Home | History | Annotate | Download | only in vulkan
      1 /*-------------------------------------------------------------------------
      2  * Vulkan CTS Framework
      3  * --------------------
      4  *
      5  * Copyright (c) 2015 Google Inc.
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Null (dummy) Vulkan implementation.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "vkNullDriver.hpp"
     25 #include "vkPlatform.hpp"
     26 #include "vkImageUtil.hpp"
     27 #include "vkQueryUtil.hpp"
     28 #include "tcuFunctionLibrary.hpp"
     29 #include "deMemory.h"
     30 
     31 #if (DE_OS == DE_OS_ANDROID) && defined(__ANDROID_API_O__) && (DE_ANDROID_API >= __ANDROID_API_O__ /* __ANDROID_API_O__ */)
     32 #	define USE_ANDROID_O_HARDWARE_BUFFER
     33 #endif
     34 #if defined(USE_ANDROID_O_HARDWARE_BUFFER)
     35 #	include <android/hardware_buffer.h>
     36 #endif
     37 
     38 #include <stdexcept>
     39 #include <algorithm>
     40 
     41 namespace vk
     42 {
     43 
     44 namespace
     45 {
     46 
     47 using std::vector;
     48 
     49 // Memory management
     50 
     51 template<typename T>
     52 void* allocateSystemMem (const VkAllocationCallbacks* pAllocator, VkSystemAllocationScope scope)
     53 {
     54 	void* ptr = pAllocator->pfnAllocation(pAllocator->pUserData, sizeof(T), sizeof(void*), scope);
     55 	if (!ptr)
     56 		throw std::bad_alloc();
     57 	return ptr;
     58 }
     59 
     60 void freeSystemMem (const VkAllocationCallbacks* pAllocator, void* mem)
     61 {
     62 	pAllocator->pfnFree(pAllocator->pUserData, mem);
     63 }
     64 
     65 template<typename Object, typename Handle, typename Parent, typename CreateInfo>
     66 Handle allocateHandle (Parent parent, const CreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator)
     67 {
     68 	Object* obj = DE_NULL;
     69 
     70 	if (pAllocator)
     71 	{
     72 		void* mem = allocateSystemMem<Object>(pAllocator, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
     73 		try
     74 		{
     75 			obj = new (mem) Object(parent, pCreateInfo);
     76 			DE_ASSERT(obj == mem);
     77 		}
     78 		catch (...)
     79 		{
     80 			pAllocator->pfnFree(pAllocator->pUserData, mem);
     81 			throw;
     82 		}
     83 	}
     84 	else
     85 		obj = new Object(parent, pCreateInfo);
     86 
     87 	return reinterpret_cast<Handle>(obj);
     88 }
     89 
     90 template<typename Object, typename Handle, typename CreateInfo>
     91 Handle allocateHandle (const CreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator)
     92 {
     93 	Object* obj = DE_NULL;
     94 
     95 	if (pAllocator)
     96 	{
     97 		void* mem = allocateSystemMem<Object>(pAllocator, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
     98 		try
     99 		{
    100 			obj = new (mem) Object(pCreateInfo);
    101 			DE_ASSERT(obj == mem);
    102 		}
    103 		catch (...)
    104 		{
    105 			pAllocator->pfnFree(pAllocator->pUserData, mem);
    106 			throw;
    107 		}
    108 	}
    109 	else
    110 		obj = new Object(pCreateInfo);
    111 
    112 	return reinterpret_cast<Handle>(obj);
    113 }
    114 
    115 template<typename Object, typename Handle>
    116 void freeHandle (Handle handle, const VkAllocationCallbacks* pAllocator)
    117 {
    118 	Object* obj = reinterpret_cast<Object*>(handle);
    119 
    120 	if (pAllocator)
    121 	{
    122 		obj->~Object();
    123 		freeSystemMem(pAllocator, reinterpret_cast<void*>(obj));
    124 	}
    125 	else
    126 		delete obj;
    127 }
    128 
    129 template<typename Object, typename BaseObject, typename Handle, typename Parent, typename CreateInfo>
    130 Handle allocateNonDispHandle (Parent parent, const CreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator)
    131 {
    132 	Object* const	obj		= allocateHandle<Object, Object*>(parent, pCreateInfo, pAllocator);
    133 	return Handle((deUint64)(deUintptr)static_cast<BaseObject*>(obj));
    134 }
    135 
    136 template<typename Object, typename Handle, typename Parent, typename CreateInfo>
    137 Handle allocateNonDispHandle (Parent parent, const CreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator)
    138 {
    139 	return allocateNonDispHandle<Object, Object, Handle, Parent, CreateInfo>(parent, pCreateInfo, pAllocator);
    140 }
    141 
    142 template<typename Object, typename Handle>
    143 void freeNonDispHandle (Handle handle, const VkAllocationCallbacks* pAllocator)
    144 {
    145 	freeHandle<Object>(reinterpret_cast<Object*>((deUintptr)handle.getInternal()), pAllocator);
    146 }
    147 
    148 // Object definitions
    149 
    150 #define VK_NULL_RETURN(STMT)					\
    151 	do {										\
    152 		try {									\
    153 			STMT;								\
    154 			return VK_SUCCESS;					\
    155 		} catch (const std::bad_alloc&) {		\
    156 			return VK_ERROR_OUT_OF_HOST_MEMORY;	\
    157 		} catch (VkResult res) {				\
    158 			return res;							\
    159 		}										\
    160 	} while (deGetFalse())
    161 
    162 // \todo [2015-07-14 pyry] Check FUNC type by checkedCastToPtr<T>() or similar
    163 #define VK_NULL_FUNC_ENTRY(NAME, FUNC)	{ #NAME, (deFunctionPtr)FUNC }  // NOLINT(FUNC)
    164 
    165 #define VK_NULL_DEFINE_DEVICE_OBJ(NAME)				\
    166 struct NAME											\
    167 {													\
    168 	NAME (VkDevice, const Vk##NAME##CreateInfo*) {}	\
    169 }
    170 
    171 VK_NULL_DEFINE_DEVICE_OBJ(Fence);
    172 VK_NULL_DEFINE_DEVICE_OBJ(Semaphore);
    173 VK_NULL_DEFINE_DEVICE_OBJ(Event);
    174 VK_NULL_DEFINE_DEVICE_OBJ(QueryPool);
    175 VK_NULL_DEFINE_DEVICE_OBJ(BufferView);
    176 VK_NULL_DEFINE_DEVICE_OBJ(ImageView);
    177 VK_NULL_DEFINE_DEVICE_OBJ(ShaderModule);
    178 VK_NULL_DEFINE_DEVICE_OBJ(PipelineCache);
    179 VK_NULL_DEFINE_DEVICE_OBJ(PipelineLayout);
    180 VK_NULL_DEFINE_DEVICE_OBJ(RenderPass);
    181 VK_NULL_DEFINE_DEVICE_OBJ(DescriptorSetLayout);
    182 VK_NULL_DEFINE_DEVICE_OBJ(Sampler);
    183 VK_NULL_DEFINE_DEVICE_OBJ(Framebuffer);
    184 
    185 class Instance
    186 {
    187 public:
    188 										Instance		(const VkInstanceCreateInfo* instanceInfo);
    189 										~Instance		(void) {}
    190 
    191 	PFN_vkVoidFunction					getProcAddr		(const char* name) const { return (PFN_vkVoidFunction)m_functions.getFunction(name); }
    192 
    193 private:
    194 	const tcu::StaticFunctionLibrary	m_functions;
    195 };
    196 
    197 class SurfaceKHR
    198 {
    199 public:
    200 										SurfaceKHR		(VkInstance, const VkXlibSurfaceCreateInfoKHR*)		{}
    201 										SurfaceKHR		(VkInstance, const VkXcbSurfaceCreateInfoKHR*)		{}
    202 										SurfaceKHR		(VkInstance, const VkWaylandSurfaceCreateInfoKHR*)	{}
    203 										SurfaceKHR		(VkInstance, const VkMirSurfaceCreateInfoKHR*)		{}
    204 										SurfaceKHR		(VkInstance, const VkAndroidSurfaceCreateInfoKHR*)	{}
    205 										SurfaceKHR		(VkInstance, const VkWin32SurfaceCreateInfoKHR*)	{}
    206 										SurfaceKHR		(VkInstance, const VkDisplaySurfaceCreateInfoKHR*)	{}
    207 										SurfaceKHR		(VkInstance, const VkViSurfaceCreateInfoNN*)		{}
    208 										SurfaceKHR		(VkInstance, const VkIOSSurfaceCreateInfoMVK*)		{}
    209 										SurfaceKHR		(VkInstance, const VkMacOSSurfaceCreateInfoMVK*)	{}
    210 										~SurfaceKHR		(void)												{}
    211 };
    212 
    213 class DisplayModeKHR
    214 {
    215 public:
    216 										DisplayModeKHR	(VkDisplayKHR, const VkDisplayModeCreateInfoKHR*) {}
    217 										~DisplayModeKHR	(void) {}
    218 };
    219 
    220 class DebugReportCallbackEXT
    221 {
    222 public:
    223 										DebugReportCallbackEXT	(VkInstance, const VkDebugReportCallbackCreateInfoEXT*) {}
    224 										~DebugReportCallbackEXT	(void) {}
    225 };
    226 
    227 class Device
    228 {
    229 public:
    230 										Device			(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* deviceInfo);
    231 										~Device			(void) {}
    232 
    233 	PFN_vkVoidFunction					getProcAddr		(const char* name) const { return (PFN_vkVoidFunction)m_functions.getFunction(name); }
    234 
    235 private:
    236 	const tcu::StaticFunctionLibrary	m_functions;
    237 };
    238 
    239 class Pipeline
    240 {
    241 public:
    242 	Pipeline (VkDevice, const VkGraphicsPipelineCreateInfo*) {}
    243 	Pipeline (VkDevice, const VkComputePipelineCreateInfo*) {}
    244 };
    245 
    246 class SwapchainKHR
    247 {
    248 public:
    249 										SwapchainKHR	(VkDevice, const VkSwapchainCreateInfoKHR*) {}
    250 										~SwapchainKHR	(void) {}
    251 };
    252 
    253 class SamplerYcbcrConversion
    254 {
    255 public:
    256 	SamplerYcbcrConversion (VkDevice, const VkSamplerYcbcrConversionCreateInfo*) {}
    257 };
    258 
    259 class Buffer
    260 {
    261 public:
    262 						Buffer		(VkDevice, const VkBufferCreateInfo* pCreateInfo)
    263 		: m_size (pCreateInfo->size)
    264 	{
    265 	}
    266 
    267 	VkDeviceSize		getSize		(void) const { return m_size;	}
    268 
    269 private:
    270 	const VkDeviceSize	m_size;
    271 };
    272 
    273 VkExternalMemoryHandleTypeFlags getExternalTypesHandle (const VkImageCreateInfo* pCreateInfo)
    274 {
    275 	const VkExternalMemoryImageCreateInfo* const	externalInfo	= findStructure<VkExternalMemoryImageCreateInfo>	(pCreateInfo->pNext);
    276 
    277 	return externalInfo ? externalInfo->handleTypes : 0u;
    278 }
    279 
    280 class Image
    281 {
    282 public:
    283 												Image					(VkDevice, const VkImageCreateInfo* pCreateInfo)
    284 		: m_imageType			(pCreateInfo->imageType)
    285 		, m_format				(pCreateInfo->format)
    286 		, m_extent				(pCreateInfo->extent)
    287 		, m_arrayLayers			(pCreateInfo->arrayLayers)
    288 		, m_samples				(pCreateInfo->samples)
    289 		, m_usage				(pCreateInfo->usage)
    290 		, m_flags				(pCreateInfo->flags)
    291 		, m_externalHandleTypes	(getExternalTypesHandle(pCreateInfo))
    292 	{
    293 	}
    294 
    295 	VkImageType									getImageType			(void) const { return m_imageType;				}
    296 	VkFormat									getFormat				(void) const { return m_format;					}
    297 	VkExtent3D									getExtent				(void) const { return m_extent;					}
    298 	deUint32									getArrayLayers			(void) const { return m_arrayLayers;			}
    299 	VkSampleCountFlagBits						getSamples				(void) const { return m_samples;				}
    300 	VkImageUsageFlags							getUsage				(void) const { return m_usage;					}
    301 	VkImageCreateFlags							getFlags				(void) const { return m_flags;					}
    302 	VkExternalMemoryHandleTypeFlags				getExternalHandleTypes	(void) const { return m_externalHandleTypes;	}
    303 
    304 private:
    305 	const VkImageType							m_imageType;
    306 	const VkFormat								m_format;
    307 	const VkExtent3D							m_extent;
    308 	const deUint32								m_arrayLayers;
    309 	const VkSampleCountFlagBits					m_samples;
    310 	const VkImageUsageFlags						m_usage;
    311 	const VkImageCreateFlags					m_flags;
    312 	const VkExternalMemoryHandleTypeFlags		m_externalHandleTypes;
    313 };
    314 
    315 void* allocateHeap (const VkMemoryAllocateInfo* pAllocInfo)
    316 {
    317 	// \todo [2015-12-03 pyry] Alignment requirements?
    318 	// \todo [2015-12-03 pyry] Empty allocations okay?
    319 	if (pAllocInfo->allocationSize > 0)
    320 	{
    321 		void* const heapPtr = deMalloc((size_t)pAllocInfo->allocationSize);
    322 		if (!heapPtr)
    323 			throw std::bad_alloc();
    324 		return heapPtr;
    325 	}
    326 	else
    327 		return DE_NULL;
    328 }
    329 
    330 void freeHeap (void* ptr)
    331 {
    332 	deFree(ptr);
    333 }
    334 
    335 class DeviceMemory
    336 {
    337 public:
    338 	virtual			~DeviceMemory	(void) {}
    339 	virtual void*	map				(void) = 0;
    340 	virtual void	unmap			(void) = 0;
    341 };
    342 
    343 class PrivateDeviceMemory : public DeviceMemory
    344 {
    345 public:
    346 						PrivateDeviceMemory		(VkDevice, const VkMemoryAllocateInfo* pAllocInfo)
    347 		: m_memory(allocateHeap(pAllocInfo))
    348 	{
    349 		// \todo [2016-08-03 pyry] In some cases leaving data unintialized would help valgrind analysis,
    350 		//						   but currently it mostly hinders it.
    351 		if (m_memory)
    352 			deMemset(m_memory, 0xcd, (size_t)pAllocInfo->allocationSize);
    353 	}
    354 	virtual				~PrivateDeviceMemory	(void)
    355 	{
    356 		freeHeap(m_memory);
    357 	}
    358 
    359 	virtual void*		map						(void) /*override*/ { return m_memory; }
    360 	virtual void		unmap					(void) /*override*/ {}
    361 
    362 private:
    363 	void* const			m_memory;
    364 };
    365 
    366 #if defined(USE_ANDROID_O_HARDWARE_BUFFER)
    367 AHardwareBuffer* findOrCreateHwBuffer (const VkMemoryAllocateInfo* pAllocInfo)
    368 {
    369 	const VkExportMemoryAllocateInfo* const					exportInfo		= findStructure<VkExportMemoryAllocateInfo>(pAllocInfo->pNext);
    370 	const VkImportAndroidHardwareBufferInfoANDROID* const	importInfo		= findStructure<VkImportAndroidHardwareBufferInfoANDROID>(pAllocInfo->pNext);
    371 	const VkMemoryDedicatedAllocateInfo* const				dedicatedInfo	= findStructure<VkMemoryDedicatedAllocateInfo>(pAllocInfo->pNext);
    372 	const Image* const										image			= dedicatedInfo && !!dedicatedInfo->image ? reinterpret_cast<const Image*>(dedicatedInfo->image.getInternal()) : DE_NULL;
    373 	AHardwareBuffer*										hwbuffer		= DE_NULL;
    374 
    375 	// Import and export aren't mutually exclusive; we can have both simultaneously.
    376 	DE_ASSERT((importInfo && importInfo->buffer.internal) ||
    377 		(exportInfo && (exportInfo->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) != 0));
    378 
    379 	if (importInfo && importInfo->buffer.internal)
    380 	{
    381 		hwbuffer = (AHardwareBuffer*)importInfo->buffer.internal;
    382 		AHardwareBuffer_acquire(hwbuffer);
    383 	}
    384 	else if (exportInfo && (exportInfo->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) != 0)
    385 	{
    386 		AHardwareBuffer_Desc hwbufferDesc;
    387 		deMemset(&hwbufferDesc, 0, sizeof(hwbufferDesc));
    388 
    389 		if (image)
    390 		{
    391 			hwbufferDesc.width	= image->getExtent().width;
    392 			hwbufferDesc.height	= image->getExtent().height;
    393 			hwbufferDesc.layers = image->getArrayLayers();
    394 			switch (image->getFormat())
    395 			{
    396 				case VK_FORMAT_R8G8B8A8_UNORM:
    397 					hwbufferDesc.format = AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM;
    398 					break;
    399 				case VK_FORMAT_R8G8B8_UNORM:
    400 					hwbufferDesc.format = AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM;
    401 					break;
    402 				case VK_FORMAT_R5G6B5_UNORM_PACK16:
    403 					hwbufferDesc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM;
    404 					break;
    405 				case VK_FORMAT_R16G16B16A16_SFLOAT:
    406 					hwbufferDesc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT;
    407 					break;
    408 				case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
    409 					hwbufferDesc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM;
    410 					break;
    411 				default:
    412 					DE_FATAL("Unsupported image format for Android hardware buffer export");
    413 					break;
    414 			}
    415 			if ((image->getUsage() & VK_IMAGE_USAGE_SAMPLED_BIT) != 0)
    416 				hwbufferDesc.usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
    417 			if ((image->getUsage() & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) != 0)
    418 				hwbufferDesc.usage |= AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT;
    419 			// if ((image->getFlags() & VK_IMAGE_CREATE_PROTECTED_BIT) != 0)
    420 			//	hwbufferDesc.usage |= AHARDWAREBUFFER_USAGE_PROTECTED_CONTENT;
    421 
    422 			// Make sure we have at least one AHB GPU usage, even if the image doesn't have any
    423 			// Vulkan usages with corresponding to AHB GPU usages.
    424 			if ((image->getUsage() & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)) == 0)
    425 				hwbufferDesc.usage |= AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
    426 		}
    427 		else
    428 		{
    429 			hwbufferDesc.width = static_cast<deUint32>(pAllocInfo->allocationSize);
    430 			hwbufferDesc.height = 1,
    431 			hwbufferDesc.layers = 1,
    432 			hwbufferDesc.format = AHARDWAREBUFFER_FORMAT_BLOB,
    433 			hwbufferDesc.usage = AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER;
    434 		}
    435 
    436 		AHardwareBuffer_allocate(&hwbufferDesc, &hwbuffer);
    437 	}
    438 
    439 	return hwbuffer;
    440 }
    441 
    442 class ExternalDeviceMemoryAndroid : public DeviceMemory
    443 {
    444 public:
    445 						ExternalDeviceMemoryAndroid		(VkDevice, const VkMemoryAllocateInfo* pAllocInfo)
    446 		: m_hwbuffer(findOrCreateHwBuffer(pAllocInfo))
    447 	{}
    448 	virtual				~ExternalDeviceMemoryAndroid	(void)
    449 	{
    450 		if (m_hwbuffer)
    451 			AHardwareBuffer_release(m_hwbuffer);
    452 	}
    453 
    454 	virtual void*		map								(void) /*override*/
    455 	{
    456 		void* p;
    457 		AHardwareBuffer_lock(m_hwbuffer, AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, -1, NULL, &p);
    458 		return p;
    459 	}
    460 
    461 	virtual void		unmap							(void) /*override*/ { AHardwareBuffer_unlock(m_hwbuffer, NULL); }
    462 
    463 	AHardwareBuffer*	getHwBuffer						(void)				{ return m_hwbuffer;						}
    464 
    465 private:
    466 	AHardwareBuffer* const	m_hwbuffer;
    467 };
    468 #endif // defined(USE_ANDROID_O_HARDWARE_BUFFER)
    469 
    470 class IndirectCommandsLayoutNVX
    471 {
    472 public:
    473 						IndirectCommandsLayoutNVX	(VkDevice, const VkIndirectCommandsLayoutCreateInfoNVX*)
    474 						{}
    475 };
    476 
    477 class ObjectTableNVX
    478 {
    479 public:
    480 						ObjectTableNVX				(VkDevice, const VkObjectTableCreateInfoNVX*)
    481 						{}
    482 };
    483 
    484 class ValidationCacheEXT
    485 {
    486 public:
    487 						ValidationCacheEXT			(VkDevice, const VkValidationCacheCreateInfoEXT*)
    488 						{}
    489 };
    490 
    491 class CommandBuffer
    492 {
    493 public:
    494 						CommandBuffer				(VkDevice, VkCommandPool, VkCommandBufferLevel)
    495 						{}
    496 };
    497 
    498 class DescriptorUpdateTemplate
    499 {
    500 public:
    501 						DescriptorUpdateTemplate	(VkDevice, const VkDescriptorUpdateTemplateCreateInfo*)
    502 						{}
    503 };
    504 
    505 
    506 class CommandPool
    507 {
    508 public:
    509 										CommandPool		(VkDevice device, const VkCommandPoolCreateInfo*)
    510 											: m_device(device)
    511 										{}
    512 										~CommandPool	(void);
    513 
    514 	VkCommandBuffer						allocate		(VkCommandBufferLevel level);
    515 	void								free			(VkCommandBuffer buffer);
    516 
    517 private:
    518 	const VkDevice						m_device;
    519 
    520 	vector<CommandBuffer*>				m_buffers;
    521 };
    522 
    523 CommandPool::~CommandPool (void)
    524 {
    525 	for (size_t ndx = 0; ndx < m_buffers.size(); ++ndx)
    526 		delete m_buffers[ndx];
    527 }
    528 
    529 VkCommandBuffer CommandPool::allocate (VkCommandBufferLevel level)
    530 {
    531 	CommandBuffer* const	impl	= new CommandBuffer(m_device, VkCommandPool(reinterpret_cast<deUintptr>(this)), level);
    532 
    533 	try
    534 	{
    535 		m_buffers.push_back(impl);
    536 	}
    537 	catch (...)
    538 	{
    539 		delete impl;
    540 		throw;
    541 	}
    542 
    543 	return reinterpret_cast<VkCommandBuffer>(impl);
    544 }
    545 
    546 void CommandPool::free (VkCommandBuffer buffer)
    547 {
    548 	CommandBuffer* const	impl	= reinterpret_cast<CommandBuffer*>(buffer);
    549 
    550 	for (size_t ndx = 0; ndx < m_buffers.size(); ++ndx)
    551 	{
    552 		if (m_buffers[ndx] == impl)
    553 		{
    554 			std::swap(m_buffers[ndx], m_buffers.back());
    555 			m_buffers.pop_back();
    556 			delete impl;
    557 			return;
    558 		}
    559 	}
    560 
    561 	DE_FATAL("VkCommandBuffer not owned by VkCommandPool");
    562 }
    563 
    564 class DescriptorSet
    565 {
    566 public:
    567 	DescriptorSet (VkDevice, VkDescriptorPool, VkDescriptorSetLayout) {}
    568 };
    569 
    570 class DescriptorPool
    571 {
    572 public:
    573 										DescriptorPool	(VkDevice device, const VkDescriptorPoolCreateInfo* pCreateInfo)
    574 											: m_device	(device)
    575 											, m_flags	(pCreateInfo->flags)
    576 										{}
    577 										~DescriptorPool	(void)
    578 										{
    579 											reset();
    580 										}
    581 
    582 	VkDescriptorSet						allocate		(VkDescriptorSetLayout setLayout);
    583 	void								free			(VkDescriptorSet set);
    584 
    585 	void								reset			(void);
    586 
    587 private:
    588 	const VkDevice						m_device;
    589 	const VkDescriptorPoolCreateFlags	m_flags;
    590 
    591 	vector<DescriptorSet*>				m_managedSets;
    592 };
    593 
    594 VkDescriptorSet DescriptorPool::allocate (VkDescriptorSetLayout setLayout)
    595 {
    596 	DescriptorSet* const	impl	= new DescriptorSet(m_device, VkDescriptorPool(reinterpret_cast<deUintptr>(this)), setLayout);
    597 
    598 	try
    599 	{
    600 		m_managedSets.push_back(impl);
    601 	}
    602 	catch (...)
    603 	{
    604 		delete impl;
    605 		throw;
    606 	}
    607 
    608 	return VkDescriptorSet(reinterpret_cast<deUintptr>(impl));
    609 }
    610 
    611 void DescriptorPool::free (VkDescriptorSet set)
    612 {
    613 	DescriptorSet* const	impl	= reinterpret_cast<DescriptorSet*>((deUintptr)set.getInternal());
    614 
    615 	DE_ASSERT(m_flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT);
    616 	DE_UNREF(m_flags);
    617 
    618 	for (size_t ndx = 0; ndx < m_managedSets.size(); ++ndx)
    619 	{
    620 		if (m_managedSets[ndx] == impl)
    621 		{
    622 			std::swap(m_managedSets[ndx], m_managedSets.back());
    623 			m_managedSets.pop_back();
    624 			delete impl;
    625 			return;
    626 		}
    627 	}
    628 
    629 	DE_FATAL("VkDescriptorSet not owned by VkDescriptorPool");
    630 }
    631 
    632 void DescriptorPool::reset (void)
    633 {
    634 	for (size_t ndx = 0; ndx < m_managedSets.size(); ++ndx)
    635 		delete m_managedSets[ndx];
    636 	m_managedSets.clear();
    637 }
    638 
    639 // API implementation
    640 
    641 extern "C"
    642 {
    643 
    644 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL getDeviceProcAddr (VkDevice device, const char* pName)
    645 {
    646 	return reinterpret_cast<Device*>(device)->getProcAddr(pName);
    647 }
    648 
    649 VKAPI_ATTR VkResult VKAPI_CALL createGraphicsPipelines (VkDevice device, VkPipelineCache, deUint32 count, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
    650 {
    651 	deUint32 allocNdx;
    652 	try
    653 	{
    654 		for (allocNdx = 0; allocNdx < count; allocNdx++)
    655 			pPipelines[allocNdx] = allocateNonDispHandle<Pipeline, VkPipeline>(device, pCreateInfos+allocNdx, pAllocator);
    656 
    657 		return VK_SUCCESS;
    658 	}
    659 	catch (const std::bad_alloc&)
    660 	{
    661 		for (deUint32 freeNdx = 0; freeNdx < allocNdx; freeNdx++)
    662 			freeNonDispHandle<Pipeline, VkPipeline>(pPipelines[freeNdx], pAllocator);
    663 
    664 		return VK_ERROR_OUT_OF_HOST_MEMORY;
    665 	}
    666 	catch (VkResult err)
    667 	{
    668 		for (deUint32 freeNdx = 0; freeNdx < allocNdx; freeNdx++)
    669 			freeNonDispHandle<Pipeline, VkPipeline>(pPipelines[freeNdx], pAllocator);
    670 
    671 		return err;
    672 	}
    673 }
    674 
    675 VKAPI_ATTR VkResult VKAPI_CALL createComputePipelines (VkDevice device, VkPipelineCache, deUint32 count, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
    676 {
    677 	deUint32 allocNdx;
    678 	try
    679 	{
    680 		for (allocNdx = 0; allocNdx < count; allocNdx++)
    681 			pPipelines[allocNdx] = allocateNonDispHandle<Pipeline, VkPipeline>(device, pCreateInfos+allocNdx, pAllocator);
    682 
    683 		return VK_SUCCESS;
    684 	}
    685 	catch (const std::bad_alloc&)
    686 	{
    687 		for (deUint32 freeNdx = 0; freeNdx < allocNdx; freeNdx++)
    688 			freeNonDispHandle<Pipeline, VkPipeline>(pPipelines[freeNdx], pAllocator);
    689 
    690 		return VK_ERROR_OUT_OF_HOST_MEMORY;
    691 	}
    692 	catch (VkResult err)
    693 	{
    694 		for (deUint32 freeNdx = 0; freeNdx < allocNdx; freeNdx++)
    695 			freeNonDispHandle<Pipeline, VkPipeline>(pPipelines[freeNdx], pAllocator);
    696 
    697 		return err;
    698 	}
    699 }
    700 
    701 VKAPI_ATTR VkResult VKAPI_CALL enumeratePhysicalDevices (VkInstance, deUint32* pPhysicalDeviceCount, VkPhysicalDevice* pDevices)
    702 {
    703 	if (pDevices && *pPhysicalDeviceCount >= 1u)
    704 		*pDevices = reinterpret_cast<VkPhysicalDevice>((void*)(deUintptr)1u);
    705 
    706 	*pPhysicalDeviceCount = 1;
    707 
    708 	return VK_SUCCESS;
    709 }
    710 
    711 VkResult enumerateExtensions (deUint32 numExtensions, const VkExtensionProperties* extensions, deUint32* pPropertyCount, VkExtensionProperties* pProperties)
    712 {
    713 	const deUint32	dstSize		= pPropertyCount ? *pPropertyCount : 0;
    714 
    715 	if (pPropertyCount)
    716 		*pPropertyCount = numExtensions;
    717 
    718 	if (pProperties)
    719 	{
    720 		for (deUint32 ndx = 0; ndx < de::min(numExtensions, dstSize); ++ndx)
    721 			pProperties[ndx] = extensions[ndx];
    722 
    723 		if (dstSize < numExtensions)
    724 			return VK_INCOMPLETE;
    725 	}
    726 
    727 	return VK_SUCCESS;
    728 }
    729 
    730 VKAPI_ATTR VkResult VKAPI_CALL enumerateInstanceExtensionProperties (const char* pLayerName, deUint32* pPropertyCount, VkExtensionProperties* pProperties)
    731 {
    732 	static const VkExtensionProperties	s_extensions[]	=
    733 	{
    734 		{ "VK_KHR_get_physical_device_properties2", 1u },
    735 		{ "VK_KHR_external_memory_capabilities",	1u },
    736 	};
    737 
    738 	if (!pLayerName)
    739 		return enumerateExtensions((deUint32)DE_LENGTH_OF_ARRAY(s_extensions), s_extensions, pPropertyCount, pProperties);
    740 	else
    741 		return enumerateExtensions(0, DE_NULL, pPropertyCount, pProperties);
    742 }
    743 
    744 VKAPI_ATTR VkResult VKAPI_CALL enumerateDeviceExtensionProperties (VkPhysicalDevice physicalDevice, const char* pLayerName, deUint32* pPropertyCount, VkExtensionProperties* pProperties)
    745 {
    746 	DE_UNREF(physicalDevice);
    747 
    748 	static const VkExtensionProperties	s_extensions[]	=
    749 	{
    750 		{ "VK_KHR_bind_memory2",								1u },
    751 		{ "VK_KHR_external_memory",							    1u },
    752 		{ "VK_KHR_get_memory_requirements2",					1u },
    753 		{ "VK_KHR_maintenance1",								1u },
    754 		{ "VK_KHR_sampler_ycbcr_conversion",					1u },
    755 #if defined(USE_ANDROID_O_HARDWARE_BUFFER)
    756 		{ "VK_ANDROID_external_memory_android_hardware_buffer",	1u },
    757 #endif
    758 	};
    759 
    760 	if (!pLayerName)
    761 		return enumerateExtensions((deUint32)DE_LENGTH_OF_ARRAY(s_extensions), s_extensions, pPropertyCount, pProperties);
    762 	else
    763 		return enumerateExtensions(0, DE_NULL, pPropertyCount, pProperties);
    764 }
    765 
    766 VKAPI_ATTR void VKAPI_CALL getPhysicalDeviceFeatures (VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures)
    767 {
    768 	DE_UNREF(physicalDevice);
    769 
    770 	// Enable all features allow as many tests to run as possible
    771 	pFeatures->robustBufferAccess							= VK_TRUE;
    772 	pFeatures->fullDrawIndexUint32							= VK_TRUE;
    773 	pFeatures->imageCubeArray								= VK_TRUE;
    774 	pFeatures->independentBlend								= VK_TRUE;
    775 	pFeatures->geometryShader								= VK_TRUE;
    776 	pFeatures->tessellationShader							= VK_TRUE;
    777 	pFeatures->sampleRateShading							= VK_TRUE;
    778 	pFeatures->dualSrcBlend									= VK_TRUE;
    779 	pFeatures->logicOp										= VK_TRUE;
    780 	pFeatures->multiDrawIndirect							= VK_TRUE;
    781 	pFeatures->drawIndirectFirstInstance					= VK_TRUE;
    782 	pFeatures->depthClamp									= VK_TRUE;
    783 	pFeatures->depthBiasClamp								= VK_TRUE;
    784 	pFeatures->fillModeNonSolid								= VK_TRUE;
    785 	pFeatures->depthBounds									= VK_TRUE;
    786 	pFeatures->wideLines									= VK_TRUE;
    787 	pFeatures->largePoints									= VK_TRUE;
    788 	pFeatures->alphaToOne									= VK_TRUE;
    789 	pFeatures->multiViewport								= VK_TRUE;
    790 	pFeatures->samplerAnisotropy							= VK_TRUE;
    791 	pFeatures->textureCompressionETC2						= VK_TRUE;
    792 	pFeatures->textureCompressionASTC_LDR					= VK_TRUE;
    793 	pFeatures->textureCompressionBC							= VK_TRUE;
    794 	pFeatures->occlusionQueryPrecise						= VK_TRUE;
    795 	pFeatures->pipelineStatisticsQuery						= VK_TRUE;
    796 	pFeatures->vertexPipelineStoresAndAtomics				= VK_TRUE;
    797 	pFeatures->fragmentStoresAndAtomics						= VK_TRUE;
    798 	pFeatures->shaderTessellationAndGeometryPointSize		= VK_TRUE;
    799 	pFeatures->shaderImageGatherExtended					= VK_TRUE;
    800 	pFeatures->shaderStorageImageExtendedFormats			= VK_TRUE;
    801 	pFeatures->shaderStorageImageMultisample				= VK_TRUE;
    802 	pFeatures->shaderStorageImageReadWithoutFormat			= VK_TRUE;
    803 	pFeatures->shaderStorageImageWriteWithoutFormat			= VK_TRUE;
    804 	pFeatures->shaderUniformBufferArrayDynamicIndexing		= VK_TRUE;
    805 	pFeatures->shaderSampledImageArrayDynamicIndexing		= VK_TRUE;
    806 	pFeatures->shaderStorageBufferArrayDynamicIndexing		= VK_TRUE;
    807 	pFeatures->shaderStorageImageArrayDynamicIndexing		= VK_TRUE;
    808 	pFeatures->shaderClipDistance							= VK_TRUE;
    809 	pFeatures->shaderCullDistance							= VK_TRUE;
    810 	pFeatures->shaderFloat64								= VK_TRUE;
    811 	pFeatures->shaderInt64									= VK_TRUE;
    812 	pFeatures->shaderInt16									= VK_TRUE;
    813 	pFeatures->shaderResourceResidency						= VK_TRUE;
    814 	pFeatures->shaderResourceMinLod							= VK_TRUE;
    815 	pFeatures->sparseBinding								= VK_TRUE;
    816 	pFeatures->sparseResidencyBuffer						= VK_TRUE;
    817 	pFeatures->sparseResidencyImage2D						= VK_TRUE;
    818 	pFeatures->sparseResidencyImage3D						= VK_TRUE;
    819 	pFeatures->sparseResidency2Samples						= VK_TRUE;
    820 	pFeatures->sparseResidency4Samples						= VK_TRUE;
    821 	pFeatures->sparseResidency8Samples						= VK_TRUE;
    822 	pFeatures->sparseResidency16Samples						= VK_TRUE;
    823 	pFeatures->sparseResidencyAliased						= VK_TRUE;
    824 	pFeatures->variableMultisampleRate						= VK_TRUE;
    825 	pFeatures->inheritedQueries								= VK_TRUE;
    826 }
    827 
    828 VKAPI_ATTR void VKAPI_CALL getPhysicalDeviceProperties (VkPhysicalDevice, VkPhysicalDeviceProperties* props)
    829 {
    830 	deMemset(props, 0, sizeof(VkPhysicalDeviceProperties));
    831 
    832 	props->apiVersion		= VK_API_VERSION_1_1;
    833 	props->driverVersion	= 1u;
    834 	props->deviceType		= VK_PHYSICAL_DEVICE_TYPE_OTHER;
    835 
    836 	deMemcpy(props->deviceName, "null", 5);
    837 
    838 	// Spec minmax
    839 	props->limits.maxImageDimension1D									= 4096;
    840 	props->limits.maxImageDimension2D									= 4096;
    841 	props->limits.maxImageDimension3D									= 256;
    842 	props->limits.maxImageDimensionCube									= 4096;
    843 	props->limits.maxImageArrayLayers									= 256;
    844 	props->limits.maxTexelBufferElements								= 65536;
    845 	props->limits.maxUniformBufferRange									= 16384;
    846 	props->limits.maxStorageBufferRange									= 1u<<27;
    847 	props->limits.maxPushConstantsSize									= 128;
    848 	props->limits.maxMemoryAllocationCount								= 4096;
    849 	props->limits.maxSamplerAllocationCount								= 4000;
    850 	props->limits.bufferImageGranularity								= 131072;
    851 	props->limits.sparseAddressSpaceSize								= 1u<<31;
    852 	props->limits.maxBoundDescriptorSets								= 4;
    853 	props->limits.maxPerStageDescriptorSamplers							= 16;
    854 	props->limits.maxPerStageDescriptorUniformBuffers					= 12;
    855 	props->limits.maxPerStageDescriptorStorageBuffers					= 4;
    856 	props->limits.maxPerStageDescriptorSampledImages					= 16;
    857 	props->limits.maxPerStageDescriptorStorageImages					= 4;
    858 	props->limits.maxPerStageDescriptorInputAttachments					= 4;
    859 	props->limits.maxPerStageResources									= 128;
    860 	props->limits.maxDescriptorSetSamplers								= 96;
    861 	props->limits.maxDescriptorSetUniformBuffers						= 72;
    862 	props->limits.maxDescriptorSetUniformBuffersDynamic					= 8;
    863 	props->limits.maxDescriptorSetStorageBuffers						= 24;
    864 	props->limits.maxDescriptorSetStorageBuffersDynamic					= 4;
    865 	props->limits.maxDescriptorSetSampledImages							= 96;
    866 	props->limits.maxDescriptorSetStorageImages							= 24;
    867 	props->limits.maxDescriptorSetInputAttachments						= 4;
    868 	props->limits.maxVertexInputAttributes								= 16;
    869 	props->limits.maxVertexInputBindings								= 16;
    870 	props->limits.maxVertexInputAttributeOffset							= 2047;
    871 	props->limits.maxVertexInputBindingStride							= 2048;
    872 	props->limits.maxVertexOutputComponents								= 64;
    873 	props->limits.maxTessellationGenerationLevel						= 64;
    874 	props->limits.maxTessellationPatchSize								= 32;
    875 	props->limits.maxTessellationControlPerVertexInputComponents		= 64;
    876 	props->limits.maxTessellationControlPerVertexOutputComponents		= 64;
    877 	props->limits.maxTessellationControlPerPatchOutputComponents		= 120;
    878 	props->limits.maxTessellationControlTotalOutputComponents			= 2048;
    879 	props->limits.maxTessellationEvaluationInputComponents				= 64;
    880 	props->limits.maxTessellationEvaluationOutputComponents				= 64;
    881 	props->limits.maxGeometryShaderInvocations							= 32;
    882 	props->limits.maxGeometryInputComponents							= 64;
    883 	props->limits.maxGeometryOutputComponents							= 64;
    884 	props->limits.maxGeometryOutputVertices								= 256;
    885 	props->limits.maxGeometryTotalOutputComponents						= 1024;
    886 	props->limits.maxFragmentInputComponents							= 64;
    887 	props->limits.maxFragmentOutputAttachments							= 4;
    888 	props->limits.maxFragmentDualSrcAttachments							= 1;
    889 	props->limits.maxFragmentCombinedOutputResources					= 4;
    890 	props->limits.maxComputeSharedMemorySize							= 16384;
    891 	props->limits.maxComputeWorkGroupCount[0]							= 65535;
    892 	props->limits.maxComputeWorkGroupCount[1]							= 65535;
    893 	props->limits.maxComputeWorkGroupCount[2]							= 65535;
    894 	props->limits.maxComputeWorkGroupInvocations						= 128;
    895 	props->limits.maxComputeWorkGroupSize[0]							= 128;
    896 	props->limits.maxComputeWorkGroupSize[1]							= 128;
    897 	props->limits.maxComputeWorkGroupSize[2]							= 128;
    898 	props->limits.subPixelPrecisionBits									= 4;
    899 	props->limits.subTexelPrecisionBits									= 4;
    900 	props->limits.mipmapPrecisionBits									= 4;
    901 	props->limits.maxDrawIndexedIndexValue								= 0xffffffffu;
    902 	props->limits.maxDrawIndirectCount									= (1u<<16) - 1u;
    903 	props->limits.maxSamplerLodBias										= 2.0f;
    904 	props->limits.maxSamplerAnisotropy									= 16.0f;
    905 	props->limits.maxViewports											= 16;
    906 	props->limits.maxViewportDimensions[0]								= 4096;
    907 	props->limits.maxViewportDimensions[1]								= 4096;
    908 	props->limits.viewportBoundsRange[0]								= -8192.f;
    909 	props->limits.viewportBoundsRange[1]								= 8191.f;
    910 	props->limits.viewportSubPixelBits									= 0;
    911 	props->limits.minMemoryMapAlignment									= 64;
    912 	props->limits.minTexelBufferOffsetAlignment							= 256;
    913 	props->limits.minUniformBufferOffsetAlignment						= 256;
    914 	props->limits.minStorageBufferOffsetAlignment						= 256;
    915 	props->limits.minTexelOffset										= -8;
    916 	props->limits.maxTexelOffset										= 7;
    917 	props->limits.minTexelGatherOffset									= -8;
    918 	props->limits.maxTexelGatherOffset									= 7;
    919 	props->limits.minInterpolationOffset								= -0.5f;
    920 	props->limits.maxInterpolationOffset								= 0.5f; // -1ulp
    921 	props->limits.subPixelInterpolationOffsetBits						= 4;
    922 	props->limits.maxFramebufferWidth									= 4096;
    923 	props->limits.maxFramebufferHeight									= 4096;
    924 	props->limits.maxFramebufferLayers									= 256;
    925 	props->limits.framebufferColorSampleCounts							= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    926 	props->limits.framebufferDepthSampleCounts							= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    927 	props->limits.framebufferStencilSampleCounts						= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    928 	props->limits.framebufferNoAttachmentsSampleCounts					= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    929 	props->limits.maxColorAttachments									= 4;
    930 	props->limits.sampledImageColorSampleCounts							= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    931 	props->limits.sampledImageIntegerSampleCounts						= VK_SAMPLE_COUNT_1_BIT;
    932 	props->limits.sampledImageDepthSampleCounts							= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    933 	props->limits.sampledImageStencilSampleCounts						= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    934 	props->limits.storageImageSampleCounts								= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
    935 	props->limits.maxSampleMaskWords									= 1;
    936 	props->limits.timestampComputeAndGraphics							= VK_TRUE;
    937 	props->limits.timestampPeriod										= 1.0f;
    938 	props->limits.maxClipDistances										= 8;
    939 	props->limits.maxCullDistances										= 8;
    940 	props->limits.maxCombinedClipAndCullDistances						= 8;
    941 	props->limits.discreteQueuePriorities								= 2;
    942 	props->limits.pointSizeRange[0]										= 1.0f;
    943 	props->limits.pointSizeRange[1]										= 64.0f; // -1ulp
    944 	props->limits.lineWidthRange[0]										= 1.0f;
    945 	props->limits.lineWidthRange[1]										= 8.0f; // -1ulp
    946 	props->limits.pointSizeGranularity									= 1.0f;
    947 	props->limits.lineWidthGranularity									= 1.0f;
    948 	props->limits.strictLines											= 0;
    949 	props->limits.standardSampleLocations								= VK_TRUE;
    950 	props->limits.optimalBufferCopyOffsetAlignment						= 256;
    951 	props->limits.optimalBufferCopyRowPitchAlignment					= 256;
    952 	props->limits.nonCoherentAtomSize									= 128;
    953 }
    954 
    955 VKAPI_ATTR void VKAPI_CALL getPhysicalDeviceQueueFamilyProperties (VkPhysicalDevice, deUint32* count, VkQueueFamilyProperties* props)
    956 {
    957 	if (props && *count >= 1u)
    958 	{
    959 		deMemset(props, 0, sizeof(VkQueueFamilyProperties));
    960 
    961 		props->queueCount			= 4u;
    962 		props->queueFlags			= VK_QUEUE_GRAPHICS_BIT|VK_QUEUE_COMPUTE_BIT;
    963 		props->timestampValidBits	= 64;
    964 	}
    965 
    966 	*count = 1u;
    967 }
    968 
    969 VKAPI_ATTR void VKAPI_CALL getPhysicalDeviceMemoryProperties (VkPhysicalDevice, VkPhysicalDeviceMemoryProperties* props)
    970 {
    971 	deMemset(props, 0, sizeof(VkPhysicalDeviceMemoryProperties));
    972 
    973 	props->memoryTypeCount				= 1u;
    974 	props->memoryTypes[0].heapIndex		= 0u;
    975 	props->memoryTypes[0].propertyFlags	= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
    976 										| VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
    977 										| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    978 
    979 	props->memoryHeapCount				= 1u;
    980 	props->memoryHeaps[0].size			= 1ull << 31;
    981 	props->memoryHeaps[0].flags			= 0u;
    982 }
    983 
    984 VKAPI_ATTR void VKAPI_CALL getPhysicalDeviceFormatProperties (VkPhysicalDevice, VkFormat format, VkFormatProperties* pFormatProperties)
    985 {
    986 	const VkFormatFeatureFlags	allFeatures	= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT
    987 											| VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT
    988 											| VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT
    989 											| VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT
    990 											| VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT
    991 											| VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT
    992 											| VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT
    993 											| VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT
    994 											| VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT
    995 											| VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
    996 											| VK_FORMAT_FEATURE_BLIT_SRC_BIT
    997 											| VK_FORMAT_FEATURE_BLIT_DST_BIT
    998 											| VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT
    999 											| VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT
   1000 											| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT
   1001 											| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT
   1002 											| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT
   1003 											| VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT
   1004 											| VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT;
   1005 
   1006 	pFormatProperties->linearTilingFeatures		= allFeatures;
   1007 	pFormatProperties->optimalTilingFeatures	= allFeatures;
   1008 	pFormatProperties->bufferFeatures			= allFeatures;
   1009 
   1010 	if (isYCbCrFormat(format) && getPlaneCount(format) > 1)
   1011 		pFormatProperties->optimalTilingFeatures |= VK_FORMAT_FEATURE_DISJOINT_BIT;
   1012 }
   1013 
   1014 VKAPI_ATTR VkResult VKAPI_CALL getPhysicalDeviceImageFormatProperties (VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties* pImageFormatProperties)
   1015 {
   1016 	DE_UNREF(physicalDevice);
   1017 	DE_UNREF(format);
   1018 	DE_UNREF(type);
   1019 	DE_UNREF(tiling);
   1020 	DE_UNREF(usage);
   1021 	DE_UNREF(flags);
   1022 
   1023 	pImageFormatProperties->maxArrayLayers		= 8;
   1024 	pImageFormatProperties->maxExtent.width		= 4096;
   1025 	pImageFormatProperties->maxExtent.height	= 4096;
   1026 	pImageFormatProperties->maxExtent.depth		= 4096;
   1027 	pImageFormatProperties->maxMipLevels		= deLog2Ceil32(4096) + 1;
   1028 	pImageFormatProperties->maxResourceSize		= 64u * 1024u * 1024u;
   1029 	pImageFormatProperties->sampleCounts		= VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT;
   1030 
   1031 	return VK_SUCCESS;
   1032 }
   1033 
   1034 VKAPI_ATTR void VKAPI_CALL getDeviceQueue (VkDevice device, deUint32 queueFamilyIndex, deUint32 queueIndex, VkQueue* pQueue)
   1035 {
   1036 	DE_UNREF(device);
   1037 	DE_UNREF(queueFamilyIndex);
   1038 
   1039 	if (pQueue)
   1040 		*pQueue = reinterpret_cast<VkQueue>((deUint64)queueIndex + 1);
   1041 }
   1042 
   1043 VKAPI_ATTR void VKAPI_CALL getBufferMemoryRequirements (VkDevice, VkBuffer bufferHandle, VkMemoryRequirements* requirements)
   1044 {
   1045 	const Buffer*	buffer	= reinterpret_cast<const Buffer*>(bufferHandle.getInternal());
   1046 
   1047 	requirements->memoryTypeBits	= 1u;
   1048 	requirements->size				= buffer->getSize();
   1049 	requirements->alignment			= (VkDeviceSize)1u;
   1050 }
   1051 
   1052 VkDeviceSize getPackedImageDataSize (VkFormat format, VkExtent3D extent, VkSampleCountFlagBits samples)
   1053 {
   1054 	return (VkDeviceSize)getPixelSize(mapVkFormat(format))
   1055 			* (VkDeviceSize)extent.width
   1056 			* (VkDeviceSize)extent.height
   1057 			* (VkDeviceSize)extent.depth
   1058 			* (VkDeviceSize)samples;
   1059 }
   1060 
   1061 VkDeviceSize getCompressedImageDataSize (VkFormat format, VkExtent3D extent)
   1062 {
   1063 	try
   1064 	{
   1065 		const tcu::CompressedTexFormat	tcuFormat		= mapVkCompressedFormat(format);
   1066 		const size_t					blockSize		= tcu::getBlockSize(tcuFormat);
   1067 		const tcu::IVec3				blockPixelSize	= tcu::getBlockPixelSize(tcuFormat);
   1068 		const int						numBlocksX		= deDivRoundUp32((int)extent.width, blockPixelSize.x());
   1069 		const int						numBlocksY		= deDivRoundUp32((int)extent.height, blockPixelSize.y());
   1070 		const int						numBlocksZ		= deDivRoundUp32((int)extent.depth, blockPixelSize.z());
   1071 
   1072 		return blockSize*numBlocksX*numBlocksY*numBlocksZ;
   1073 	}
   1074 	catch (...)
   1075 	{
   1076 		return 0; // Unsupported compressed format
   1077 	}
   1078 }
   1079 
   1080 VkDeviceSize getYCbCrImageDataSize (VkFormat format, VkExtent3D extent)
   1081 {
   1082 	const PlanarFormatDescription	desc		= getPlanarFormatDescription(format);
   1083 	VkDeviceSize					totalSize	= 0;
   1084 
   1085 	DE_ASSERT(extent.depth == 1);
   1086 
   1087 	for (deUint32 planeNdx = 0; planeNdx < desc.numPlanes; ++planeNdx)
   1088 	{
   1089 		const deUint32		planeW		= extent.width / desc.planes[planeNdx].widthDivisor;
   1090 		const deUint32		planeH		= extent.height / desc.planes[planeNdx].heightDivisor;
   1091 		const deUint32		elementSize	= desc.planes[planeNdx].elementSizeBytes;
   1092 
   1093 		totalSize = (VkDeviceSize)deAlign64((deInt64)totalSize, elementSize);
   1094 		totalSize += planeW * planeH * elementSize;
   1095 	}
   1096 
   1097 	return totalSize;
   1098 }
   1099 
   1100 VKAPI_ATTR void VKAPI_CALL getImageMemoryRequirements (VkDevice, VkImage imageHandle, VkMemoryRequirements* requirements)
   1101 {
   1102 	const Image*	image	= reinterpret_cast<const Image*>(imageHandle.getInternal());
   1103 
   1104 	requirements->memoryTypeBits	= 1u;
   1105 	requirements->alignment			= 16u;
   1106 
   1107 	if (isCompressedFormat(image->getFormat()))
   1108 		requirements->size = getCompressedImageDataSize(image->getFormat(), image->getExtent());
   1109 	else if (isYCbCrFormat(image->getFormat()))
   1110 		requirements->size = getYCbCrImageDataSize(image->getFormat(), image->getExtent());
   1111 	else
   1112 		requirements->size = getPackedImageDataSize(image->getFormat(), image->getExtent(), image->getSamples());
   1113 }
   1114 
   1115 VKAPI_ATTR VkResult VKAPI_CALL allocateMemory (VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory)
   1116 {
   1117 	const VkExportMemoryAllocateInfo* const					exportInfo	= findStructure<VkExportMemoryAllocateInfo>(pAllocateInfo->pNext);
   1118 	const VkImportAndroidHardwareBufferInfoANDROID* const	importInfo	= findStructure<VkImportAndroidHardwareBufferInfoANDROID>(pAllocateInfo->pNext);
   1119 
   1120 	if ((exportInfo && (exportInfo->handleTypes & VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) != 0)
   1121 		|| (importInfo && importInfo->buffer.internal))
   1122 	{
   1123 #if defined(USE_ANDROID_O_HARDWARE_BUFFER)
   1124 		VK_NULL_RETURN((*pMemory = allocateNonDispHandle<ExternalDeviceMemoryAndroid, DeviceMemory, VkDeviceMemory>(device, pAllocateInfo, pAllocator)));
   1125 #else
   1126 		return VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR;
   1127 #endif
   1128 	}
   1129 	else
   1130 	{
   1131 		VK_NULL_RETURN((*pMemory = allocateNonDispHandle<PrivateDeviceMemory, DeviceMemory, VkDeviceMemory>(device, pAllocateInfo, pAllocator)));
   1132 	}
   1133 }
   1134 
   1135 VKAPI_ATTR VkResult VKAPI_CALL mapMemory (VkDevice, VkDeviceMemory memHandle, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData)
   1136 {
   1137 	DeviceMemory* const	memory	= reinterpret_cast<DeviceMemory*>(memHandle.getInternal());
   1138 
   1139 	DE_UNREF(size);
   1140 	DE_UNREF(flags);
   1141 
   1142 	*ppData = (deUint8*)memory->map() + offset;
   1143 
   1144 	return VK_SUCCESS;
   1145 }
   1146 
   1147 VKAPI_ATTR void VKAPI_CALL unmapMemory (VkDevice device, VkDeviceMemory memHandle)
   1148 {
   1149 	DeviceMemory* const	memory	= reinterpret_cast<DeviceMemory*>(memHandle.getInternal());
   1150 
   1151 	DE_UNREF(device);
   1152 
   1153 	memory->unmap();
   1154 }
   1155 
   1156 VKAPI_ATTR VkResult VKAPI_CALL getMemoryAndroidHardwareBufferANDROID (VkDevice device, const VkMemoryGetAndroidHardwareBufferInfoANDROID* pInfo, pt::AndroidHardwareBufferPtr* pBuffer)
   1157 {
   1158 	DE_UNREF(device);
   1159 
   1160 #if defined(USE_ANDROID_O_HARDWARE_BUFFER)
   1161 	DeviceMemory* const					memory			= reinterpret_cast<ExternalDeviceMemoryAndroid*>(pInfo->memory.getInternal());
   1162 	ExternalDeviceMemoryAndroid* const	androidMemory	= static_cast<ExternalDeviceMemoryAndroid*>(memory);
   1163 
   1164 	AHardwareBuffer* hwbuffer = androidMemory->getHwBuffer();
   1165 	AHardwareBuffer_acquire(hwbuffer);
   1166 	pBuffer->internal = hwbuffer;
   1167 #else
   1168 	DE_UNREF(pInfo);
   1169 	DE_UNREF(pBuffer);
   1170 #endif
   1171 
   1172 	return VK_SUCCESS;
   1173 }
   1174 
   1175 VKAPI_ATTR VkResult VKAPI_CALL allocateDescriptorSets (VkDevice, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets)
   1176 {
   1177 	DescriptorPool* const	poolImpl	= reinterpret_cast<DescriptorPool*>((deUintptr)pAllocateInfo->descriptorPool.getInternal());
   1178 
   1179 	for (deUint32 ndx = 0; ndx < pAllocateInfo->descriptorSetCount; ++ndx)
   1180 	{
   1181 		try
   1182 		{
   1183 			pDescriptorSets[ndx] = poolImpl->allocate(pAllocateInfo->pSetLayouts[ndx]);
   1184 		}
   1185 		catch (const std::bad_alloc&)
   1186 		{
   1187 			for (deUint32 freeNdx = 0; freeNdx < ndx; freeNdx++)
   1188 				delete reinterpret_cast<DescriptorSet*>((deUintptr)pDescriptorSets[freeNdx].getInternal());
   1189 
   1190 			return VK_ERROR_OUT_OF_HOST_MEMORY;
   1191 		}
   1192 		catch (VkResult res)
   1193 		{
   1194 			for (deUint32 freeNdx = 0; freeNdx < ndx; freeNdx++)
   1195 				delete reinterpret_cast<DescriptorSet*>((deUintptr)pDescriptorSets[freeNdx].getInternal());
   1196 
   1197 			return res;
   1198 		}
   1199 	}
   1200 
   1201 	return VK_SUCCESS;
   1202 }
   1203 
   1204 VKAPI_ATTR void VKAPI_CALL freeDescriptorSets (VkDevice, VkDescriptorPool descriptorPool, deUint32 count, const VkDescriptorSet* pDescriptorSets)
   1205 {
   1206 	DescriptorPool* const	poolImpl	= reinterpret_cast<DescriptorPool*>((deUintptr)descriptorPool.getInternal());
   1207 
   1208 	for (deUint32 ndx = 0; ndx < count; ++ndx)
   1209 		poolImpl->free(pDescriptorSets[ndx]);
   1210 }
   1211 
   1212 VKAPI_ATTR VkResult VKAPI_CALL resetDescriptorPool (VkDevice, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags)
   1213 {
   1214 	DescriptorPool* const	poolImpl	= reinterpret_cast<DescriptorPool*>((deUintptr)descriptorPool.getInternal());
   1215 
   1216 	poolImpl->reset();
   1217 
   1218 	return VK_SUCCESS;
   1219 }
   1220 
   1221 VKAPI_ATTR VkResult VKAPI_CALL allocateCommandBuffers (VkDevice device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers)
   1222 {
   1223 	DE_UNREF(device);
   1224 
   1225 	if (pAllocateInfo && pCommandBuffers)
   1226 	{
   1227 		CommandPool* const	poolImpl	= reinterpret_cast<CommandPool*>((deUintptr)pAllocateInfo->commandPool.getInternal());
   1228 
   1229 		for (deUint32 ndx = 0; ndx < pAllocateInfo->commandBufferCount; ++ndx)
   1230 			pCommandBuffers[ndx] = poolImpl->allocate(pAllocateInfo->level);
   1231 	}
   1232 
   1233 	return VK_SUCCESS;
   1234 }
   1235 
   1236 VKAPI_ATTR void VKAPI_CALL freeCommandBuffers (VkDevice device, VkCommandPool commandPool, deUint32 commandBufferCount, const VkCommandBuffer* pCommandBuffers)
   1237 {
   1238 	CommandPool* const	poolImpl	= reinterpret_cast<CommandPool*>((deUintptr)commandPool.getInternal());
   1239 
   1240 	DE_UNREF(device);
   1241 
   1242 	for (deUint32 ndx = 0; ndx < commandBufferCount; ++ndx)
   1243 		poolImpl->free(pCommandBuffers[ndx]);
   1244 }
   1245 
   1246 
   1247 VKAPI_ATTR VkResult VKAPI_CALL createDisplayModeKHR (VkPhysicalDevice, VkDisplayKHR display, const VkDisplayModeCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDisplayModeKHR* pMode)
   1248 {
   1249 	DE_UNREF(pAllocator);
   1250 	VK_NULL_RETURN((*pMode = allocateNonDispHandle<DisplayModeKHR, VkDisplayModeKHR>(display, pCreateInfo, pAllocator)));
   1251 }
   1252 
   1253 VKAPI_ATTR VkResult VKAPI_CALL createSharedSwapchainsKHR (VkDevice device, deUint32 swapchainCount, const VkSwapchainCreateInfoKHR* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchains)
   1254 {
   1255 	for (deUint32 ndx = 0; ndx < swapchainCount; ++ndx)
   1256 	{
   1257 		pSwapchains[ndx] = allocateNonDispHandle<SwapchainKHR, VkSwapchainKHR>(device, pCreateInfos+ndx, pAllocator);
   1258 	}
   1259 
   1260 	return VK_SUCCESS;
   1261 }
   1262 
   1263 VKAPI_ATTR void VKAPI_CALL getPhysicalDeviceExternalBufferPropertiesKHR (VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo, VkExternalBufferProperties* pExternalBufferProperties)
   1264 {
   1265 	DE_UNREF(physicalDevice);
   1266 	DE_UNREF(pExternalBufferInfo);
   1267 
   1268 	pExternalBufferProperties->externalMemoryProperties.externalMemoryFeatures = 0;
   1269 	pExternalBufferProperties->externalMemoryProperties.exportFromImportedHandleTypes = 0;
   1270 	pExternalBufferProperties->externalMemoryProperties.compatibleHandleTypes = 0;
   1271 
   1272 	if (pExternalBufferInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
   1273 	{
   1274 		pExternalBufferProperties->externalMemoryProperties.externalMemoryFeatures = VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_KHR | VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_KHR;
   1275 		pExternalBufferProperties->externalMemoryProperties.exportFromImportedHandleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
   1276 		pExternalBufferProperties->externalMemoryProperties.compatibleHandleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
   1277 	}
   1278 }
   1279 
   1280 VKAPI_ATTR VkResult VKAPI_CALL getPhysicalDeviceImageFormatProperties2KHR (VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo, VkImageFormatProperties2* pImageFormatProperties)
   1281 {
   1282 	const VkPhysicalDeviceExternalImageFormatInfo* const	externalInfo		= findStructure<VkPhysicalDeviceExternalImageFormatInfo>(pImageFormatInfo->pNext);
   1283 	VkExternalImageFormatProperties*	const				externalProperties	= findStructure<VkExternalImageFormatProperties>(pImageFormatProperties->pNext);
   1284 	VkResult												result;
   1285 
   1286 	result = getPhysicalDeviceImageFormatProperties(physicalDevice, pImageFormatInfo->format, pImageFormatInfo->type, pImageFormatInfo->tiling, pImageFormatInfo->usage, pImageFormatInfo->flags, &pImageFormatProperties->imageFormatProperties);
   1287 	if (result != VK_SUCCESS)
   1288 		return result;
   1289 
   1290 	if (externalInfo && externalInfo->handleType != 0)
   1291 	{
   1292 		if (externalInfo->handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
   1293 			return VK_ERROR_FORMAT_NOT_SUPPORTED;
   1294 
   1295 		if (!(pImageFormatInfo->format == VK_FORMAT_R8G8B8A8_UNORM
   1296 			  || pImageFormatInfo->format == VK_FORMAT_R8G8B8_UNORM
   1297 			  || pImageFormatInfo->format == VK_FORMAT_R5G6B5_UNORM_PACK16
   1298 			  || pImageFormatInfo->format == VK_FORMAT_R16G16B16A16_SFLOAT
   1299 			  || pImageFormatInfo->format == VK_FORMAT_A2R10G10B10_UNORM_PACK32))
   1300 		{
   1301 			return VK_ERROR_FORMAT_NOT_SUPPORTED;
   1302 		}
   1303 
   1304 		if (pImageFormatInfo->type != VK_IMAGE_TYPE_2D)
   1305 			return VK_ERROR_FORMAT_NOT_SUPPORTED;
   1306 
   1307 		if ((pImageFormatInfo->usage & ~(VK_IMAGE_USAGE_TRANSFER_SRC_BIT
   1308 										| VK_IMAGE_USAGE_TRANSFER_DST_BIT
   1309 										| VK_IMAGE_USAGE_SAMPLED_BIT
   1310 										| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT))
   1311 			!= 0)
   1312 		{
   1313 			return VK_ERROR_FORMAT_NOT_SUPPORTED;
   1314 		}
   1315 
   1316 		if ((pImageFormatInfo->flags & ~(VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
   1317 										/*| VK_IMAGE_CREATE_PROTECTED_BIT_KHR*/
   1318 										/*| VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR*/))
   1319 			!= 0)
   1320 		{
   1321 			return VK_ERROR_FORMAT_NOT_SUPPORTED;
   1322 		}
   1323 
   1324 		if (externalProperties)
   1325 		{
   1326 			externalProperties->externalMemoryProperties.externalMemoryFeatures			= VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_KHR
   1327 																						| VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_KHR
   1328 																						| VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_KHR;
   1329 			externalProperties->externalMemoryProperties.exportFromImportedHandleTypes	= VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
   1330 			externalProperties->externalMemoryProperties.compatibleHandleTypes			= VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
   1331 		}
   1332 	}
   1333 
   1334 	return VK_SUCCESS;
   1335 }
   1336 
   1337 // \note getInstanceProcAddr is a little bit special:
   1338 // vkNullDriverImpl.inl needs it to define s_platformFunctions but
   1339 // getInstanceProcAddr() implementation needs other entry points from
   1340 // vkNullDriverImpl.inl.
   1341 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL getInstanceProcAddr (VkInstance instance, const char* pName);
   1342 
   1343 #include "vkNullDriverImpl.inl"
   1344 
   1345 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL getInstanceProcAddr (VkInstance instance, const char* pName)
   1346 {
   1347 	if (instance)
   1348 	{
   1349 		return reinterpret_cast<Instance*>(instance)->getProcAddr(pName);
   1350 	}
   1351 	else
   1352 	{
   1353 		const std::string	name	= pName;
   1354 
   1355 		if (name == "vkCreateInstance")
   1356 			return (PFN_vkVoidFunction)createInstance;
   1357 		else if (name == "vkEnumerateInstanceExtensionProperties")
   1358 			return (PFN_vkVoidFunction)enumerateInstanceExtensionProperties;
   1359 		else if (name == "vkEnumerateInstanceLayerProperties")
   1360 			return (PFN_vkVoidFunction)enumerateInstanceLayerProperties;
   1361 		else
   1362 			return (PFN_vkVoidFunction)DE_NULL;
   1363 	}
   1364 }
   1365 
   1366 } // extern "C"
   1367 
   1368 Instance::Instance (const VkInstanceCreateInfo*)
   1369 	: m_functions(s_instanceFunctions, DE_LENGTH_OF_ARRAY(s_instanceFunctions))
   1370 {
   1371 }
   1372 
   1373 Device::Device (VkPhysicalDevice, const VkDeviceCreateInfo*)
   1374 	: m_functions(s_deviceFunctions, DE_LENGTH_OF_ARRAY(s_deviceFunctions))
   1375 {
   1376 }
   1377 
   1378 class NullDriverLibrary : public Library
   1379 {
   1380 public:
   1381 										NullDriverLibrary (void)
   1382 											: m_library	(s_platformFunctions, DE_LENGTH_OF_ARRAY(s_platformFunctions))
   1383 											, m_driver	(m_library)
   1384 										{}
   1385 
   1386 	const PlatformInterface&			getPlatformInterface	(void) const	{ return m_driver;	}
   1387 	const tcu::FunctionLibrary&			getFunctionLibrary		(void) const	{ return m_library;	}
   1388 private:
   1389 	const tcu::StaticFunctionLibrary	m_library;
   1390 	const PlatformDriver				m_driver;
   1391 };
   1392 
   1393 } // anonymous
   1394 
   1395 Library* createNullDriver (void)
   1396 {
   1397 	return new NullDriverLibrary();
   1398 }
   1399 
   1400 } // vk
   1401