Home | History | Annotate | Download | only in builtins
      1 //===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the following soft-fp_t comparison routines:
     11 //
     12 //   __eqsf2   __gesf2   __unordsf2
     13 //   __lesf2   __gtsf2
     14 //   __ltsf2
     15 //   __nesf2
     16 //
     17 // The semantics of the routines grouped in each column are identical, so there
     18 // is a single implementation for each, and wrappers to provide the other names.
     19 //
     20 // The main routines behave as follows:
     21 //
     22 //   __lesf2(a,b) returns -1 if a < b
     23 //                         0 if a == b
     24 //                         1 if a > b
     25 //                         1 if either a or b is NaN
     26 //
     27 //   __gesf2(a,b) returns -1 if a < b
     28 //                         0 if a == b
     29 //                         1 if a > b
     30 //                        -1 if either a or b is NaN
     31 //
     32 //   __unordsf2(a,b) returns 0 if both a and b are numbers
     33 //                           1 if either a or b is NaN
     34 //
     35 // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
     36 // NaN values.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #define SINGLE_PRECISION
     41 #include "fp_lib.h"
     42 
     43 enum LE_RESULT {
     44     LE_LESS      = -1,
     45     LE_EQUAL     =  0,
     46     LE_GREATER   =  1,
     47     LE_UNORDERED =  1
     48 };
     49 
     50 COMPILER_RT_ABI enum LE_RESULT
     51 __lesf2(fp_t a, fp_t b) {
     52 
     53     const srep_t aInt = toRep(a);
     54     const srep_t bInt = toRep(b);
     55     const rep_t aAbs = aInt & absMask;
     56     const rep_t bAbs = bInt & absMask;
     57 
     58     // If either a or b is NaN, they are unordered.
     59     if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
     60 
     61     // If a and b are both zeros, they are equal.
     62     if ((aAbs | bAbs) == 0) return LE_EQUAL;
     63 
     64     // If at least one of a and b is positive, we get the same result comparing
     65     // a and b as signed integers as we would with a fp_ting-point compare.
     66     if ((aInt & bInt) >= 0) {
     67         if (aInt < bInt) return LE_LESS;
     68         else if (aInt == bInt) return LE_EQUAL;
     69         else return LE_GREATER;
     70     }
     71 
     72     // Otherwise, both are negative, so we need to flip the sense of the
     73     // comparison to get the correct result.  (This assumes a twos- or ones-
     74     // complement integer representation; if integers are represented in a
     75     // sign-magnitude representation, then this flip is incorrect).
     76     else {
     77         if (aInt > bInt) return LE_LESS;
     78         else if (aInt == bInt) return LE_EQUAL;
     79         else return LE_GREATER;
     80     }
     81 }
     82 
     83 #if defined(__ELF__)
     84 // Alias for libgcc compatibility
     85 FNALIAS(__cmpsf2, __lesf2);
     86 #endif
     87 
     88 enum GE_RESULT {
     89     GE_LESS      = -1,
     90     GE_EQUAL     =  0,
     91     GE_GREATER   =  1,
     92     GE_UNORDERED = -1   // Note: different from LE_UNORDERED
     93 };
     94 
     95 COMPILER_RT_ABI enum GE_RESULT
     96 __gesf2(fp_t a, fp_t b) {
     97 
     98     const srep_t aInt = toRep(a);
     99     const srep_t bInt = toRep(b);
    100     const rep_t aAbs = aInt & absMask;
    101     const rep_t bAbs = bInt & absMask;
    102 
    103     if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
    104     if ((aAbs | bAbs) == 0) return GE_EQUAL;
    105     if ((aInt & bInt) >= 0) {
    106         if (aInt < bInt) return GE_LESS;
    107         else if (aInt == bInt) return GE_EQUAL;
    108         else return GE_GREATER;
    109     } else {
    110         if (aInt > bInt) return GE_LESS;
    111         else if (aInt == bInt) return GE_EQUAL;
    112         else return GE_GREATER;
    113     }
    114 }
    115 
    116 ARM_EABI_FNALIAS(fcmpun, unordsf2)
    117 
    118 COMPILER_RT_ABI int
    119 __unordsf2(fp_t a, fp_t b) {
    120     const rep_t aAbs = toRep(a) & absMask;
    121     const rep_t bAbs = toRep(b) & absMask;
    122     return aAbs > infRep || bAbs > infRep;
    123 }
    124 
    125 // The following are alternative names for the preceding routines.
    126 
    127 COMPILER_RT_ABI enum LE_RESULT
    128 __eqsf2(fp_t a, fp_t b) {
    129     return __lesf2(a, b);
    130 }
    131 
    132 COMPILER_RT_ABI enum LE_RESULT
    133 __ltsf2(fp_t a, fp_t b) {
    134     return __lesf2(a, b);
    135 }
    136 
    137 COMPILER_RT_ABI enum LE_RESULT
    138 __nesf2(fp_t a, fp_t b) {
    139     return __lesf2(a, b);
    140 }
    141 
    142 COMPILER_RT_ABI enum GE_RESULT
    143 __gtsf2(fp_t a, fp_t b) {
    144     return __gesf2(a, b);
    145 }
    146