType();
     83   } else
     84     return false;
     85 }
     86 
     87 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
     88   unsigned NumOfArgs = getNumArgs();
     89 
     90   // If calling using a function pointer, assume the function does not
     91   // satisfy the callback.
     92   // TODO: We could check the types of the arguments here.
     93   if (!getDecl())
     94     return false;
     95 
     96   unsigned Idx = 0;
     97   for (CallEvent::param_type_iterator I = param_type_begin(),
     98                                       E = param_type_end();
     99        I != E && Idx < NumOfArgs; ++I, ++Idx) {
    100     if (NumOfArgs <= Idx)
    101       break;
    102 
    103     // If the parameter is 0, it's harmless.
    104     if (getArgSVal(Idx).isZeroConstant())
    105       continue;
    106 
    107     if (Condition(*I))
    108       return true;
    109   }
    110   return false;
    111 }
    112 
    113 bool CallEvent::hasNonZeroCallbackArg() const {
    114   return hasNonNullArgumentsWithType(isCallback);
    115 }
    116 
    117 bool CallEvent::hasVoidPointerToNonConstArg() const {
    118   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
    119 }
    120 
    121 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
    122   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
    123   if (!FD)
    124     return false;
    125 
    126   return CheckerContext::isCLibraryFunction(FD, FunctionName);
    127 }
    128 
    129 /// \brief Returns true if a type is a pointer-to-const or reference-to-const
    130 /// with no further indirection.
    131 static bool isPointerToConst(QualType Ty) {
    132   QualType PointeeTy = Ty->getPointeeType();
    133   if (PointeeTy == QualType())
    134     return false;
    135   if (!PointeeTy.isConstQualified())
    136     return false;
    137   if (PointeeTy->isAnyPointerType())
    138     return false;
    139   return true;
    140 }
    141 
    142 // Try to retrieve the function declaration and find the function parameter
    143 // types which are pointers/references to a non-pointer const.
    144 // We will not invalidate the corresponding argument regions.
    145 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
    146                                  const CallEvent &Call) {
    147   unsigned Idx = 0;
    148   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
    149                                       E = Call.param_type_end();
    150        I != E; ++I, ++Idx) {
    151     if (isPointerToConst(*I))
    152       PreserveArgs.insert(Idx);
    153   }
    154 }
    155 
    156 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
    157                                              ProgramStateRef Orig) const {
    158   ProgramStateRef Result = (Orig ? Orig : getState());
    159 
    160   // Don't invalidate anything if the callee is marked pure/const.
    161   if (const Decl *callee = getDecl())
    162     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
    163       return Result;
    164 
    165   SmallVector<SVal, 8> ValuesToInvalidate;
    166   RegionAndSymbolInvalidationTraits ETraits;
    167 
    168   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
    169 
    170   // Indexes of arguments whose values will be preserved by the call.
    171   llvm::SmallSet<unsigned, 4> PreserveArgs;
    172   if (!argumentsMayEscape())
    173     findPtrToConstParams(PreserveArgs, *this);
    174 
    175   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
    176     // Mark this region for invalidation.  We batch invalidate regions
    177     // below for efficiency.
    178     if (PreserveArgs.count(Idx))
    179       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
    180         ETraits.setTrait(MR->getBaseRegion(),
    181                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
    182         // TODO: Factor this out + handle the lower level const pointers.
    183 
    184     ValuesToInvalidate.push_back(getArgSVal(Idx));
    185   }
    186 
    187   // Invalidate designated regions using the batch invalidation API.
    188   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
    189   //  global variables.
    190   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
    191                                    BlockCount, getLocationContext(),
    192                                    /*CausedByPointerEscape*/ true,
    193                                    /*Symbols=*/nullptr, this, &ETraits);
    194 }
    195 
    196 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
    197                                         const ProgramPointTag *Tag) const {
    198   if (const Expr *E = getOriginExpr()) {
    199     if (IsPreVisit)
    200       return PreStmt(E, getLocationContext(), Tag);
    201     return PostStmt(E, getLocationContext(), Tag);
    202   }
    203 
    204   const Decl *D = getDecl();
    205   assert(D && "Cannot get a program point without a statement or decl");
    206 
    207   SourceLocation Loc = getSourceRange().getBegin();
    208   if (IsPreVisit)
    209     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
    210   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
    211 }
    212 
    213 bool CallEvent::isCalled(const CallDescription &CD) const {
    214   assert(getKind() != CE_ObjCMessage && "Obj-C methods are not supported");
    215   if (!CD.II)
    216     CD.II = &getState()->getStateManager().getContext().Idents.get(CD.FuncName);
    217   if (getCalleeIdentifier() != CD.II)
    218     return false;
    219   return (CD.RequiredArgs == CallDescription::NoArgRequirement ||
    220           CD.RequiredArgs == getNumArgs());
    221 }
    222 
    223 SVal CallEvent::getArgSVal(unsigned Index) const {
    224   const Expr *ArgE = getArgExpr(Index);
    225   if (!ArgE)
    226     return UnknownVal();
    227   return getSVal(ArgE);
    228 }
    229 
    230 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
    231   const Expr *ArgE = getArgExpr(Index);
    232   if (!ArgE)
    233     return SourceRange();
    234   return ArgE->getSourceRange();
    235 }
    236 
    237 SVal CallEvent::getReturnValue() const {
    238   const Expr *E = getOriginExpr();
    239   if (!E)
    240     return UndefinedVal();
    241   return getSVal(E);
    242 }
    243 
    244 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
    245 
    246 void CallEvent::dump(raw_ostream &Out) const {
    247   ASTContext &Ctx = getState()->getStateManager().getContext();
    248   if (const Expr *E = getOriginExpr()) {
    249     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
    250     Out << "\n";
    251     return;
    252   }
    253 
    254   if (const Decl *D = getDecl()) {
    255     Out << "Call to ";
    256     D->print(Out, Ctx.getPrintingPolicy());
    257     return;
    258   }
    259 
    260   // FIXME: a string representation of the kind would be nice.
    261   Out << "Unknown call (type " << getKind() << ")";
    262 }
    263 
    264 
    265 bool CallEvent::isCallStmt(const Stmt *S) {
    266   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
    267                           || isa<CXXConstructExpr>(S)
    268                           || isa<CXXNewExpr>(S);
    269 }
    270 
    271 QualType CallEvent::getDeclaredResultType(const Decl *D) {
    272   assert(D);
    273   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
    274     return FD->getReturnType();
    275   if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
    276     return MD->getReturnType();
    277   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
    278     // Blocks are difficult because the return type may not be stored in the
    279     // BlockDecl itself. The AST should probably be enhanced, but for now we
    280     // just do what we can.
    281     // If the block is declared without an explicit argument list, the
    282     // signature-as-written just includes the return type, not the entire
    283     // function type.
    284     // FIXME: All blocks should have signatures-as-written, even if the return
    285     // type is inferred. (That's signified with a dependent result type.)
    286     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
    287       QualType Ty = TSI->getType();
    288       if (const FunctionType *FT = Ty->getAs<FunctionType>())
    289         Ty = FT->getReturnType();
    290       if (!Ty->isDependentType())
    291         return Ty;
    292     }
    293 
    294     return QualType();
    295   }
    296 
    297   llvm_unreachable("unknown callable kind");
    298 }
    299 
    300 bool CallEvent::isVariadic(const Decl *D) {
    301   assert(D);
    302 
    303   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    304     return FD->isVariadic();
    305   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
    306     return MD->isVariadic();
    307   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
    308     return BD->isVariadic();
    309 
    310   llvm_unreachable("unknown callable kind");
    311 }
    312 
    313 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
    314                                          CallEvent::BindingsTy &Bindings,
    315                                          SValBuilder &SVB,
    316                                          const CallEvent &Call,
    317                                          ArrayRef<ParmVarDecl*> parameters) {
    318   MemRegionManager &MRMgr = SVB.getRegionManager();
    319 
    320   // If the function has fewer parameters than the call has arguments, we simply
    321   // do not bind any values to them.
    322   unsigned NumArgs = Call.getNumArgs();
    323   unsigned Idx = 0;
    324   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
    325   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
    326     const ParmVarDecl *ParamDecl = *I;
    327     assert(ParamDecl && "Formal parameter has no decl?");
    328 
    329     SVal ArgVal = Call.getArgSVal(Idx);
    330     if (!ArgVal.isUnknown()) {
    331       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
    332       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
    333     }
    334   }
    335 
    336   // FIXME: Variadic arguments are not handled at all right now.
    337 }
    338 
    339 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
    340   const FunctionDecl *D = getDecl();
    341   if (!D)
    342     return None;
    343   return D->parameters();
    344 }
    345 
    346 void AnyFunctionCall::getInitialStackFrameContents(
    347                                         const StackFrameContext *CalleeCtx,
    348                                         BindingsTy &Bindings) const {
    349   const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
    350   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    351   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
    352                                D->parameters());
    353 }
    354 
    355 bool AnyFunctionCall::argumentsMayEscape() const {
    356   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
    357     return true;
    358 
    359   const FunctionDecl *D = getDecl();
    360   if (!D)
    361     return true;
    362 
    363   const IdentifierInfo *II = D->getIdentifier();
    364   if (!II)
    365     return false;
    366 
    367   // This set of "escaping" APIs is
    368 
    369   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
    370   //   value into thread local storage. The value can later be retrieved with
    371   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
    372   //   parameter is 'const void *', the region escapes through the call.
    373   if (II->isStr("pthread_setspecific"))
    374     return true;
    375 
    376   // - xpc_connection_set_context stores a value which can be retrieved later
    377   //   with xpc_connection_get_context.
    378   if (II->isStr("xpc_connection_set_context"))
    379     return true;
    380 
    381   // - funopen - sets a buffer for future IO calls.
    382   if (II->isStr("funopen"))
    383     return true;
    384 
    385   StringRef FName = II->getName();
    386 
    387   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
    388   //   buffer even if it is const.
    389   if (FName.endswith("NoCopy"))
    390     return true;
    391 
    392   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
    393   //   be deallocated by NSMapRemove.
    394   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
    395     return true;
    396 
    397   // - Many CF containers allow objects to escape through custom
    398   //   allocators/deallocators upon container construction. (PR12101)
    399   if (FName.startswith("CF") || FName.startswith("CG")) {
    400     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
    401            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
    402            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
    403            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
    404            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
    405            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
    406   }
    407 
    408   return false;
    409 }
    410 
    411 
    412 const FunctionDecl *SimpleFunctionCall::getDecl() const {
    413   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
    414   if (D)
    415     return D;
    416 
    417   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
    418 }
    419 
    420 
    421 const FunctionDecl *CXXInstanceCall::getDecl() const {
    422   const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
    423   if (!CE)
    424     return AnyFunctionCall::getDecl();
    425 
    426   const FunctionDecl *D = CE->getDirectCallee();
    427   if (D)
    428     return D;
    429 
    430   return getSVal(CE->getCallee()).getAsFunctionDecl();
    431 }
    432 
    433 void CXXInstanceCall::getExtraInvalidatedValues(
    434     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
    435   SVal ThisVal = getCXXThisVal();
    436   Values.push_back(ThisVal);
    437 
    438   // Don't invalidate if the method is const and there are no mutable fields.
    439   if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) {
    440     if (!D->isConst())
    441       return;
    442     // Get the record decl for the class of 'This'. D->getParent() may return a
    443     // base class decl, rather than the class of the instance which needs to be
    444     // checked for mutable fields.
    445     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
    446     const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
    447     if (!ParentRecord || ParentRecord->hasMutableFields())
    448       return;
    449     // Preserve CXXThis.
    450     const MemRegion *ThisRegion = ThisVal.getAsRegion();
    451     if (!ThisRegion)
    452       return;
    453 
    454     ETraits->setTrait(ThisRegion->getBaseRegion(),
    455                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
    456   }
    457 }
    458 
    459 SVal CXXInstanceCall::getCXXThisVal() const {
    460   const Expr *Base = getCXXThisExpr();
    461   // FIXME: This doesn't handle an overloaded ->* operator.
    462   if (!Base)
    463     return UnknownVal();
    464 
    465   SVal ThisVal = getSVal(Base);
    466   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
    467   return ThisVal;
    468 }
    469 
    470 
    471 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
    472   // Do we have a decl at all?
    473   const Decl *D = getDecl();
    474   if (!D)
    475     return RuntimeDefinition();
    476 
    477   // If the method is non-virtual, we know we can inline it.
    478   const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    479   if (!MD->isVirtual())
    480     return AnyFunctionCall::getRuntimeDefinition();
    481 
    482   // Do we know the implicit 'this' object being called?
    483   const MemRegion *R = getCXXThisVal().getAsRegion();
    484   if (!R)
    485     return RuntimeDefinition();
    486 
    487   // Do we know anything about the type of 'this'?
    488   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
    489   if (!DynType.isValid())
    490     return RuntimeDefinition();
    491 
    492   // Is the type a C++ class? (This is mostly a defensive check.)
    493   QualType RegionType = DynType.getType()->getPointeeType();
    494   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
    495 
    496   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
    497   if (!RD || !RD->hasDefinition())
    498     return RuntimeDefinition();
    499 
    500   // Find the decl for this method in that class.
    501   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
    502   if (!Result) {
    503     // We might not even get the original statically-resolved method due to
    504     // some particularly nasty casting (e.g. casts to sister classes).
    505     // However, we should at least be able to search up and down our own class
    506     // hierarchy, and some real bugs have been caught by checking this.
    507     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
    508 
    509     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
    510     // the static type. However, because we currently don't update
    511     // DynamicTypeInfo when an object is cast, we can't actually be sure the
    512     // DynamicTypeInfo is up to date. This assert should be re-enabled once
    513     // this is fixed. <rdar://problem/12287087>
    514     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
    515 
    516     return RuntimeDefinition();
    517   }
    518 
    519   // Does the decl that we found have an implementation?
    520   const FunctionDecl *Definition;
    521   if (!Result->hasBody(Definition))
    522     return RuntimeDefinition();
    523 
    524   // We found a definition. If we're not sure that this devirtualization is
    525   // actually what will happen at runtime, make sure to provide the region so
    526   // that ExprEngine can decide what to do with it.
    527   if (DynType.canBeASubClass())
    528     return RuntimeDefinition(Definition, R->StripCasts());
    529   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
    530 }
    531 
    532 void CXXInstanceCall::getInitialStackFrameContents(
    533                                             const StackFrameContext *CalleeCtx,
    534                                             BindingsTy &Bindings) const {
    535   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
    536 
    537   // Handle the binding of 'this' in the new stack frame.
    538   SVal ThisVal = getCXXThisVal();
    539   if (!ThisVal.isUnknown()) {
    540     ProgramStateManager &StateMgr = getState()->getStateManager();
    541     SValBuilder &SVB = StateMgr.getSValBuilder();
    542 
    543     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    544     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    545 
    546     // If we devirtualized to a different member function, we need to make sure
    547     // we have the proper layering of CXXBaseObjectRegions.
    548     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
    549       ASTContext &Ctx = SVB.getContext();
    550       const CXXRecordDecl *Class = MD->getParent();
    551       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
    552 
    553       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
    554       bool Failed;
    555       ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
    556       assert(!Failed && "Calling an incorrectly devirtualized method");
    557     }
    558 
    559     if (!ThisVal.isUnknown())
    560       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
    561   }
    562 }
    563 
    564 
    565 
    566 const Expr *CXXMemberCall::getCXXThisExpr() const {
    567   return getOriginExpr()->getImplicitObjectArgument();
    568 }
    569 
    570 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
    571   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
    572   // id-expression in the class member access expression is a qualified-id,
    573   // that function is called. Otherwise, its final overrider in the dynamic type
    574   // of the object expression is called.
    575   if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
    576     if (ME->hasQualifier())
    577       return AnyFunctionCall::getRuntimeDefinition();
    578 
    579   return CXXInstanceCall::getRuntimeDefinition();
    580 }
    581 
    582 
    583 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
    584   return getOriginExpr()->getArg(0);
    585 }
    586 
    587 
    588 const BlockDataRegion *BlockCall::getBlockRegion() const {
    589   const Expr *Callee = getOriginExpr()->getCallee();
    590   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
    591 
    592   return dyn_cast_or_null<BlockDataRegion>(DataReg);
    593 }
    594 
    595 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
    596   const BlockDecl *D = getDecl();
    597   if (!D)
    598     return nullptr;
    599   return D->parameters();
    600 }
    601 
    602 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
    603                   RegionAndSymbolInvalidationTraits *ETraits) const {
    604   // FIXME: This also needs to invalidate captured globals.
    605   if (const MemRegion *R = getBlockRegion())
    606     Values.push_back(loc::MemRegionVal(R));
    607 }
    608 
    609 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
    610                                              BindingsTy &Bindings) const {
    611   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    612   ArrayRef<ParmVarDecl*> Params;
    613   if (isConversionFromLambda()) {
    614     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    615     Params = LambdaOperatorDecl->parameters();
    616 
    617     // For blocks converted from a C++ lambda, the callee declaration is the
    618     // operator() method on the lambda so we bind "this" to
    619     // the lambda captured by the block.
    620     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
    621     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
    622     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
    623     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
    624   } else {
    625     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
    626   }
    627 
    628   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
    629                                Params);
    630 }
    631 
    632 
    633 SVal CXXConstructorCall::getCXXThisVal() const {
    634   if (Data)
    635     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
    636   return UnknownVal();
    637 }
    638 
    639 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
    640                            RegionAndSymbolInvalidationTraits *ETraits) const {
    641   if (Data)
    642     Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
    643 }
    644 
    645 void CXXConstructorCall::getInitialStackFrameContents(
    646                                              const StackFrameContext *CalleeCtx,
    647                                              BindingsTy &Bindings) const {
    648   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
    649 
    650   SVal ThisVal = getCXXThisVal();
    651   if (!ThisVal.isUnknown()) {
    652     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
    653     const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
    654     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
    655     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
    656   }
    657 }
    658 
    659 SVal CXXDestructorCall::getCXXThisVal() const {
    660   if (Data)
    661     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
    662   return UnknownVal();
    663 }
    664 
    665 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
    666   // Base destructors are always called non-virtually.
    667   // Skip CXXInstanceCall's devirtualization logic in this case.
    668   if (isBaseDestructor())
    669     return AnyFunctionCall::getRuntimeDefinition();
    670 
    671   return CXXInstanceCall::getRuntimeDefinition();
    672 }
    673 
    674 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
    675   const ObjCMethodDecl *D = getDecl();
    676   if (!D)
    677     return None;
    678   return D->parameters();
    679 }
    680 
    681 void ObjCMethodCall::getExtraInvalidatedValues(
    682     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
    683 
    684   // If the method call is a setter for property known to be backed by
    685   // an instance variable, don't invalidate the entire receiver, just
    686   // the storage for that instance variable.
    687   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
    688     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
    689       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
    690       const MemRegion *IvarRegion = IvarLVal.getAsRegion();
    691       ETraits->setTrait(
    692           IvarRegion,
    693           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
    694       ETraits->setTrait(IvarRegion,
    695                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
    696       Values.push_back(IvarLVal);
    697       return;
    698     }
    699   }
    700 
    701   Values.push_back(getReceiverSVal());
    702 }
    703 
    704 SVal ObjCMethodCall::getSelfSVal() const {
    705   const LocationContext *LCtx = getLocationContext();
    706   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
    707   if (!SelfDecl)
    708     return SVal();
    709   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
    710 }
    711 
    712 SVal ObjCMethodCall::getReceiverSVal() const {
    713   // FIXME: Is this the best way to handle class receivers?
    714   if (!isInstanceMessage())
    715     return UnknownVal();
    716 
    717   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
    718     return getSVal(RecE);
    719 
    720   // An instance message with no expression means we are sending to super.
    721   // In this case the object reference is the same as 'self'.
    722   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
    723   SVal SelfVal = getSelfSVal();
    724   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
    725   return SelfVal;
    726 }
    727 
    728 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
    729   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
    730       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
    731       return true;
    732 
    733   if (!isInstanceMessage())
    734     return false;
    735 
    736   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
    737 
    738   return (RecVal == getSelfSVal());
    739 }
    740 
    741 SourceRange ObjCMethodCall::getSourceRange() const {
    742   switch (getMessageKind()) {
    743   case OCM_Message:
    744     return getOriginExpr()->getSourceRange();
    745   case OCM_PropertyAccess:
    746   case OCM_Subscript:
    747     return getContainingPseudoObjectExpr()->getSourceRange();
    748   }
    749   llvm_unreachable("unknown message kind");
    750 }
    751 
    752 typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
    753 
    754 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
    755   assert(Data && "Lazy lookup not yet performed.");
    756   assert(getMessageKind() != OCM_Message && "Explicit message send.");
    757   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
    758 }
    759 
    760 static const Expr *
    761 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
    762   const Expr *Syntactic = POE->getSyntacticForm();
    763 
    764   // This handles the funny case of assigning to the result of a getter.
    765   // This can happen if the getter returns a non-const reference.
    766   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
    767     Syntactic = BO->getLHS();
    768 
    769   return Syntactic;
    770 }
    771 
    772 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
    773   if (!Data) {
    774 
    775     // Find the parent, ignoring implicit casts.
    776     ParentMap &PM = getLocationContext()->getParentMap();
    777     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
    778 
    779     // Check if parent is a PseudoObjectExpr.
    780     if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
    781       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
    782 
    783       ObjCMessageKind K;
    784       switch (Syntactic->getStmtClass()) {
    785       case Stmt::ObjCPropertyRefExprClass:
    786         K = OCM_PropertyAccess;
    787         break;
    788       case Stmt::ObjCSubscriptRefExprClass:
    789         K = OCM_Subscript;
    790         break;
    791       default:
    792         // FIXME: Can this ever happen?
    793         K = OCM_Message;
    794         break;
    795       }
    796 
    797       if (K != OCM_Message) {
    798         const_cast<ObjCMethodCall *>(this)->Data
    799           = ObjCMessageDataTy(POE, K).getOpaqueValue();
    800         assert(getMessageKind() == K);
    801         return K;
    802       }
    803     }
    804 
    805     const_cast<ObjCMethodCall *>(this)->Data
    806       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
    807     assert(getMessageKind() == OCM_Message);
    808     return OCM_Message;
    809   }
    810 
    811   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
    812   if (!Info.getPointer())
    813     return OCM_Message;
    814   return static_cast<ObjCMessageKind>(Info.getInt());
    815 }
    816 
    817 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
    818   // Look for properties accessed with property syntax (foo.bar = ...)
    819   if ( getMessageKind() == OCM_PropertyAccess) {
    820     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
    821     assert(POE && "Property access without PseudoObjectExpr?");
    822 
    823     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
    824     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
    825 
    826     if (RefExpr->isExplicitProperty())
    827       return RefExpr->getExplicitProperty();
    828   }
    829 
    830   // Look for properties accessed with method syntax ([foo setBar:...]).
    831   const ObjCMethodDecl *MD = getDecl();
    832   if (!MD || !MD->isPropertyAccessor())
    833     return nullptr;
    834 
    835   // Note: This is potentially quite slow.
    836   return MD->findPropertyDecl();
    837 }
    838 
    839 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
    840                                              Selector Sel) const {
    841   assert(IDecl);
    842   const SourceManager &SM =
    843     getState()->getStateManager().getContext().getSourceManager();
    844 
    845   // If the class interface is declared inside the main file, assume it is not
    846   // subcassed.
    847   // TODO: It could actually be subclassed if the subclass is private as well.
    848   // This is probably very rare.
    849   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
    850   if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
    851     return false;
    852 
    853   // Assume that property accessors are not overridden.
    854   if (getMessageKind() == OCM_PropertyAccess)
    855     return false;
    856 
    857   // We assume that if the method is public (declared outside of main file) or
    858   // has a parent which publicly declares the method, the method could be
    859   // overridden in a subclass.
    860 
    861   // Find the first declaration in the class hierarchy that declares
    862   // the selector.
    863   ObjCMethodDecl *D = nullptr;
    864   while (true) {
    865     D = IDecl->lookupMethod(Sel, true);
    866 
    867     // Cannot find a public definition.
    868     if (!D)
    869       return false;
    870 
    871     // If outside the main file,
    872     if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
    873       return true;
    874 
    875     if (D->isOverriding()) {
    876       // Search in the superclass on the next iteration.
    877       IDecl = D->getClassInterface();
    878       if (!IDecl)
    879         return false;
    880 
    881       IDecl = IDecl->getSuperClass();
    882       if (!IDecl)
    883         return false;
    884 
    885       continue;
    886     }
    887 
    888     return false;
    889   };
    890 
    891   llvm_unreachable("The while loop should always terminate.");
    892 }
    893 
    894 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
    895   const ObjCMessageExpr *E = getOriginExpr();
    896   assert(E);
    897   Selector Sel = E->getSelector();
    898 
    899   if (E->isInstanceMessage()) {
    900 
    901     // Find the receiver type.
    902     const ObjCObjectPointerType *ReceiverT = nullptr;
    903     bool CanBeSubClassed = false;
    904     QualType SupersType = E->getSuperType();
    905     const MemRegion *Receiver = nullptr;
    906 
    907     if (!SupersType.isNull()) {
    908       // Super always means the type of immediate predecessor to the method
    909       // where the call occurs.
    910       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
    911     } else {
    912       Receiver = getReceiverSVal().getAsRegion();
    913       if (!Receiver)
    914         return RuntimeDefinition();
    915 
    916       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
    917       QualType DynType = DTI.getType();
    918       CanBeSubClassed = DTI.canBeASubClass();
    919       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
    920 
    921       if (ReceiverT && CanBeSubClassed)
    922         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
    923           if (!canBeOverridenInSubclass(IDecl, Sel))
    924             CanBeSubClassed = false;
    925     }
    926 
    927     // Lookup the method implementation.
    928     if (ReceiverT)
    929       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
    930         // Repeatedly calling lookupPrivateMethod() is expensive, especially
    931         // when in many cases it returns null.  We cache the results so
    932         // that repeated queries on the same ObjCIntefaceDecl and Selector
    933         // don't incur the same cost.  On some test cases, we can see the
    934         // same query being issued thousands of times.
    935         //
    936         // NOTE: This cache is essentially a "global" variable, but it
    937         // only gets lazily created when we get here.  The value of the
    938         // cache probably comes from it being global across ExprEngines,
    939         // where the same queries may get issued.  If we are worried about
    940         // concurrency, or possibly loading/unloading ASTs, etc., we may
    941         // need to revisit this someday.  In terms of memory, this table
    942         // stays around until clang quits, which also may be bad if we
    943         // need to release memory.
    944         typedef std::pair<const ObjCInterfaceDecl*, Selector>
    945                 PrivateMethodKey;
    946         typedef llvm::DenseMap<PrivateMethodKey,
    947                                Optional<const ObjCMethodDecl *> >
    948                 PrivateMethodCache;
    949 
    950         static PrivateMethodCache PMC;
    951         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
    952 
    953         // Query lookupPrivateMethod() if the cache does not hit.
    954         if (!Val.hasValue()) {
    955           Val = IDecl->lookupPrivateMethod(Sel);
    956 
    957           // If the method is a property accessor, we should try to "inline" it
    958           // even if we don't actually have an implementation.
    959           if (!*Val)
    960             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
    961               if (CompileTimeMD->isPropertyAccessor()) {
    962                 if (!CompileTimeMD->getSelfDecl() &&
    963                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
    964                   // If the method is an accessor in a category, and it doesn't
    965                   // have a self declaration, first
    966                   // try to find the method in a class extension. This
    967                   // works around a bug in Sema where multiple accessors
    968                   // are synthesized for properties in class
    969                   // extensions that are redeclared in a category and the
    970                   // the implicit parameters are not filled in for
    971                   // the method on the category.
    972                   // This ensures we find the accessor in the extension, which
    973                   // has the implicit parameters filled in.
    974                   auto *ID = CompileTimeMD->getClassInterface();
    975                   for (auto *CatDecl : ID->visible_extensions()) {
    976                     Val = CatDecl->getMethod(Sel,
    977                                              CompileTimeMD->isInstanceMethod());
    978                     if (*Val)
    979                       break;
    980                   }
    981                 }
    982                 if (!*Val)
    983                   Val = IDecl->lookupInstanceMethod(Sel);
    984               }
    985         }
    986 
    987         const ObjCMethodDecl *MD = Val.getValue();
    988         if (CanBeSubClassed)
    989           return RuntimeDefinition(MD, Receiver);
    990         else
    991           return RuntimeDefinition(MD, nullptr);
    992       }
    993 
    994   } else {
    995     // This is a class method.
    996     // If we have type info for the receiver class, we are calling via
    997     // class name.
    998     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
    999       // Find/Return the method implementation.
   1000       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
   1001     }
   1002   }
   1003 
   1004   return RuntimeDefinition();
   1005 }
   1006 
   1007 bool ObjCMethodCall::argumentsMayEscape() const {
   1008   if (isInSystemHeader() && !isInstanceMessage()) {
   1009     Selector Sel = getSelector();
   1010     if (Sel.getNumArgs() == 1 &&
   1011         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
   1012       return true;
   1013   }
   1014 
   1015   return CallEvent::argumentsMayEscape();
   1016 }
   1017 
   1018 void ObjCMethodCall::getInitialStackFrameContents(
   1019                                              const StackFrameContext *CalleeCtx,
   1020                                              BindingsTy &Bindings) const {
   1021   const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
   1022   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
   1023   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
   1024                                D->parameters());
   1025 
   1026   SVal SelfVal = getReceiverSVal();
   1027   if (!SelfVal.isUnknown()) {
   1028     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
   1029     MemRegionManager &MRMgr = SVB.getRegionManager();
   1030     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
   1031     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
   1032   }
   1033 }
   1034 
   1035 CallEventRef<>
   1036 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
   1037                                 const LocationContext *LCtx) {
   1038   if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
   1039     return create<CXXMemberCall>(MCE, State, LCtx);
   1040 
   1041   if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
   1042     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
   1043     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
   1044       if (MD->isInstance())
   1045         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
   1046 
   1047   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
   1048     return create<BlockCall>(CE, State, LCtx);
   1049   }
   1050 
   1051   // Otherwise, it's a normal function call, static member function call, or
   1052   // something we can't reason about.
   1053   return create<SimpleFunctionCall>(CE, State, LCtx);
   1054 }
   1055 
   1056 
   1057 CallEventRef<>
   1058 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
   1059                             ProgramStateRef State) {
   1060   const LocationContext *ParentCtx = CalleeCtx->getParent();
   1061   const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
   1062   assert(CallerCtx && "This should not be used for top-level stack frames");
   1063 
   1064   const Stmt *CallSite = CalleeCtx->getCallSite();
   1065 
   1066   if (CallSite) {
   1067     if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
   1068       return getSimpleCall(CE, State, CallerCtx);
   1069 
   1070     switch (CallSite->getStmtClass()) {
   1071     case Stmt::CXXConstructExprClass:
   1072     case Stmt::CXXTemporaryObjectExprClass: {
   1073       SValBuilder &SVB = State->getStateManager().getSValBuilder();
   1074       const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
   1075       Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
   1076       SVal ThisVal = State->getSVal(ThisPtr);
   1077 
   1078       return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
   1079                                    ThisVal.getAsRegion(), State, CallerCtx);
   1080     }
   1081     case Stmt::CXXNewExprClass:
   1082       return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
   1083     case Stmt::ObjCMessageExprClass:
   1084       return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
   1085                                State, CallerCtx);
   1086     default:
   1087       llvm_unreachable("This is not an inlineable statement.");
   1088     }
   1089   }
   1090 
   1091   // Fall back to the CFG. The only thing we haven't handled yet is
   1092   // destructors, though this could change in the future.
   1093   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
   1094   CFGElement E = (*B)[CalleeCtx->getIndex()];
   1095   assert(E.getAs<CFGImplicitDtor>() &&
   1096          "All other CFG elements should have exprs");
   1097   assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
   1098 
   1099   SValBuilder &SVB = State->getStateManager().getSValBuilder();
   1100   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
   1101   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
   1102   SVal ThisVal = State->getSVal(ThisPtr);
   1103 
   1104   const Stmt *Trigger;
   1105   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
   1106     Trigger = AutoDtor->getTriggerStmt();
   1107   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
   1108     Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
   1109   else
   1110     Trigger = Dtor->getBody();
   1111 
   1112   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
   1113                               E.getAs<CFGBaseDtor>().hasValue(), State,
   1114                               CallerCtx);
   1115 }
   1116