Home | History | Annotate | Download | only in sanitizer_common
      1 //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef SANITIZER_ALLOCATOR_H
     15 #define SANITIZER_ALLOCATOR_H
     16 
     17 #include "sanitizer_internal_defs.h"
     18 #include "sanitizer_common.h"
     19 #include "sanitizer_libc.h"
     20 #include "sanitizer_list.h"
     21 #include "sanitizer_mutex.h"
     22 #include "sanitizer_lfstack.h"
     23 
     24 namespace __sanitizer {
     25 
     26 // Prints error message and kills the program.
     27 void NORETURN ReportAllocatorCannotReturnNull();
     28 
     29 // SizeClassMap maps allocation sizes into size classes and back.
     30 // Class 0 corresponds to size 0.
     31 // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
     32 // Next 4 classes: 256 + i * 64  (i = 1 to 4).
     33 // Next 4 classes: 512 + i * 128 (i = 1 to 4).
     34 // ...
     35 // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
     36 // Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
     37 //
     38 // This structure of the size class map gives us:
     39 //   - Efficient table-free class-to-size and size-to-class functions.
     40 //   - Difference between two consequent size classes is betweed 14% and 25%
     41 //
     42 // This class also gives a hint to a thread-caching allocator about the amount
     43 // of chunks that need to be cached per-thread:
     44 //  - kMaxNumCached is the maximal number of chunks per size class.
     45 //  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
     46 //
     47 // Part of output of SizeClassMap::Print():
     48 // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
     49 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
     50 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
     51 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
     52 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
     53 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
     54 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
     55 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
     56 //
     57 // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
     58 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
     59 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
     60 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
     61 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
     62 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
     63 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
     64 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
     65 //
     66 // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
     67 // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
     68 // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
     69 // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
     70 //
     71 // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
     72 // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
     73 // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
     74 // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
     75 //
     76 // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
     77 // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
     78 // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
     79 // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
     80 //
     81 // ...
     82 //
     83 // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
     84 // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
     85 // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
     86 // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
     87 //
     88 // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
     89 
     90 template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
     91 class SizeClassMap {
     92   static const uptr kMinSizeLog = 4;
     93   static const uptr kMidSizeLog = kMinSizeLog + 4;
     94   static const uptr kMinSize = 1 << kMinSizeLog;
     95   static const uptr kMidSize = 1 << kMidSizeLog;
     96   static const uptr kMidClass = kMidSize / kMinSize;
     97   static const uptr S = 2;
     98   static const uptr M = (1 << S) - 1;
     99 
    100  public:
    101   static const uptr kMaxNumCached = kMaxNumCachedT;
    102   // We transfer chunks between central and thread-local free lists in batches.
    103   // For small size classes we allocate batches separately.
    104   // For large size classes we use one of the chunks to store the batch.
    105   struct TransferBatch {
    106     TransferBatch *next;
    107     uptr count;
    108     void *batch[kMaxNumCached];
    109   };
    110 
    111   static const uptr kMaxSize = 1UL << kMaxSizeLog;
    112   static const uptr kNumClasses =
    113       kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
    114   COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
    115   static const uptr kNumClassesRounded =
    116       kNumClasses == 32  ? 32 :
    117       kNumClasses <= 64  ? 64 :
    118       kNumClasses <= 128 ? 128 : 256;
    119 
    120   static uptr Size(uptr class_id) {
    121     if (class_id <= kMidClass)
    122       return kMinSize * class_id;
    123     class_id -= kMidClass;
    124     uptr t = kMidSize << (class_id >> S);
    125     return t + (t >> S) * (class_id & M);
    126   }
    127 
    128   static uptr ClassID(uptr size) {
    129     if (size <= kMidSize)
    130       return (size + kMinSize - 1) >> kMinSizeLog;
    131     if (size > kMaxSize) return 0;
    132     uptr l = MostSignificantSetBitIndex(size);
    133     uptr hbits = (size >> (l - S)) & M;
    134     uptr lbits = size & ((1 << (l - S)) - 1);
    135     uptr l1 = l - kMidSizeLog;
    136     return kMidClass + (l1 << S) + hbits + (lbits > 0);
    137   }
    138 
    139   static uptr MaxCached(uptr class_id) {
    140     if (class_id == 0) return 0;
    141     uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
    142     return Max<uptr>(1, Min(kMaxNumCached, n));
    143   }
    144 
    145   static void Print() {
    146     uptr prev_s = 0;
    147     uptr total_cached = 0;
    148     for (uptr i = 0; i < kNumClasses; i++) {
    149       uptr s = Size(i);
    150       if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
    151         Printf("\n");
    152       uptr d = s - prev_s;
    153       uptr p = prev_s ? (d * 100 / prev_s) : 0;
    154       uptr l = s ? MostSignificantSetBitIndex(s) : 0;
    155       uptr cached = MaxCached(i) * s;
    156       Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
    157              "cached: %zd %zd; id %zd\n",
    158              i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
    159       total_cached += cached;
    160       prev_s = s;
    161     }
    162     Printf("Total cached: %zd\n", total_cached);
    163   }
    164 
    165   static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
    166     return Size(class_id) < sizeof(TransferBatch) -
    167         sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
    168   }
    169 
    170   static void Validate() {
    171     for (uptr c = 1; c < kNumClasses; c++) {
    172       // Printf("Validate: c%zd\n", c);
    173       uptr s = Size(c);
    174       CHECK_NE(s, 0U);
    175       CHECK_EQ(ClassID(s), c);
    176       if (c != kNumClasses - 1)
    177         CHECK_EQ(ClassID(s + 1), c + 1);
    178       CHECK_EQ(ClassID(s - 1), c);
    179       if (c)
    180         CHECK_GT(Size(c), Size(c-1));
    181     }
    182     CHECK_EQ(ClassID(kMaxSize + 1), 0);
    183 
    184     for (uptr s = 1; s <= kMaxSize; s++) {
    185       uptr c = ClassID(s);
    186       // Printf("s%zd => c%zd\n", s, c);
    187       CHECK_LT(c, kNumClasses);
    188       CHECK_GE(Size(c), s);
    189       if (c > 0)
    190         CHECK_LT(Size(c-1), s);
    191     }
    192   }
    193 };
    194 
    195 typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
    196 typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
    197 template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
    198 
    199 // Memory allocator statistics
    200 enum AllocatorStat {
    201   AllocatorStatAllocated,
    202   AllocatorStatMapped,
    203   AllocatorStatCount
    204 };
    205 
    206 typedef uptr AllocatorStatCounters[AllocatorStatCount];
    207 
    208 // Per-thread stats, live in per-thread cache.
    209 class AllocatorStats {
    210  public:
    211   void Init() {
    212     internal_memset(this, 0, sizeof(*this));
    213   }
    214   void InitLinkerInitialized() {}
    215 
    216   void Add(AllocatorStat i, uptr v) {
    217     v += atomic_load(&stats_[i], memory_order_relaxed);
    218     atomic_store(&stats_[i], v, memory_order_relaxed);
    219   }
    220 
    221   void Sub(AllocatorStat i, uptr v) {
    222     v = atomic_load(&stats_[i], memory_order_relaxed) - v;
    223     atomic_store(&stats_[i], v, memory_order_relaxed);
    224   }
    225 
    226   void Set(AllocatorStat i, uptr v) {
    227     atomic_store(&stats_[i], v, memory_order_relaxed);
    228   }
    229 
    230   uptr Get(AllocatorStat i) const {
    231     return atomic_load(&stats_[i], memory_order_relaxed);
    232   }
    233 
    234  private:
    235   friend class AllocatorGlobalStats;
    236   AllocatorStats *next_;
    237   AllocatorStats *prev_;
    238   atomic_uintptr_t stats_[AllocatorStatCount];
    239 };
    240 
    241 // Global stats, used for aggregation and querying.
    242 class AllocatorGlobalStats : public AllocatorStats {
    243  public:
    244   void InitLinkerInitialized() {
    245     next_ = this;
    246     prev_ = this;
    247   }
    248   void Init() {
    249     internal_memset(this, 0, sizeof(*this));
    250     InitLinkerInitialized();
    251   }
    252 
    253   void Register(AllocatorStats *s) {
    254     SpinMutexLock l(&mu_);
    255     s->next_ = next_;
    256     s->prev_ = this;
    257     next_->prev_ = s;
    258     next_ = s;
    259   }
    260 
    261   void Unregister(AllocatorStats *s) {
    262     SpinMutexLock l(&mu_);
    263     s->prev_->next_ = s->next_;
    264     s->next_->prev_ = s->prev_;
    265     for (int i = 0; i < AllocatorStatCount; i++)
    266       Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
    267   }
    268 
    269   void Get(AllocatorStatCounters s) const {
    270     internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
    271     SpinMutexLock l(&mu_);
    272     const AllocatorStats *stats = this;
    273     for (;;) {
    274       for (int i = 0; i < AllocatorStatCount; i++)
    275         s[i] += stats->Get(AllocatorStat(i));
    276       stats = stats->next_;
    277       if (stats == this)
    278         break;
    279     }
    280     // All stats must be non-negative.
    281     for (int i = 0; i < AllocatorStatCount; i++)
    282       s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
    283   }
    284 
    285  private:
    286   mutable SpinMutex mu_;
    287 };
    288 
    289 // Allocators call these callbacks on mmap/munmap.
    290 struct NoOpMapUnmapCallback {
    291   void OnMap(uptr p, uptr size) const { }
    292   void OnUnmap(uptr p, uptr size) const { }
    293 };
    294 
    295 // Callback type for iterating over chunks.
    296 typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
    297 
    298 // SizeClassAllocator64 -- allocator for 64-bit address space.
    299 //
    300 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
    301 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
    302 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
    303 // kSpaceSize is a power of two.
    304 // At the beginning the entire space is mprotect-ed, then small parts of it
    305 // are mapped on demand.
    306 //
    307 // Region: a part of Space dedicated to a single size class.
    308 // There are kNumClasses Regions of equal size.
    309 //
    310 // UserChunk: a piece of memory returned to user.
    311 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
    312 //
    313 // A Region looks like this:
    314 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
    315 template <const uptr kSpaceBeg, const uptr kSpaceSize,
    316           const uptr kMetadataSize, class SizeClassMap,
    317           class MapUnmapCallback = NoOpMapUnmapCallback>
    318 class SizeClassAllocator64 {
    319  public:
    320   typedef typename SizeClassMap::TransferBatch Batch;
    321   typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
    322       SizeClassMap, MapUnmapCallback> ThisT;
    323   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
    324 
    325   void Init() {
    326     uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
    327     if (kUsingConstantSpaceBeg) {
    328       CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
    329                               MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
    330     } else {
    331       NonConstSpaceBeg =
    332           reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
    333       CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
    334     }
    335     MapWithCallback(SpaceEnd(), AdditionalSize());
    336   }
    337 
    338   void MapWithCallback(uptr beg, uptr size) {
    339     CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
    340     MapUnmapCallback().OnMap(beg, size);
    341   }
    342 
    343   void UnmapWithCallback(uptr beg, uptr size) {
    344     MapUnmapCallback().OnUnmap(beg, size);
    345     UnmapOrDie(reinterpret_cast<void *>(beg), size);
    346   }
    347 
    348   static bool CanAllocate(uptr size, uptr alignment) {
    349     return size <= SizeClassMap::kMaxSize &&
    350       alignment <= SizeClassMap::kMaxSize;
    351   }
    352 
    353   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
    354                                 uptr class_id) {
    355     CHECK_LT(class_id, kNumClasses);
    356     RegionInfo *region = GetRegionInfo(class_id);
    357     Batch *b = region->free_list.Pop();
    358     if (!b)
    359       b = PopulateFreeList(stat, c, class_id, region);
    360     region->n_allocated += b->count;
    361     return b;
    362   }
    363 
    364   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
    365     RegionInfo *region = GetRegionInfo(class_id);
    366     CHECK_GT(b->count, 0);
    367     region->free_list.Push(b);
    368     region->n_freed += b->count;
    369   }
    370 
    371   bool PointerIsMine(const void *p) {
    372     uptr P = reinterpret_cast<uptr>(p);
    373     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
    374       return P / kSpaceSize == kSpaceBeg / kSpaceSize;
    375     return P >= SpaceBeg() && P < SpaceEnd();
    376   }
    377 
    378   uptr GetSizeClass(const void *p) {
    379     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
    380       return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
    381     return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
    382            kNumClassesRounded;
    383   }
    384 
    385   void *GetBlockBegin(const void *p) {
    386     uptr class_id = GetSizeClass(p);
    387     uptr size = SizeClassMap::Size(class_id);
    388     if (!size) return nullptr;
    389     uptr chunk_idx = GetChunkIdx((uptr)p, size);
    390     uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
    391     uptr beg = chunk_idx * size;
    392     uptr next_beg = beg + size;
    393     if (class_id >= kNumClasses) return nullptr;
    394     RegionInfo *region = GetRegionInfo(class_id);
    395     if (region->mapped_user >= next_beg)
    396       return reinterpret_cast<void*>(reg_beg + beg);
    397     return nullptr;
    398   }
    399 
    400   uptr GetActuallyAllocatedSize(void *p) {
    401     CHECK(PointerIsMine(p));
    402     return SizeClassMap::Size(GetSizeClass(p));
    403   }
    404 
    405   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
    406 
    407   void *GetMetaData(const void *p) {
    408     uptr class_id = GetSizeClass(p);
    409     uptr size = SizeClassMap::Size(class_id);
    410     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
    411     return reinterpret_cast<void *>(SpaceBeg() +
    412                                     (kRegionSize * (class_id + 1)) -
    413                                     (1 + chunk_idx) * kMetadataSize);
    414   }
    415 
    416   uptr TotalMemoryUsed() {
    417     uptr res = 0;
    418     for (uptr i = 0; i < kNumClasses; i++)
    419       res += GetRegionInfo(i)->allocated_user;
    420     return res;
    421   }
    422 
    423   // Test-only.
    424   void TestOnlyUnmap() {
    425     UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
    426   }
    427 
    428   void PrintStats() {
    429     uptr total_mapped = 0;
    430     uptr n_allocated = 0;
    431     uptr n_freed = 0;
    432     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
    433       RegionInfo *region = GetRegionInfo(class_id);
    434       total_mapped += region->mapped_user;
    435       n_allocated += region->n_allocated;
    436       n_freed += region->n_freed;
    437     }
    438     Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
    439            "remains %zd\n",
    440            total_mapped >> 20, n_allocated, n_allocated - n_freed);
    441     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
    442       RegionInfo *region = GetRegionInfo(class_id);
    443       if (region->mapped_user == 0) continue;
    444       Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
    445              class_id,
    446              SizeClassMap::Size(class_id),
    447              region->mapped_user >> 10,
    448              region->n_allocated,
    449              region->n_allocated - region->n_freed);
    450     }
    451   }
    452 
    453   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
    454   // introspection API.
    455   void ForceLock() {
    456     for (uptr i = 0; i < kNumClasses; i++) {
    457       GetRegionInfo(i)->mutex.Lock();
    458     }
    459   }
    460 
    461   void ForceUnlock() {
    462     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
    463       GetRegionInfo(i)->mutex.Unlock();
    464     }
    465   }
    466 
    467   // Iterate over all existing chunks.
    468   // The allocator must be locked when calling this function.
    469   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    470     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
    471       RegionInfo *region = GetRegionInfo(class_id);
    472       uptr chunk_size = SizeClassMap::Size(class_id);
    473       uptr region_beg = SpaceBeg() + class_id * kRegionSize;
    474       for (uptr chunk = region_beg;
    475            chunk < region_beg + region->allocated_user;
    476            chunk += chunk_size) {
    477         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
    478         callback(chunk, arg);
    479       }
    480     }
    481   }
    482 
    483   static uptr AdditionalSize() {
    484     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
    485                      GetPageSizeCached());
    486   }
    487 
    488   typedef SizeClassMap SizeClassMapT;
    489   static const uptr kNumClasses = SizeClassMap::kNumClasses;
    490   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
    491 
    492  private:
    493   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
    494 
    495   static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
    496   uptr NonConstSpaceBeg;
    497   uptr SpaceBeg() const {
    498     return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
    499   }
    500   uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
    501   // kRegionSize must be >= 2^32.
    502   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
    503   // Populate the free list with at most this number of bytes at once
    504   // or with one element if its size is greater.
    505   static const uptr kPopulateSize = 1 << 14;
    506   // Call mmap for user memory with at least this size.
    507   static const uptr kUserMapSize = 1 << 16;
    508   // Call mmap for metadata memory with at least this size.
    509   static const uptr kMetaMapSize = 1 << 16;
    510 
    511   struct RegionInfo {
    512     BlockingMutex mutex;
    513     LFStack<Batch> free_list;
    514     uptr allocated_user;  // Bytes allocated for user memory.
    515     uptr allocated_meta;  // Bytes allocated for metadata.
    516     uptr mapped_user;  // Bytes mapped for user memory.
    517     uptr mapped_meta;  // Bytes mapped for metadata.
    518     uptr n_allocated, n_freed;  // Just stats.
    519   };
    520   COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
    521 
    522   RegionInfo *GetRegionInfo(uptr class_id) {
    523     CHECK_LT(class_id, kNumClasses);
    524     RegionInfo *regions =
    525         reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
    526     return &regions[class_id];
    527   }
    528 
    529   static uptr GetChunkIdx(uptr chunk, uptr size) {
    530     uptr offset = chunk % kRegionSize;
    531     // Here we divide by a non-constant. This is costly.
    532     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
    533     if (offset >> (SANITIZER_WORDSIZE / 2))
    534       return offset / size;
    535     return (u32)offset / (u32)size;
    536   }
    537 
    538   NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
    539                                    uptr class_id, RegionInfo *region) {
    540     BlockingMutexLock l(&region->mutex);
    541     Batch *b = region->free_list.Pop();
    542     if (b)
    543       return b;
    544     uptr size = SizeClassMap::Size(class_id);
    545     uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
    546     uptr beg_idx = region->allocated_user;
    547     uptr end_idx = beg_idx + count * size;
    548     uptr region_beg = SpaceBeg() + kRegionSize * class_id;
    549     if (end_idx + size > region->mapped_user) {
    550       // Do the mmap for the user memory.
    551       uptr map_size = kUserMapSize;
    552       while (end_idx + size > region->mapped_user + map_size)
    553         map_size += kUserMapSize;
    554       CHECK_GE(region->mapped_user + map_size, end_idx);
    555       MapWithCallback(region_beg + region->mapped_user, map_size);
    556       stat->Add(AllocatorStatMapped, map_size);
    557       region->mapped_user += map_size;
    558     }
    559     uptr total_count = (region->mapped_user - beg_idx - size)
    560         / size / count * count;
    561     region->allocated_meta += total_count * kMetadataSize;
    562     if (region->allocated_meta > region->mapped_meta) {
    563       uptr map_size = kMetaMapSize;
    564       while (region->allocated_meta > region->mapped_meta + map_size)
    565         map_size += kMetaMapSize;
    566       // Do the mmap for the metadata.
    567       CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
    568       MapWithCallback(region_beg + kRegionSize -
    569                       region->mapped_meta - map_size, map_size);
    570       region->mapped_meta += map_size;
    571     }
    572     CHECK_LE(region->allocated_meta, region->mapped_meta);
    573     if (region->mapped_user + region->mapped_meta > kRegionSize) {
    574       Printf("%s: Out of memory. Dying. ", SanitizerToolName);
    575       Printf("The process has exhausted %zuMB for size class %zu.\n",
    576           kRegionSize / 1024 / 1024, size);
    577       Die();
    578     }
    579     for (;;) {
    580       if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
    581         b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
    582       else
    583         b = (Batch*)(region_beg + beg_idx);
    584       b->count = count;
    585       for (uptr i = 0; i < count; i++)
    586         b->batch[i] = (void*)(region_beg + beg_idx + i * size);
    587       region->allocated_user += count * size;
    588       CHECK_LE(region->allocated_user, region->mapped_user);
    589       beg_idx += count * size;
    590       if (beg_idx + count * size + size > region->mapped_user)
    591         break;
    592       CHECK_GT(b->count, 0);
    593       region->free_list.Push(b);
    594     }
    595     return b;
    596   }
    597 };
    598 
    599 // Maps integers in rage [0, kSize) to u8 values.
    600 template<u64 kSize>
    601 class FlatByteMap {
    602  public:
    603   void TestOnlyInit() {
    604     internal_memset(map_, 0, sizeof(map_));
    605   }
    606 
    607   void set(uptr idx, u8 val) {
    608     CHECK_LT(idx, kSize);
    609     CHECK_EQ(0U, map_[idx]);
    610     map_[idx] = val;
    611   }
    612   u8 operator[] (uptr idx) {
    613     CHECK_LT(idx, kSize);
    614     // FIXME: CHECK may be too expensive here.
    615     return map_[idx];
    616   }
    617  private:
    618   u8 map_[kSize];
    619 };
    620 
    621 // TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
    622 // It is implemented as a two-dimensional array: array of kSize1 pointers
    623 // to kSize2-byte arrays. The secondary arrays are mmaped on demand.
    624 // Each value is initially zero and can be set to something else only once.
    625 // Setting and getting values from multiple threads is safe w/o extra locking.
    626 template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
    627 class TwoLevelByteMap {
    628  public:
    629   void TestOnlyInit() {
    630     internal_memset(map1_, 0, sizeof(map1_));
    631     mu_.Init();
    632   }
    633 
    634   void TestOnlyUnmap() {
    635     for (uptr i = 0; i < kSize1; i++) {
    636       u8 *p = Get(i);
    637       if (!p) continue;
    638       MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
    639       UnmapOrDie(p, kSize2);
    640     }
    641   }
    642 
    643   uptr size() const { return kSize1 * kSize2; }
    644   uptr size1() const { return kSize1; }
    645   uptr size2() const { return kSize2; }
    646 
    647   void set(uptr idx, u8 val) {
    648     CHECK_LT(idx, kSize1 * kSize2);
    649     u8 *map2 = GetOrCreate(idx / kSize2);
    650     CHECK_EQ(0U, map2[idx % kSize2]);
    651     map2[idx % kSize2] = val;
    652   }
    653 
    654   u8 operator[] (uptr idx) const {
    655     CHECK_LT(idx, kSize1 * kSize2);
    656     u8 *map2 = Get(idx / kSize2);
    657     if (!map2) return 0;
    658     return map2[idx % kSize2];
    659   }
    660 
    661  private:
    662   u8 *Get(uptr idx) const {
    663     CHECK_LT(idx, kSize1);
    664     return reinterpret_cast<u8 *>(
    665         atomic_load(&map1_[idx], memory_order_acquire));
    666   }
    667 
    668   u8 *GetOrCreate(uptr idx) {
    669     u8 *res = Get(idx);
    670     if (!res) {
    671       SpinMutexLock l(&mu_);
    672       if (!(res = Get(idx))) {
    673         res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
    674         MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
    675         atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
    676                      memory_order_release);
    677       }
    678     }
    679     return res;
    680   }
    681 
    682   atomic_uintptr_t map1_[kSize1];
    683   StaticSpinMutex mu_;
    684 };
    685 
    686 // SizeClassAllocator32 -- allocator for 32-bit address space.
    687 // This allocator can theoretically be used on 64-bit arch, but there it is less
    688 // efficient than SizeClassAllocator64.
    689 //
    690 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
    691 // be returned by MmapOrDie().
    692 //
    693 // Region:
    694 //   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
    695 // Since the regions are aligned by kRegionSize, there are exactly
    696 // kNumPossibleRegions possible regions in the address space and so we keep
    697 // a ByteMap possible_regions to store the size classes of each Region.
    698 // 0 size class means the region is not used by the allocator.
    699 //
    700 // One Region is used to allocate chunks of a single size class.
    701 // A Region looks like this:
    702 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
    703 //
    704 // In order to avoid false sharing the objects of this class should be
    705 // chache-line aligned.
    706 template <const uptr kSpaceBeg, const u64 kSpaceSize,
    707           const uptr kMetadataSize, class SizeClassMap,
    708           const uptr kRegionSizeLog,
    709           class ByteMap,
    710           class MapUnmapCallback = NoOpMapUnmapCallback>
    711 class SizeClassAllocator32 {
    712  public:
    713   typedef typename SizeClassMap::TransferBatch Batch;
    714   typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
    715       SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
    716   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
    717 
    718   void Init() {
    719     possible_regions.TestOnlyInit();
    720     internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
    721   }
    722 
    723   void *MapWithCallback(uptr size) {
    724     size = RoundUpTo(size, GetPageSizeCached());
    725     void *res = MmapOrDie(size, "SizeClassAllocator32");
    726     MapUnmapCallback().OnMap((uptr)res, size);
    727     return res;
    728   }
    729 
    730   void UnmapWithCallback(uptr beg, uptr size) {
    731     MapUnmapCallback().OnUnmap(beg, size);
    732     UnmapOrDie(reinterpret_cast<void *>(beg), size);
    733   }
    734 
    735   static bool CanAllocate(uptr size, uptr alignment) {
    736     return size <= SizeClassMap::kMaxSize &&
    737       alignment <= SizeClassMap::kMaxSize;
    738   }
    739 
    740   void *GetMetaData(const void *p) {
    741     CHECK(PointerIsMine(p));
    742     uptr mem = reinterpret_cast<uptr>(p);
    743     uptr beg = ComputeRegionBeg(mem);
    744     uptr size = SizeClassMap::Size(GetSizeClass(p));
    745     u32 offset = mem - beg;
    746     uptr n = offset / (u32)size;  // 32-bit division
    747     uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
    748     return reinterpret_cast<void*>(meta);
    749   }
    750 
    751   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
    752                                 uptr class_id) {
    753     CHECK_LT(class_id, kNumClasses);
    754     SizeClassInfo *sci = GetSizeClassInfo(class_id);
    755     SpinMutexLock l(&sci->mutex);
    756     if (sci->free_list.empty())
    757       PopulateFreeList(stat, c, sci, class_id);
    758     CHECK(!sci->free_list.empty());
    759     Batch *b = sci->free_list.front();
    760     sci->free_list.pop_front();
    761     return b;
    762   }
    763 
    764   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
    765     CHECK_LT(class_id, kNumClasses);
    766     SizeClassInfo *sci = GetSizeClassInfo(class_id);
    767     SpinMutexLock l(&sci->mutex);
    768     CHECK_GT(b->count, 0);
    769     sci->free_list.push_front(b);
    770   }
    771 
    772   bool PointerIsMine(const void *p) {
    773     uptr mem = reinterpret_cast<uptr>(p);
    774     if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
    775       return false;
    776     return GetSizeClass(p) != 0;
    777   }
    778 
    779   uptr GetSizeClass(const void *p) {
    780     return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
    781   }
    782 
    783   void *GetBlockBegin(const void *p) {
    784     CHECK(PointerIsMine(p));
    785     uptr mem = reinterpret_cast<uptr>(p);
    786     uptr beg = ComputeRegionBeg(mem);
    787     uptr size = SizeClassMap::Size(GetSizeClass(p));
    788     u32 offset = mem - beg;
    789     u32 n = offset / (u32)size;  // 32-bit division
    790     uptr res = beg + (n * (u32)size);
    791     return reinterpret_cast<void*>(res);
    792   }
    793 
    794   uptr GetActuallyAllocatedSize(void *p) {
    795     CHECK(PointerIsMine(p));
    796     return SizeClassMap::Size(GetSizeClass(p));
    797   }
    798 
    799   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
    800 
    801   uptr TotalMemoryUsed() {
    802     // No need to lock here.
    803     uptr res = 0;
    804     for (uptr i = 0; i < kNumPossibleRegions; i++)
    805       if (possible_regions[i])
    806         res += kRegionSize;
    807     return res;
    808   }
    809 
    810   void TestOnlyUnmap() {
    811     for (uptr i = 0; i < kNumPossibleRegions; i++)
    812       if (possible_regions[i])
    813         UnmapWithCallback((i * kRegionSize), kRegionSize);
    814   }
    815 
    816   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
    817   // introspection API.
    818   void ForceLock() {
    819     for (uptr i = 0; i < kNumClasses; i++) {
    820       GetSizeClassInfo(i)->mutex.Lock();
    821     }
    822   }
    823 
    824   void ForceUnlock() {
    825     for (int i = kNumClasses - 1; i >= 0; i--) {
    826       GetSizeClassInfo(i)->mutex.Unlock();
    827     }
    828   }
    829 
    830   // Iterate over all existing chunks.
    831   // The allocator must be locked when calling this function.
    832   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    833     for (uptr region = 0; region < kNumPossibleRegions; region++)
    834       if (possible_regions[region]) {
    835         uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
    836         uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
    837         uptr region_beg = region * kRegionSize;
    838         for (uptr chunk = region_beg;
    839              chunk < region_beg + max_chunks_in_region * chunk_size;
    840              chunk += chunk_size) {
    841           // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
    842           callback(chunk, arg);
    843         }
    844       }
    845   }
    846 
    847   void PrintStats() {
    848   }
    849 
    850   static uptr AdditionalSize() {
    851     return 0;
    852   }
    853 
    854   typedef SizeClassMap SizeClassMapT;
    855   static const uptr kNumClasses = SizeClassMap::kNumClasses;
    856 
    857  private:
    858   static const uptr kRegionSize = 1 << kRegionSizeLog;
    859   static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
    860 
    861   struct SizeClassInfo {
    862     SpinMutex mutex;
    863     IntrusiveList<Batch> free_list;
    864     char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
    865   };
    866   COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
    867 
    868   uptr ComputeRegionId(uptr mem) {
    869     uptr res = mem >> kRegionSizeLog;
    870     CHECK_LT(res, kNumPossibleRegions);
    871     return res;
    872   }
    873 
    874   uptr ComputeRegionBeg(uptr mem) {
    875     return mem & ~(kRegionSize - 1);
    876   }
    877 
    878   uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
    879     CHECK_LT(class_id, kNumClasses);
    880     uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
    881                                       "SizeClassAllocator32"));
    882     MapUnmapCallback().OnMap(res, kRegionSize);
    883     stat->Add(AllocatorStatMapped, kRegionSize);
    884     CHECK_EQ(0U, (res & (kRegionSize - 1)));
    885     possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
    886     return res;
    887   }
    888 
    889   SizeClassInfo *GetSizeClassInfo(uptr class_id) {
    890     CHECK_LT(class_id, kNumClasses);
    891     return &size_class_info_array[class_id];
    892   }
    893 
    894   void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
    895                         SizeClassInfo *sci, uptr class_id) {
    896     uptr size = SizeClassMap::Size(class_id);
    897     uptr reg = AllocateRegion(stat, class_id);
    898     uptr n_chunks = kRegionSize / (size + kMetadataSize);
    899     uptr max_count = SizeClassMap::MaxCached(class_id);
    900     Batch *b = nullptr;
    901     for (uptr i = reg; i < reg + n_chunks * size; i += size) {
    902       if (!b) {
    903         if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
    904           b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
    905         else
    906           b = (Batch*)i;
    907         b->count = 0;
    908       }
    909       b->batch[b->count++] = (void*)i;
    910       if (b->count == max_count) {
    911         CHECK_GT(b->count, 0);
    912         sci->free_list.push_back(b);
    913         b = nullptr;
    914       }
    915     }
    916     if (b) {
    917       CHECK_GT(b->count, 0);
    918       sci->free_list.push_back(b);
    919     }
    920   }
    921 
    922   ByteMap possible_regions;
    923   SizeClassInfo size_class_info_array[kNumClasses];
    924 };
    925 
    926 // Objects of this type should be used as local caches for SizeClassAllocator64
    927 // or SizeClassAllocator32. Since the typical use of this class is to have one
    928 // object per thread in TLS, is has to be POD.
    929 template<class SizeClassAllocator>
    930 struct SizeClassAllocatorLocalCache {
    931   typedef SizeClassAllocator Allocator;
    932   static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
    933 
    934   void Init(AllocatorGlobalStats *s) {
    935     stats_.Init();
    936     if (s)
    937       s->Register(&stats_);
    938   }
    939 
    940   void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
    941     Drain(allocator);
    942     if (s)
    943       s->Unregister(&stats_);
    944   }
    945 
    946   void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
    947     CHECK_NE(class_id, 0UL);
    948     CHECK_LT(class_id, kNumClasses);
    949     stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
    950     PerClass *c = &per_class_[class_id];
    951     if (UNLIKELY(c->count == 0))
    952       Refill(allocator, class_id);
    953     void *res = c->batch[--c->count];
    954     PREFETCH(c->batch[c->count - 1]);
    955     return res;
    956   }
    957 
    958   void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
    959     CHECK_NE(class_id, 0UL);
    960     CHECK_LT(class_id, kNumClasses);
    961     // If the first allocator call on a new thread is a deallocation, then
    962     // max_count will be zero, leading to check failure.
    963     InitCache();
    964     stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
    965     PerClass *c = &per_class_[class_id];
    966     CHECK_NE(c->max_count, 0UL);
    967     if (UNLIKELY(c->count == c->max_count))
    968       Drain(allocator, class_id);
    969     c->batch[c->count++] = p;
    970   }
    971 
    972   void Drain(SizeClassAllocator *allocator) {
    973     for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
    974       PerClass *c = &per_class_[class_id];
    975       while (c->count > 0)
    976         Drain(allocator, class_id);
    977     }
    978   }
    979 
    980   // private:
    981   typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
    982   typedef typename SizeClassMap::TransferBatch Batch;
    983   struct PerClass {
    984     uptr count;
    985     uptr max_count;
    986     void *batch[2 * SizeClassMap::kMaxNumCached];
    987   };
    988   PerClass per_class_[kNumClasses];
    989   AllocatorStats stats_;
    990 
    991   void InitCache() {
    992     if (per_class_[1].max_count)
    993       return;
    994     for (uptr i = 0; i < kNumClasses; i++) {
    995       PerClass *c = &per_class_[i];
    996       c->max_count = 2 * SizeClassMap::MaxCached(i);
    997     }
    998   }
    999 
   1000   NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
   1001     InitCache();
   1002     PerClass *c = &per_class_[class_id];
   1003     Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
   1004     CHECK_GT(b->count, 0);
   1005     for (uptr i = 0; i < b->count; i++)
   1006       c->batch[i] = b->batch[i];
   1007     c->count = b->count;
   1008     if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
   1009       Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
   1010   }
   1011 
   1012   NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
   1013     InitCache();
   1014     PerClass *c = &per_class_[class_id];
   1015     Batch *b;
   1016     if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
   1017       b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
   1018     else
   1019       b = (Batch*)c->batch[0];
   1020     uptr cnt = Min(c->max_count / 2, c->count);
   1021     for (uptr i = 0; i < cnt; i++) {
   1022       b->batch[i] = c->batch[i];
   1023       c->batch[i] = c->batch[i + c->max_count / 2];
   1024     }
   1025     b->count = cnt;
   1026     c->count -= cnt;
   1027     CHECK_GT(b->count, 0);
   1028     allocator->DeallocateBatch(&stats_, class_id, b);
   1029   }
   1030 };
   1031 
   1032 // This class can (de)allocate only large chunks of memory using mmap/unmap.
   1033 // The main purpose of this allocator is to cover large and rare allocation
   1034 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
   1035 template <class MapUnmapCallback = NoOpMapUnmapCallback>
   1036 class LargeMmapAllocator {
   1037  public:
   1038   void InitLinkerInitialized(bool may_return_null) {
   1039     page_size_ = GetPageSizeCached();
   1040     atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
   1041   }
   1042 
   1043   void Init(bool may_return_null) {
   1044     internal_memset(this, 0, sizeof(*this));
   1045     InitLinkerInitialized(may_return_null);
   1046   }
   1047 
   1048   void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
   1049     CHECK(IsPowerOfTwo(alignment));
   1050     uptr map_size = RoundUpMapSize(size);
   1051     if (alignment > page_size_)
   1052       map_size += alignment;
   1053     // Overflow.
   1054     if (map_size < size)
   1055       return ReturnNullOrDie();
   1056     uptr map_beg = reinterpret_cast<uptr>(
   1057         MmapOrDie(map_size, "LargeMmapAllocator"));
   1058     CHECK(IsAligned(map_beg, page_size_));
   1059     MapUnmapCallback().OnMap(map_beg, map_size);
   1060     uptr map_end = map_beg + map_size;
   1061     uptr res = map_beg + page_size_;
   1062     if (res & (alignment - 1))  // Align.
   1063       res += alignment - (res & (alignment - 1));
   1064     CHECK(IsAligned(res, alignment));
   1065     CHECK(IsAligned(res, page_size_));
   1066     CHECK_GE(res + size, map_beg);
   1067     CHECK_LE(res + size, map_end);
   1068     Header *h = GetHeader(res);
   1069     h->size = size;
   1070     h->map_beg = map_beg;
   1071     h->map_size = map_size;
   1072     uptr size_log = MostSignificantSetBitIndex(map_size);
   1073     CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
   1074     {
   1075       SpinMutexLock l(&mutex_);
   1076       uptr idx = n_chunks_++;
   1077       chunks_sorted_ = false;
   1078       CHECK_LT(idx, kMaxNumChunks);
   1079       h->chunk_idx = idx;
   1080       chunks_[idx] = h;
   1081       stats.n_allocs++;
   1082       stats.currently_allocated += map_size;
   1083       stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
   1084       stats.by_size_log[size_log]++;
   1085       stat->Add(AllocatorStatAllocated, map_size);
   1086       stat->Add(AllocatorStatMapped, map_size);
   1087     }
   1088     return reinterpret_cast<void*>(res);
   1089   }
   1090 
   1091   void *ReturnNullOrDie() {
   1092     if (atomic_load(&may_return_null_, memory_order_acquire))
   1093       return nullptr;
   1094     ReportAllocatorCannotReturnNull();
   1095   }
   1096 
   1097   void SetMayReturnNull(bool may_return_null) {
   1098     atomic_store(&may_return_null_, may_return_null, memory_order_release);
   1099   }
   1100 
   1101   void Deallocate(AllocatorStats *stat, void *p) {
   1102     Header *h = GetHeader(p);
   1103     {
   1104       SpinMutexLock l(&mutex_);
   1105       uptr idx = h->chunk_idx;
   1106       CHECK_EQ(chunks_[idx], h);
   1107       CHECK_LT(idx, n_chunks_);
   1108       chunks_[idx] = chunks_[n_chunks_ - 1];
   1109       chunks_[idx]->chunk_idx = idx;
   1110       n_chunks_--;
   1111       chunks_sorted_ = false;
   1112       stats.n_frees++;
   1113       stats.currently_allocated -= h->map_size;
   1114       stat->Sub(AllocatorStatAllocated, h->map_size);
   1115       stat->Sub(AllocatorStatMapped, h->map_size);
   1116     }
   1117     MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
   1118     UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
   1119   }
   1120 
   1121   uptr TotalMemoryUsed() {
   1122     SpinMutexLock l(&mutex_);
   1123     uptr res = 0;
   1124     for (uptr i = 0; i < n_chunks_; i++) {
   1125       Header *h = chunks_[i];
   1126       CHECK_EQ(h->chunk_idx, i);
   1127       res += RoundUpMapSize(h->size);
   1128     }
   1129     return res;
   1130   }
   1131 
   1132   bool PointerIsMine(const void *p) {
   1133     return GetBlockBegin(p) != nullptr;
   1134   }
   1135 
   1136   uptr GetActuallyAllocatedSize(void *p) {
   1137     return RoundUpTo(GetHeader(p)->size, page_size_);
   1138   }
   1139 
   1140   // At least page_size_/2 metadata bytes is available.
   1141   void *GetMetaData(const void *p) {
   1142     // Too slow: CHECK_EQ(p, GetBlockBegin(p));
   1143     if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
   1144       Printf("%s: bad pointer %p\n", SanitizerToolName, p);
   1145       CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
   1146     }
   1147     return GetHeader(p) + 1;
   1148   }
   1149 
   1150   void *GetBlockBegin(const void *ptr) {
   1151     uptr p = reinterpret_cast<uptr>(ptr);
   1152     SpinMutexLock l(&mutex_);
   1153     uptr nearest_chunk = 0;
   1154     // Cache-friendly linear search.
   1155     for (uptr i = 0; i < n_chunks_; i++) {
   1156       uptr ch = reinterpret_cast<uptr>(chunks_[i]);
   1157       if (p < ch) continue;  // p is at left to this chunk, skip it.
   1158       if (p - ch < p - nearest_chunk)
   1159         nearest_chunk = ch;
   1160     }
   1161     if (!nearest_chunk)
   1162       return nullptr;
   1163     Header *h = reinterpret_cast<Header *>(nearest_chunk);
   1164     CHECK_GE(nearest_chunk, h->map_beg);
   1165     CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
   1166     CHECK_LE(nearest_chunk, p);
   1167     if (h->map_beg + h->map_size <= p)
   1168       return nullptr;
   1169     return GetUser(h);
   1170   }
   1171 
   1172   // This function does the same as GetBlockBegin, but is much faster.
   1173   // Must be called with the allocator locked.
   1174   void *GetBlockBeginFastLocked(void *ptr) {
   1175     mutex_.CheckLocked();
   1176     uptr p = reinterpret_cast<uptr>(ptr);
   1177     uptr n = n_chunks_;
   1178     if (!n) return nullptr;
   1179     if (!chunks_sorted_) {
   1180       // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
   1181       SortArray(reinterpret_cast<uptr*>(chunks_), n);
   1182       for (uptr i = 0; i < n; i++)
   1183         chunks_[i]->chunk_idx = i;
   1184       chunks_sorted_ = true;
   1185       min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
   1186       max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
   1187           chunks_[n - 1]->map_size;
   1188     }
   1189     if (p < min_mmap_ || p >= max_mmap_)
   1190       return nullptr;
   1191     uptr beg = 0, end = n - 1;
   1192     // This loop is a log(n) lower_bound. It does not check for the exact match
   1193     // to avoid expensive cache-thrashing loads.
   1194     while (end - beg >= 2) {
   1195       uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
   1196       if (p < reinterpret_cast<uptr>(chunks_[mid]))
   1197         end = mid - 1;  // We are not interested in chunks_[mid].
   1198       else
   1199         beg = mid;  // chunks_[mid] may still be what we want.
   1200     }
   1201 
   1202     if (beg < end) {
   1203       CHECK_EQ(beg + 1, end);
   1204       // There are 2 chunks left, choose one.
   1205       if (p >= reinterpret_cast<uptr>(chunks_[end]))
   1206         beg = end;
   1207     }
   1208 
   1209     Header *h = chunks_[beg];
   1210     if (h->map_beg + h->map_size <= p || p < h->map_beg)
   1211       return nullptr;
   1212     return GetUser(h);
   1213   }
   1214 
   1215   void PrintStats() {
   1216     Printf("Stats: LargeMmapAllocator: allocated %zd times, "
   1217            "remains %zd (%zd K) max %zd M; by size logs: ",
   1218            stats.n_allocs, stats.n_allocs - stats.n_frees,
   1219            stats.currently_allocated >> 10, stats.max_allocated >> 20);
   1220     for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
   1221       uptr c = stats.by_size_log[i];
   1222       if (!c) continue;
   1223       Printf("%zd:%zd; ", i, c);
   1224     }
   1225     Printf("\n");
   1226   }
   1227 
   1228   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
   1229   // introspection API.
   1230   void ForceLock() {
   1231     mutex_.Lock();
   1232   }
   1233 
   1234   void ForceUnlock() {
   1235     mutex_.Unlock();
   1236   }
   1237 
   1238   // Iterate over all existing chunks.
   1239   // The allocator must be locked when calling this function.
   1240   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
   1241     for (uptr i = 0; i < n_chunks_; i++)
   1242       callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
   1243   }
   1244 
   1245  private:
   1246   static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
   1247   struct Header {
   1248     uptr map_beg;
   1249     uptr map_size;
   1250     uptr size;
   1251     uptr chunk_idx;
   1252   };
   1253 
   1254   Header *GetHeader(uptr p) {
   1255     CHECK(IsAligned(p, page_size_));
   1256     return reinterpret_cast<Header*>(p - page_size_);
   1257   }
   1258   Header *GetHeader(const void *p) {
   1259     return GetHeader(reinterpret_cast<uptr>(p));
   1260   }
   1261 
   1262   void *GetUser(Header *h) {
   1263     CHECK(IsAligned((uptr)h, page_size_));
   1264     return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
   1265   }
   1266 
   1267   uptr RoundUpMapSize(uptr size) {
   1268     return RoundUpTo(size, page_size_) + page_size_;
   1269   }
   1270 
   1271   uptr page_size_;
   1272   Header *chunks_[kMaxNumChunks];
   1273   uptr n_chunks_;
   1274   uptr min_mmap_, max_mmap_;
   1275   bool chunks_sorted_;
   1276   struct Stats {
   1277     uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
   1278   } stats;
   1279   atomic_uint8_t may_return_null_;
   1280   SpinMutex mutex_;
   1281 };
   1282 
   1283 // This class implements a complete memory allocator by using two
   1284 // internal allocators:
   1285 // PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
   1286 //  When allocating 2^x bytes it should return 2^x aligned chunk.
   1287 // PrimaryAllocator is used via a local AllocatorCache.
   1288 // SecondaryAllocator can allocate anything, but is not efficient.
   1289 template <class PrimaryAllocator, class AllocatorCache,
   1290           class SecondaryAllocator>  // NOLINT
   1291 class CombinedAllocator {
   1292  public:
   1293   void InitCommon(bool may_return_null) {
   1294     primary_.Init();
   1295     atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
   1296   }
   1297 
   1298   void InitLinkerInitialized(bool may_return_null) {
   1299     secondary_.InitLinkerInitialized(may_return_null);
   1300     stats_.InitLinkerInitialized();
   1301     InitCommon(may_return_null);
   1302   }
   1303 
   1304   void Init(bool may_return_null) {
   1305     secondary_.Init(may_return_null);
   1306     stats_.Init();
   1307     InitCommon(may_return_null);
   1308   }
   1309 
   1310   void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
   1311                  bool cleared = false, bool check_rss_limit = false) {
   1312     // Returning 0 on malloc(0) may break a lot of code.
   1313     if (size == 0)
   1314       size = 1;
   1315     if (size + alignment < size)
   1316       return ReturnNullOrDie();
   1317     if (check_rss_limit && RssLimitIsExceeded())
   1318       return ReturnNullOrDie();
   1319     if (alignment > 8)
   1320       size = RoundUpTo(size, alignment);
   1321     void *res;
   1322     bool from_primary = primary_.CanAllocate(size, alignment);
   1323     if (from_primary)
   1324       res = cache->Allocate(&primary_, primary_.ClassID(size));
   1325     else
   1326       res = secondary_.Allocate(&stats_, size, alignment);
   1327     if (alignment > 8)
   1328       CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
   1329     if (cleared && res && from_primary)
   1330       internal_bzero_aligned16(res, RoundUpTo(size, 16));
   1331     return res;
   1332   }
   1333 
   1334   bool MayReturnNull() const {
   1335     return atomic_load(&may_return_null_, memory_order_acquire);
   1336   }
   1337 
   1338   void *ReturnNullOrDie() {
   1339     if (MayReturnNull())
   1340       return nullptr;
   1341     ReportAllocatorCannotReturnNull();
   1342   }
   1343 
   1344   void SetMayReturnNull(bool may_return_null) {
   1345     secondary_.SetMayReturnNull(may_return_null);
   1346     atomic_store(&may_return_null_, may_return_null, memory_order_release);
   1347   }
   1348 
   1349   bool RssLimitIsExceeded() {
   1350     return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire);
   1351   }
   1352 
   1353   void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) {
   1354     atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded,
   1355                  memory_order_release);
   1356   }
   1357 
   1358   void Deallocate(AllocatorCache *cache, void *p) {
   1359     if (!p) return;
   1360     if (primary_.PointerIsMine(p))
   1361       cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
   1362     else
   1363       secondary_.Deallocate(&stats_, p);
   1364   }
   1365 
   1366   void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
   1367                    uptr alignment) {
   1368     if (!p)
   1369       return Allocate(cache, new_size, alignment);
   1370     if (!new_size) {
   1371       Deallocate(cache, p);
   1372       return nullptr;
   1373     }
   1374     CHECK(PointerIsMine(p));
   1375     uptr old_size = GetActuallyAllocatedSize(p);
   1376     uptr memcpy_size = Min(new_size, old_size);
   1377     void *new_p = Allocate(cache, new_size, alignment);
   1378     if (new_p)
   1379       internal_memcpy(new_p, p, memcpy_size);
   1380     Deallocate(cache, p);
   1381     return new_p;
   1382   }
   1383 
   1384   bool PointerIsMine(void *p) {
   1385     if (primary_.PointerIsMine(p))
   1386       return true;
   1387     return secondary_.PointerIsMine(p);
   1388   }
   1389 
   1390   bool FromPrimary(void *p) {
   1391     return primary_.PointerIsMine(p);
   1392   }
   1393 
   1394   void *GetMetaData(const void *p) {
   1395     if (primary_.PointerIsMine(p))
   1396       return primary_.GetMetaData(p);
   1397     return secondary_.GetMetaData(p);
   1398   }
   1399 
   1400   void *GetBlockBegin(const void *p) {
   1401     if (primary_.PointerIsMine(p))
   1402       return primary_.GetBlockBegin(p);
   1403     return secondary_.GetBlockBegin(p);
   1404   }
   1405 
   1406   // This function does the same as GetBlockBegin, but is much faster.
   1407   // Must be called with the allocator locked.
   1408   void *GetBlockBeginFastLocked(void *p) {
   1409     if (primary_.PointerIsMine(p))
   1410       return primary_.GetBlockBegin(p);
   1411     return secondary_.GetBlockBeginFastLocked(p);
   1412   }
   1413 
   1414   uptr GetActuallyAllocatedSize(void *p) {
   1415     if (primary_.PointerIsMine(p))
   1416       return primary_.GetActuallyAllocatedSize(p);
   1417     return secondary_.GetActuallyAllocatedSize(p);
   1418   }
   1419 
   1420   uptr TotalMemoryUsed() {
   1421     return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
   1422   }
   1423 
   1424   void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
   1425 
   1426   void InitCache(AllocatorCache *cache) {
   1427     cache->Init(&stats_);
   1428   }
   1429 
   1430   void DestroyCache(AllocatorCache *cache) {
   1431     cache->Destroy(&primary_, &stats_);
   1432   }
   1433 
   1434   void SwallowCache(AllocatorCache *cache) {
   1435     cache->Drain(&primary_);
   1436   }
   1437 
   1438   void GetStats(AllocatorStatCounters s) const {
   1439     stats_.Get(s);
   1440   }
   1441 
   1442   void PrintStats() {
   1443     primary_.PrintStats();
   1444     secondary_.PrintStats();
   1445   }
   1446 
   1447   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
   1448   // introspection API.
   1449   void ForceLock() {
   1450     primary_.ForceLock();
   1451     secondary_.ForceLock();
   1452   }
   1453 
   1454   void ForceUnlock() {
   1455     secondary_.ForceUnlock();
   1456     primary_.ForceUnlock();
   1457   }
   1458 
   1459   // Iterate over all existing chunks.
   1460   // The allocator must be locked when calling this function.
   1461   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
   1462     primary_.ForEachChunk(callback, arg);
   1463     secondary_.ForEachChunk(callback, arg);
   1464   }
   1465 
   1466  private:
   1467   PrimaryAllocator primary_;
   1468   SecondaryAllocator secondary_;
   1469   AllocatorGlobalStats stats_;
   1470   atomic_uint8_t may_return_null_;
   1471   atomic_uint8_t rss_limit_is_exceeded_;
   1472 };
   1473 
   1474 // Returns true if calloc(size, n) should return 0 due to overflow in size*n.
   1475 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
   1476 
   1477 } // namespace __sanitizer
   1478 
   1479 #endif // SANITIZER_ALLOCATOR_H
   1480