Home | History | Annotate | Download | only in crypt
      1 /*
      2  * This code implements the MD5 message-digest algorithm.
      3  * The algorithm is due to Ron Rivest.	This code was
      4  * written by Colin Plumb in 1993, no copyright is claimed.
      5  * This code is in the public domain; do with it what you wish.
      6  *
      7  * Equivalent code is available from RSA Data Security, Inc.
      8  * This code has been tested against that, and is equivalent,
      9  * except that you don't need to include two pages of legalese
     10  * with every copy.
     11  *
     12  * To compute the message digest of a chunk of bytes, declare an
     13  * MD5Context structure, pass it to MD5Init, call MD5Update as
     14  * needed on buffers full of bytes, and then call MD5Final, which
     15  * will fill a supplied 16-byte array with the digest.
     16  */
     17 
     18 #include <sys/param.h>
     19 #include <inttypes.h>
     20 
     21 #include <string.h>
     22 
     23 #include "md5.h"
     24 
     25 #define PUT_64BIT_LE(cp, value) do {					\
     26 	(cp)[7] = (uint8_t)((value) >> 56);				\
     27 	(cp)[6] = (uint8_t)((value) >> 48);				\
     28 	(cp)[5] = (uint8_t)((value) >> 40);				\
     29 	(cp)[4] = (uint8_t)((value) >> 32);				\
     30 	(cp)[3] = (uint8_t)((value) >> 24);				\
     31 	(cp)[2] = (uint8_t)((value) >> 16);				\
     32 	(cp)[1] = (uint8_t)((value) >> 8);				\
     33 	(cp)[0] = (uint8_t)(value); } while (0)
     34 
     35 #define PUT_32BIT_LE(cp, value) do {					\
     36 	(cp)[3] = (uint8_t)((value) >> 24);				\
     37 	(cp)[2] = (uint8_t)((value) >> 16);				\
     38 	(cp)[1] = (uint8_t)((value) >> 8);				\
     39 	(cp)[0] = (uint8_t)(value); } while (0)
     40 
     41 static uint8_t PADDING[MD5_BLOCK_LENGTH] = {
     42 	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     43 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     44 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
     45 };
     46 
     47 /*
     48  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     49  * initialization constants.
     50  */
     51 void
     52 MD5Init(MD5_CTX *ctx)
     53 {
     54 	ctx->count = 0;
     55 	ctx->state[0] = 0x67452301;
     56 	ctx->state[1] = 0xefcdab89;
     57 	ctx->state[2] = 0x98badcfe;
     58 	ctx->state[3] = 0x10325476;
     59 }
     60 
     61 
     62 /* The four core functions - F1 is optimized somewhat */
     63 
     64 /* #define F1(x, y, z) (x & y | ~x & z) */
     65 #define F1(x, y, z) (z ^ (x & (y ^ z)))
     66 #define F2(x, y, z) F1(z, x, y)
     67 #define F3(x, y, z) (x ^ y ^ z)
     68 #define F4(x, y, z) (y ^ (x | ~z))
     69 
     70 /* This is the central step in the MD5 algorithm. */
     71 #define MD5STEP(f, w, x, y, z, data, s) \
     72 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
     73 
     74 /*
     75  * The core of the MD5 algorithm, this alters an existing MD5 hash to
     76  * reflect the addition of 16 longwords of new data.  MD5Update blocks
     77  * the data and converts bytes into longwords for this routine.
     78  */
     79 static void
     80 MD5Transform(uint32_t state[4], const uint8_t block[MD5_BLOCK_LENGTH])
     81 {
     82 	uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
     83 
     84 #if BYTE_ORDER == LITTLE_ENDIAN
     85 	memcpy(in, block, sizeof(in));
     86 #else
     87 	for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
     88 		in[a] = (uint32_t)(
     89 		    (uint32_t)(block[a * 4 + 0]) |
     90 		    (uint32_t)(block[a * 4 + 1]) <<  8 |
     91 		    (uint32_t)(block[a * 4 + 2]) << 16 |
     92 		    (uint32_t)(block[a * 4 + 3]) << 24);
     93 	}
     94 #endif
     95 
     96 	a = state[0];
     97 	b = state[1];
     98 	c = state[2];
     99 	d = state[3];
    100 
    101 	MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478,  7);
    102 	MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
    103 	MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
    104 	MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
    105 	MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf,  7);
    106 	MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
    107 	MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
    108 	MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
    109 	MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8,  7);
    110 	MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
    111 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    112 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    113 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122,  7);
    114 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    115 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    116 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    117 
    118 	MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562,  5);
    119 	MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340,  9);
    120 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    121 	MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
    122 	MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d,  5);
    123 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453,  9);
    124 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    125 	MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
    126 	MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6,  5);
    127 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6,  9);
    128 	MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
    129 	MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
    130 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905,  5);
    131 	MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8,  9);
    132 	MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
    133 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    134 
    135 	MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942,  4);
    136 	MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
    137 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    138 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    139 	MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44,  4);
    140 	MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
    141 	MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
    142 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    143 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6,  4);
    144 	MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
    145 	MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
    146 	MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
    147 	MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039,  4);
    148 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    149 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    150 	MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
    151 
    152 	MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244,  6);
    153 	MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
    154 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    155 	MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
    156 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3,  6);
    157 	MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
    158 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    159 	MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
    160 	MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f,  6);
    161 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    162 	MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
    163 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    164 	MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82,  6);
    165 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    166 	MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
    167 	MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
    168 
    169 	state[0] += a;
    170 	state[1] += b;
    171 	state[2] += c;
    172 	state[3] += d;
    173 }
    174 
    175 /*
    176  * Update context to reflect the concatenation of another buffer full
    177  * of bytes.
    178  */
    179 void
    180 MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
    181 {
    182 	size_t have, need;
    183 
    184 	/* Check how many bytes we already have and how many more we need. */
    185 	have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
    186 	need = MD5_BLOCK_LENGTH - have;
    187 
    188 	/* Update bitcount */
    189 	ctx->count += (uint64_t)len << 3;
    190 
    191 	if (len >= need) {
    192 		if (have != 0) {
    193 			memcpy(ctx->buffer + have, input, need);
    194 			MD5Transform(ctx->state, ctx->buffer);
    195 			input += need;
    196 			len -= need;
    197 			have = 0;
    198 		}
    199 
    200 		/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
    201 		while (len >= MD5_BLOCK_LENGTH) {
    202 			MD5Transform(ctx->state, input);
    203 			input += MD5_BLOCK_LENGTH;
    204 			len -= MD5_BLOCK_LENGTH;
    205 		}
    206 	}
    207 
    208 	/* Handle any remaining bytes of data. */
    209 	if (len != 0)
    210 		memcpy(ctx->buffer + have, input, len);
    211 }
    212 
    213 /*
    214  * Final wrapup - pad to 64-byte boundary with the bit pattern
    215  * 1 0* (64-bit count of bits processed, MSB-first)
    216  */
    217 void
    218 MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
    219 {
    220 	uint8_t count[8];
    221 	size_t padlen;
    222 	int i;
    223 
    224 	/* Convert count to 8 bytes in little endian order. */
    225 	PUT_64BIT_LE(count, ctx->count);
    226 
    227 	/* Pad out to 56 mod 64. */
    228 	padlen = MD5_BLOCK_LENGTH -
    229 	    ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
    230 	if (padlen < 1 + 8)
    231 		padlen += MD5_BLOCK_LENGTH;
    232 	MD5Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
    233 	MD5Update(ctx, count, 8);
    234 
    235 	if (digest != NULL) {
    236 		for (i = 0; i < 4; i++)
    237 			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
    238 	}
    239 	memset(ctx, 0, sizeof(*ctx));	/* in case it's sensitive */
    240 }
    241 
    242 
    243