Home | History | Annotate | Download | only in sanitizer_common
      1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is shared between run-time libraries of sanitizers.
     11 //
     12 // It declares common functions and classes that are used in both runtimes.
     13 // Implementation of some functions are provided in sanitizer_common, while
     14 // others must be defined by run-time library itself.
     15 //===----------------------------------------------------------------------===//
     16 #ifndef SANITIZER_COMMON_H
     17 #define SANITIZER_COMMON_H
     18 
     19 #include "sanitizer_flags.h"
     20 #include "sanitizer_interface_internal.h"
     21 #include "sanitizer_internal_defs.h"
     22 #include "sanitizer_libc.h"
     23 #include "sanitizer_list.h"
     24 #include "sanitizer_mutex.h"
     25 
     26 #if defined(_MSC_VER) && !defined(__clang__)
     27 extern "C" void _ReadWriteBarrier();
     28 #pragma intrinsic(_ReadWriteBarrier)
     29 #endif
     30 
     31 namespace __sanitizer {
     32 struct StackTrace;
     33 struct AddressInfo;
     34 
     35 // Constants.
     36 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
     37 const uptr kWordSizeInBits = 8 * kWordSize;
     38 
     39 #if defined(__powerpc__) || defined(__powerpc64__)
     40   const uptr kCacheLineSize = 128;
     41 #else
     42   const uptr kCacheLineSize = 64;
     43 #endif
     44 
     45 const uptr kMaxPathLength = 4096;
     46 
     47 const uptr kMaxThreadStackSize = 1 << 30;  // 1Gb
     48 
     49 static const uptr kErrorMessageBufferSize = 1 << 16;
     50 
     51 // Denotes fake PC values that come from JIT/JAVA/etc.
     52 // For such PC values __tsan_symbolize_external() will be called.
     53 const u64 kExternalPCBit = 1ULL << 60;
     54 
     55 extern const char *SanitizerToolName;  // Can be changed by the tool.
     56 
     57 extern atomic_uint32_t current_verbosity;
     58 INLINE void SetVerbosity(int verbosity) {
     59   atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
     60 }
     61 INLINE int Verbosity() {
     62   return atomic_load(&current_verbosity, memory_order_relaxed);
     63 }
     64 
     65 uptr GetPageSize();
     66 extern uptr PageSizeCached;
     67 INLINE uptr GetPageSizeCached() {
     68   if (!PageSizeCached)
     69     PageSizeCached = GetPageSize();
     70   return PageSizeCached;
     71 }
     72 uptr GetMmapGranularity();
     73 uptr GetMaxVirtualAddress();
     74 // Threads
     75 uptr GetTid();
     76 uptr GetThreadSelf();
     77 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
     78                                 uptr *stack_bottom);
     79 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
     80                           uptr *tls_addr, uptr *tls_size);
     81 
     82 // Memory management
     83 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
     84 INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
     85   return MmapOrDie(size, mem_type, /*raw_report*/ true);
     86 }
     87 void UnmapOrDie(void *addr, uptr size);
     88 void *MmapFixedNoReserve(uptr fixed_addr, uptr size,
     89                          const char *name = nullptr);
     90 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
     91 void *MmapFixedOrDie(uptr fixed_addr, uptr size);
     92 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
     93 void *MmapNoAccess(uptr size);
     94 // Map aligned chunk of address space; size and alignment are powers of two.
     95 void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type);
     96 // Disallow access to a memory range.  Use MmapFixedNoAccess to allocate an
     97 // unaccessible memory.
     98 bool MprotectNoAccess(uptr addr, uptr size);
     99 bool MprotectReadOnly(uptr addr, uptr size);
    100 
    101 // Used to check if we can map shadow memory to a fixed location.
    102 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
    103 void FlushUnneededShadowMemory(uptr addr, uptr size);
    104 void IncreaseTotalMmap(uptr size);
    105 void DecreaseTotalMmap(uptr size);
    106 uptr GetRSS();
    107 void NoHugePagesInRegion(uptr addr, uptr length);
    108 void DontDumpShadowMemory(uptr addr, uptr length);
    109 // Check if the built VMA size matches the runtime one.
    110 void CheckVMASize();
    111 void RunMallocHooks(const void *ptr, uptr size);
    112 void RunFreeHooks(const void *ptr);
    113 
    114 // InternalScopedBuffer can be used instead of large stack arrays to
    115 // keep frame size low.
    116 // FIXME: use InternalAlloc instead of MmapOrDie once
    117 // InternalAlloc is made libc-free.
    118 template<typename T>
    119 class InternalScopedBuffer {
    120  public:
    121   explicit InternalScopedBuffer(uptr cnt) {
    122     cnt_ = cnt;
    123     ptr_ = (T*)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer");
    124   }
    125   ~InternalScopedBuffer() {
    126     UnmapOrDie(ptr_, cnt_ * sizeof(T));
    127   }
    128   T &operator[](uptr i) { return ptr_[i]; }
    129   T *data() { return ptr_; }
    130   uptr size() { return cnt_ * sizeof(T); }
    131 
    132  private:
    133   T *ptr_;
    134   uptr cnt_;
    135   // Disallow evil constructors.
    136   InternalScopedBuffer(const InternalScopedBuffer&);
    137   void operator=(const InternalScopedBuffer&);
    138 };
    139 
    140 class InternalScopedString : public InternalScopedBuffer<char> {
    141  public:
    142   explicit InternalScopedString(uptr max_length)
    143       : InternalScopedBuffer<char>(max_length), length_(0) {
    144     (*this)[0] = '\0';
    145   }
    146   uptr length() { return length_; }
    147   void clear() {
    148     (*this)[0] = '\0';
    149     length_ = 0;
    150   }
    151   void append(const char *format, ...);
    152 
    153  private:
    154   uptr length_;
    155 };
    156 
    157 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
    158 // constructor, so all instances of LowLevelAllocator should be
    159 // linker initialized.
    160 class LowLevelAllocator {
    161  public:
    162   // Requires an external lock.
    163   void *Allocate(uptr size);
    164  private:
    165   char *allocated_end_;
    166   char *allocated_current_;
    167 };
    168 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
    169 // Allows to register tool-specific callbacks for LowLevelAllocator.
    170 // Passing NULL removes the callback.
    171 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
    172 
    173 // IO
    174 void RawWrite(const char *buffer);
    175 bool ColorizeReports();
    176 void RemoveANSIEscapeSequencesFromString(char *buffer);
    177 void Printf(const char *format, ...);
    178 void Report(const char *format, ...);
    179 void SetPrintfAndReportCallback(void (*callback)(const char *));
    180 #define VReport(level, ...)                                              \
    181   do {                                                                   \
    182     if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
    183   } while (0)
    184 #define VPrintf(level, ...)                                              \
    185   do {                                                                   \
    186     if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
    187   } while (0)
    188 
    189 // Can be used to prevent mixing error reports from different sanitizers.
    190 extern StaticSpinMutex CommonSanitizerReportMutex;
    191 
    192 struct ReportFile {
    193   void Write(const char *buffer, uptr length);
    194   bool SupportsColors();
    195   void SetReportPath(const char *path);
    196 
    197   // Don't use fields directly. They are only declared public to allow
    198   // aggregate initialization.
    199 
    200   // Protects fields below.
    201   StaticSpinMutex *mu;
    202   // Opened file descriptor. Defaults to stderr. It may be equal to
    203   // kInvalidFd, in which case new file will be opened when necessary.
    204   fd_t fd;
    205   // Path prefix of report file, set via __sanitizer_set_report_path.
    206   char path_prefix[kMaxPathLength];
    207   // Full path to report, obtained as <path_prefix>.PID
    208   char full_path[kMaxPathLength];
    209   // PID of the process that opened fd. If a fork() occurs,
    210   // the PID of child will be different from fd_pid.
    211   uptr fd_pid;
    212 
    213  private:
    214   void ReopenIfNecessary();
    215 };
    216 extern ReportFile report_file;
    217 
    218 extern uptr stoptheworld_tracer_pid;
    219 extern uptr stoptheworld_tracer_ppid;
    220 
    221 enum FileAccessMode {
    222   RdOnly,
    223   WrOnly,
    224   RdWr
    225 };
    226 
    227 // Returns kInvalidFd on error.
    228 fd_t OpenFile(const char *filename, FileAccessMode mode,
    229               error_t *errno_p = nullptr);
    230 void CloseFile(fd_t);
    231 
    232 // Return true on success, false on error.
    233 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size,
    234                   uptr *bytes_read = nullptr, error_t *error_p = nullptr);
    235 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size,
    236                  uptr *bytes_written = nullptr, error_t *error_p = nullptr);
    237 
    238 bool RenameFile(const char *oldpath, const char *newpath,
    239                 error_t *error_p = nullptr);
    240 
    241 // Scoped file handle closer.
    242 struct FileCloser {
    243   explicit FileCloser(fd_t fd) : fd(fd) {}
    244   ~FileCloser() { CloseFile(fd); }
    245   fd_t fd;
    246 };
    247 
    248 bool SupportsColoredOutput(fd_t fd);
    249 
    250 // Opens the file 'file_name" and reads up to 'max_len' bytes.
    251 // The resulting buffer is mmaped and stored in '*buff'.
    252 // The size of the mmaped region is stored in '*buff_size'.
    253 // The total number of read bytes is stored in '*read_len'.
    254 // Returns true if file was successfully opened and read.
    255 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
    256                       uptr *read_len, uptr max_len = 1 << 26,
    257                       error_t *errno_p = nullptr);
    258 // Maps given file to virtual memory, and returns pointer to it
    259 // (or NULL if mapping fails). Stores the size of mmaped region
    260 // in '*buff_size'.
    261 void *MapFileToMemory(const char *file_name, uptr *buff_size);
    262 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset);
    263 
    264 bool IsAccessibleMemoryRange(uptr beg, uptr size);
    265 
    266 // Error report formatting.
    267 const char *StripPathPrefix(const char *filepath,
    268                             const char *strip_file_prefix);
    269 // Strip the directories from the module name.
    270 const char *StripModuleName(const char *module);
    271 
    272 // OS
    273 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
    274 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
    275 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
    276 const char *GetProcessName();
    277 void UpdateProcessName();
    278 void CacheBinaryName();
    279 void DisableCoreDumperIfNecessary();
    280 void DumpProcessMap();
    281 bool FileExists(const char *filename);
    282 const char *GetEnv(const char *name);
    283 bool SetEnv(const char *name, const char *value);
    284 const char *GetPwd();
    285 char *FindPathToBinary(const char *name);
    286 bool IsPathSeparator(const char c);
    287 bool IsAbsolutePath(const char *path);
    288 // Starts a subprocess and returs its pid.
    289 // If *_fd parameters are not kInvalidFd their corresponding input/output
    290 // streams will be redirect to the file. The files will always be closed
    291 // in parent process even in case of an error.
    292 // The child process will close all fds after STDERR_FILENO
    293 // before passing control to a program.
    294 pid_t StartSubprocess(const char *filename, const char *const argv[],
    295                       fd_t stdin_fd = kInvalidFd, fd_t stdout_fd = kInvalidFd,
    296                       fd_t stderr_fd = kInvalidFd);
    297 // Checks if specified process is still running
    298 bool IsProcessRunning(pid_t pid);
    299 // Waits for the process to finish and returns its exit code.
    300 // Returns -1 in case of an error.
    301 int WaitForProcess(pid_t pid);
    302 
    303 u32 GetUid();
    304 void ReExec();
    305 char **GetArgv();
    306 void PrintCmdline();
    307 bool StackSizeIsUnlimited();
    308 uptr GetStackSizeLimitInBytes();
    309 void SetStackSizeLimitInBytes(uptr limit);
    310 bool AddressSpaceIsUnlimited();
    311 void SetAddressSpaceUnlimited();
    312 void AdjustStackSize(void *attr);
    313 void PrepareForSandboxing(__sanitizer_sandbox_arguments *args);
    314 void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
    315 void SetSandboxingCallback(void (*f)());
    316 
    317 void CoverageUpdateMapping();
    318 void CovBeforeFork();
    319 void CovAfterFork(int child_pid);
    320 
    321 void InitializeCoverage(bool enabled, const char *coverage_dir);
    322 void ReInitializeCoverage(bool enabled, const char *coverage_dir);
    323 
    324 void InitTlsSize();
    325 uptr GetTlsSize();
    326 
    327 // Other
    328 void SleepForSeconds(int seconds);
    329 void SleepForMillis(int millis);
    330 u64 NanoTime();
    331 int Atexit(void (*function)(void));
    332 void SortArray(uptr *array, uptr size);
    333 bool TemplateMatch(const char *templ, const char *str);
    334 
    335 // Exit
    336 void NORETURN Abort();
    337 void NORETURN Die();
    338 void NORETURN
    339 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
    340 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
    341                                       const char *mmap_type, error_t err,
    342                                       bool raw_report = false);
    343 
    344 // Set the name of the current thread to 'name', return true on succees.
    345 // The name may be truncated to a system-dependent limit.
    346 bool SanitizerSetThreadName(const char *name);
    347 // Get the name of the current thread (no more than max_len bytes),
    348 // return true on succees. name should have space for at least max_len+1 bytes.
    349 bool SanitizerGetThreadName(char *name, int max_len);
    350 
    351 // Specific tools may override behavior of "Die" and "CheckFailed" functions
    352 // to do tool-specific job.
    353 typedef void (*DieCallbackType)(void);
    354 
    355 // It's possible to add several callbacks that would be run when "Die" is
    356 // called. The callbacks will be run in the opposite order. The tools are
    357 // strongly recommended to setup all callbacks during initialization, when there
    358 // is only a single thread.
    359 bool AddDieCallback(DieCallbackType callback);
    360 bool RemoveDieCallback(DieCallbackType callback);
    361 
    362 void SetUserDieCallback(DieCallbackType callback);
    363 
    364 typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
    365                                        u64, u64);
    366 void SetCheckFailedCallback(CheckFailedCallbackType callback);
    367 
    368 // Callback will be called if soft_rss_limit_mb is given and the limit is
    369 // exceeded (exceeded==true) or if rss went down below the limit
    370 // (exceeded==false).
    371 // The callback should be registered once at the tool init time.
    372 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
    373 
    374 // Functions related to signal handling.
    375 typedef void (*SignalHandlerType)(int, void *, void *);
    376 bool IsHandledDeadlySignal(int signum);
    377 void InstallDeadlySignalHandlers(SignalHandlerType handler);
    378 // Alternative signal stack (POSIX-only).
    379 void SetAlternateSignalStack();
    380 void UnsetAlternateSignalStack();
    381 
    382 // We don't want a summary too long.
    383 const int kMaxSummaryLength = 1024;
    384 // Construct a one-line string:
    385 //   SUMMARY: SanitizerToolName: error_message
    386 // and pass it to __sanitizer_report_error_summary.
    387 void ReportErrorSummary(const char *error_message);
    388 // Same as above, but construct error_message as:
    389 //   error_type file:line[:column][ function]
    390 void ReportErrorSummary(const char *error_type, const AddressInfo &info);
    391 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
    392 void ReportErrorSummary(const char *error_type, StackTrace *trace);
    393 
    394 // Math
    395 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
    396 extern "C" {
    397 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);  // NOLINT
    398 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);  // NOLINT
    399 #if defined(_WIN64)
    400 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);  // NOLINT
    401 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);  // NOLINT
    402 #endif
    403 }
    404 #endif
    405 
    406 INLINE uptr MostSignificantSetBitIndex(uptr x) {
    407   CHECK_NE(x, 0U);
    408   unsigned long up;  // NOLINT
    409 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
    410 # ifdef _WIN64
    411   up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
    412 # else
    413   up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
    414 # endif
    415 #elif defined(_WIN64)
    416   _BitScanReverse64(&up, x);
    417 #else
    418   _BitScanReverse(&up, x);
    419 #endif
    420   return up;
    421 }
    422 
    423 INLINE uptr LeastSignificantSetBitIndex(uptr x) {
    424   CHECK_NE(x, 0U);
    425   unsigned long up;  // NOLINT
    426 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
    427 # ifdef _WIN64
    428   up = __builtin_ctzll(x);
    429 # else
    430   up = __builtin_ctzl(x);
    431 # endif
    432 #elif defined(_WIN64)
    433   _BitScanForward64(&up, x);
    434 #else
    435   _BitScanForward(&up, x);
    436 #endif
    437   return up;
    438 }
    439 
    440 INLINE bool IsPowerOfTwo(uptr x) {
    441   return (x & (x - 1)) == 0;
    442 }
    443 
    444 INLINE uptr RoundUpToPowerOfTwo(uptr size) {
    445   CHECK(size);
    446   if (IsPowerOfTwo(size)) return size;
    447 
    448   uptr up = MostSignificantSetBitIndex(size);
    449   CHECK(size < (1ULL << (up + 1)));
    450   CHECK(size > (1ULL << up));
    451   return 1ULL << (up + 1);
    452 }
    453 
    454 INLINE uptr RoundUpTo(uptr size, uptr boundary) {
    455   RAW_CHECK(IsPowerOfTwo(boundary));
    456   return (size + boundary - 1) & ~(boundary - 1);
    457 }
    458 
    459 INLINE uptr RoundDownTo(uptr x, uptr boundary) {
    460   return x & ~(boundary - 1);
    461 }
    462 
    463 INLINE bool IsAligned(uptr a, uptr alignment) {
    464   return (a & (alignment - 1)) == 0;
    465 }
    466 
    467 INLINE uptr Log2(uptr x) {
    468   CHECK(IsPowerOfTwo(x));
    469   return LeastSignificantSetBitIndex(x);
    470 }
    471 
    472 // Don't use std::min, std::max or std::swap, to minimize dependency
    473 // on libstdc++.
    474 template<class T> T Min(T a, T b) { return a < b ? a : b; }
    475 template<class T> T Max(T a, T b) { return a > b ? a : b; }
    476 template<class T> void Swap(T& a, T& b) {
    477   T tmp = a;
    478   a = b;
    479   b = tmp;
    480 }
    481 
    482 // Char handling
    483 INLINE bool IsSpace(int c) {
    484   return (c == ' ') || (c == '\n') || (c == '\t') ||
    485          (c == '\f') || (c == '\r') || (c == '\v');
    486 }
    487 INLINE bool IsDigit(int c) {
    488   return (c >= '0') && (c <= '9');
    489 }
    490 INLINE int ToLower(int c) {
    491   return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
    492 }
    493 
    494 // A low-level vector based on mmap. May incur a significant memory overhead for
    495 // small vectors.
    496 // WARNING: The current implementation supports only POD types.
    497 template<typename T>
    498 class InternalMmapVectorNoCtor {
    499  public:
    500   void Initialize(uptr initial_capacity) {
    501     capacity_ = Max(initial_capacity, (uptr)1);
    502     size_ = 0;
    503     data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor");
    504   }
    505   void Destroy() {
    506     UnmapOrDie(data_, capacity_ * sizeof(T));
    507   }
    508   T &operator[](uptr i) {
    509     CHECK_LT(i, size_);
    510     return data_[i];
    511   }
    512   const T &operator[](uptr i) const {
    513     CHECK_LT(i, size_);
    514     return data_[i];
    515   }
    516   void push_back(const T &element) {
    517     CHECK_LE(size_, capacity_);
    518     if (size_ == capacity_) {
    519       uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
    520       Resize(new_capacity);
    521     }
    522     internal_memcpy(&data_[size_++], &element, sizeof(T));
    523   }
    524   T &back() {
    525     CHECK_GT(size_, 0);
    526     return data_[size_ - 1];
    527   }
    528   void pop_back() {
    529     CHECK_GT(size_, 0);
    530     size_--;
    531   }
    532   uptr size() const {
    533     return size_;
    534   }
    535   const T *data() const {
    536     return data_;
    537   }
    538   T *data() {
    539     return data_;
    540   }
    541   uptr capacity() const {
    542     return capacity_;
    543   }
    544 
    545   void clear() { size_ = 0; }
    546   bool empty() const { return size() == 0; }
    547 
    548   const T *begin() const {
    549     return data();
    550   }
    551   T *begin() {
    552     return data();
    553   }
    554   const T *end() const {
    555     return data() + size();
    556   }
    557   T *end() {
    558     return data() + size();
    559   }
    560 
    561  private:
    562   void Resize(uptr new_capacity) {
    563     CHECK_GT(new_capacity, 0);
    564     CHECK_LE(size_, new_capacity);
    565     T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T),
    566                                  "InternalMmapVector");
    567     internal_memcpy(new_data, data_, size_ * sizeof(T));
    568     T *old_data = data_;
    569     data_ = new_data;
    570     UnmapOrDie(old_data, capacity_ * sizeof(T));
    571     capacity_ = new_capacity;
    572   }
    573 
    574   T *data_;
    575   uptr capacity_;
    576   uptr size_;
    577 };
    578 
    579 template<typename T>
    580 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
    581  public:
    582   explicit InternalMmapVector(uptr initial_capacity) {
    583     InternalMmapVectorNoCtor<T>::Initialize(initial_capacity);
    584   }
    585   ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
    586   // Disallow evil constructors.
    587   InternalMmapVector(const InternalMmapVector&);
    588   void operator=(const InternalMmapVector&);
    589 };
    590 
    591 // HeapSort for arrays and InternalMmapVector.
    592 template<class Container, class Compare>
    593 void InternalSort(Container *v, uptr size, Compare comp) {
    594   if (size < 2)
    595     return;
    596   // Stage 1: insert elements to the heap.
    597   for (uptr i = 1; i < size; i++) {
    598     uptr j, p;
    599     for (j = i; j > 0; j = p) {
    600       p = (j - 1) / 2;
    601       if (comp((*v)[p], (*v)[j]))
    602         Swap((*v)[j], (*v)[p]);
    603       else
    604         break;
    605     }
    606   }
    607   // Stage 2: swap largest element with the last one,
    608   // and sink the new top.
    609   for (uptr i = size - 1; i > 0; i--) {
    610     Swap((*v)[0], (*v)[i]);
    611     uptr j, max_ind;
    612     for (j = 0; j < i; j = max_ind) {
    613       uptr left = 2 * j + 1;
    614       uptr right = 2 * j + 2;
    615       max_ind = j;
    616       if (left < i && comp((*v)[max_ind], (*v)[left]))
    617         max_ind = left;
    618       if (right < i && comp((*v)[max_ind], (*v)[right]))
    619         max_ind = right;
    620       if (max_ind != j)
    621         Swap((*v)[j], (*v)[max_ind]);
    622       else
    623         break;
    624     }
    625   }
    626 }
    627 
    628 template<class Container, class Value, class Compare>
    629 uptr InternalBinarySearch(const Container &v, uptr first, uptr last,
    630                           const Value &val, Compare comp) {
    631   uptr not_found = last + 1;
    632   while (last >= first) {
    633     uptr mid = (first + last) / 2;
    634     if (comp(v[mid], val))
    635       first = mid + 1;
    636     else if (comp(val, v[mid]))
    637       last = mid - 1;
    638     else
    639       return mid;
    640   }
    641   return not_found;
    642 }
    643 
    644 // Represents a binary loaded into virtual memory (e.g. this can be an
    645 // executable or a shared object).
    646 class LoadedModule {
    647  public:
    648   LoadedModule() : full_name_(nullptr), base_address_(0) { ranges_.clear(); }
    649   void set(const char *module_name, uptr base_address);
    650   void clear();
    651   void addAddressRange(uptr beg, uptr end, bool executable);
    652   bool containsAddress(uptr address) const;
    653 
    654   const char *full_name() const { return full_name_; }
    655   uptr base_address() const { return base_address_; }
    656 
    657   struct AddressRange {
    658     AddressRange *next;
    659     uptr beg;
    660     uptr end;
    661     bool executable;
    662 
    663     AddressRange(uptr beg, uptr end, bool executable)
    664         : next(nullptr), beg(beg), end(end), executable(executable) {}
    665   };
    666 
    667   const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
    668 
    669  private:
    670   char *full_name_;  // Owned.
    671   uptr base_address_;
    672   IntrusiveList<AddressRange> ranges_;
    673 };
    674 
    675 // List of LoadedModules. OS-dependent implementation is responsible for
    676 // filling this information.
    677 class ListOfModules {
    678  public:
    679   ListOfModules() : modules_(kInitialCapacity) {}
    680   ~ListOfModules() { clear(); }
    681   void init();
    682   const LoadedModule *begin() const { return modules_.begin(); }
    683   LoadedModule *begin() { return modules_.begin(); }
    684   const LoadedModule *end() const { return modules_.end(); }
    685   LoadedModule *end() { return modules_.end(); }
    686   uptr size() const { return modules_.size(); }
    687   const LoadedModule &operator[](uptr i) const {
    688     CHECK_LT(i, modules_.size());
    689     return modules_[i];
    690   }
    691 
    692  private:
    693   void clear() {
    694     for (auto &module : modules_) module.clear();
    695     modules_.clear();
    696   }
    697 
    698   InternalMmapVector<LoadedModule> modules_;
    699   // We rarely have more than 16K loaded modules.
    700   static const uptr kInitialCapacity = 1 << 14;
    701 };
    702 
    703 // Callback type for iterating over a set of memory ranges.
    704 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
    705 
    706 enum AndroidApiLevel {
    707   ANDROID_NOT_ANDROID = 0,
    708   ANDROID_KITKAT = 19,
    709   ANDROID_LOLLIPOP_MR1 = 22,
    710   ANDROID_POST_LOLLIPOP = 23
    711 };
    712 
    713 void WriteToSyslog(const char *buffer);
    714 
    715 #if SANITIZER_MAC
    716 void LogFullErrorReport(const char *buffer);
    717 #else
    718 INLINE void LogFullErrorReport(const char *buffer) {}
    719 #endif
    720 
    721 #if SANITIZER_LINUX || SANITIZER_MAC
    722 void WriteOneLineToSyslog(const char *s);
    723 void LogMessageOnPrintf(const char *str);
    724 #else
    725 INLINE void WriteOneLineToSyslog(const char *s) {}
    726 INLINE void LogMessageOnPrintf(const char *str) {}
    727 #endif
    728 
    729 #if SANITIZER_LINUX
    730 // Initialize Android logging. Any writes before this are silently lost.
    731 void AndroidLogInit();
    732 #else
    733 INLINE void AndroidLogInit() {}
    734 #endif
    735 
    736 #if SANITIZER_ANDROID
    737 void SanitizerInitializeUnwinder();
    738 AndroidApiLevel AndroidGetApiLevel();
    739 #else
    740 INLINE void AndroidLogWrite(const char *buffer_unused) {}
    741 INLINE void SanitizerInitializeUnwinder() {}
    742 INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
    743 #endif
    744 
    745 INLINE uptr GetPthreadDestructorIterations() {
    746 #if SANITIZER_ANDROID
    747   return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
    748 #elif SANITIZER_POSIX
    749   return 4;
    750 #else
    751 // Unused on Windows.
    752   return 0;
    753 #endif
    754 }
    755 
    756 void *internal_start_thread(void(*func)(void*), void *arg);
    757 void internal_join_thread(void *th);
    758 void MaybeStartBackgroudThread();
    759 
    760 // Make the compiler think that something is going on there.
    761 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
    762 // compiler from recognising it and turning it into an actual call to
    763 // memset/memcpy/etc.
    764 static inline void SanitizerBreakOptimization(void *arg) {
    765 #if defined(_MSC_VER) && !defined(__clang__)
    766   _ReadWriteBarrier();
    767 #else
    768   __asm__ __volatile__("" : : "r" (arg) : "memory");
    769 #endif
    770 }
    771 
    772 struct SignalContext {
    773   void *context;
    774   uptr addr;
    775   uptr pc;
    776   uptr sp;
    777   uptr bp;
    778   bool is_memory_access;
    779 
    780   enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
    781 
    782   SignalContext(void *context, uptr addr, uptr pc, uptr sp, uptr bp,
    783                 bool is_memory_access, WriteFlag write_flag)
    784       : context(context),
    785         addr(addr),
    786         pc(pc),
    787         sp(sp),
    788         bp(bp),
    789         is_memory_access(is_memory_access),
    790         write_flag(write_flag) {}
    791 
    792   // Creates signal context in a platform-specific manner.
    793   static SignalContext Create(void *siginfo, void *context);
    794 
    795   // Returns true if the "context" indicates a memory write.
    796   static WriteFlag GetWriteFlag(void *context);
    797 };
    798 
    799 void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp);
    800 
    801 void MaybeReexec();
    802 
    803 template <typename Fn>
    804 class RunOnDestruction {
    805  public:
    806   explicit RunOnDestruction(Fn fn) : fn_(fn) {}
    807   ~RunOnDestruction() { fn_(); }
    808 
    809  private:
    810   Fn fn_;
    811 };
    812 
    813 // A simple scope guard. Usage:
    814 // auto cleanup = at_scope_exit([]{ do_cleanup; });
    815 template <typename Fn>
    816 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
    817   return RunOnDestruction<Fn>(fn);
    818 }
    819 
    820 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
    821 // if a process uses virtual memory over 4TB (as many sanitizers like
    822 // to do).  This function will abort the process if running on a kernel
    823 // that looks vulnerable.
    824 #if SANITIZER_LINUX && SANITIZER_S390_64
    825 void AvoidCVE_2016_2143();
    826 #else
    827 INLINE void AvoidCVE_2016_2143() {}
    828 #endif
    829 
    830 }  // namespace __sanitizer
    831 
    832 inline void *operator new(__sanitizer::operator_new_size_type size,
    833                           __sanitizer::LowLevelAllocator &alloc) {
    834   return alloc.Allocate(size);
    835 }
    836 
    837 struct StackDepotStats {
    838   uptr n_uniq_ids;
    839   uptr allocated;
    840 };
    841 
    842 #endif  // SANITIZER_COMMON_H
    843