Home | History | Annotate | Download | only in AVX
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet (at) gmail.com)
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_MATH_FUNCTIONS_AVX_H
     11 #define EIGEN_MATH_FUNCTIONS_AVX_H
     12 
     13 /* The sin, cos, exp, and log functions of this file are loosely derived from
     14  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
     15  */
     16 
     17 namespace Eigen {
     18 
     19 namespace internal {
     20 
     21 inline Packet8i pshiftleft(Packet8i v, int n)
     22 {
     23 #ifdef EIGEN_VECTORIZE_AVX2
     24   return _mm256_slli_epi32(v, n);
     25 #else
     26   __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(v, 0), n);
     27   __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(v, 1), n);
     28   return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
     29 #endif
     30 }
     31 
     32 inline Packet8f pshiftright(Packet8f v, int n)
     33 {
     34 #ifdef EIGEN_VECTORIZE_AVX2
     35   return _mm256_cvtepi32_ps(_mm256_srli_epi32(_mm256_castps_si256(v), n));
     36 #else
     37   __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 0), n);
     38   __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 1), n);
     39   return _mm256_cvtepi32_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1));
     40 #endif
     41 }
     42 
     43 // Sine function
     44 // Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and
     45 // evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants
     46 // are (anti-)symmetric and thus have only odd/even coefficients
     47 template <>
     48 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
     49 psin<Packet8f>(const Packet8f& _x) {
     50   Packet8f x = _x;
     51 
     52   // Some useful values.
     53   _EIGEN_DECLARE_CONST_Packet8i(one, 1);
     54   _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
     55   _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
     56   _EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f);
     57   _EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f);
     58   _EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00f);
     59   _EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04f);
     60   _EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07f);
     61   _EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00f);
     62 
     63   // Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period.
     64   Packet8f z = pmul(x, p8f_one_over_pi);
     65   Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four));
     66   x = pmadd(shift, p8f_neg_pi_first, x);
     67   x = pmadd(shift, p8f_neg_pi_second, x);
     68   x = pmadd(shift, p8f_neg_pi_third, x);
     69   z = pmul(x, p8f_four_over_pi);
     70 
     71   // Make a mask for the entries that need flipping, i.e. wherever the shift
     72   // is odd.
     73   Packet8i shift_ints = _mm256_cvtps_epi32(shift);
     74   Packet8i shift_isodd = _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(shift_ints), _mm256_castsi256_ps(p8i_one)));
     75   Packet8i sign_flip_mask = pshiftleft(shift_isodd, 31);
     76 
     77   // Create a mask for which interpolant to use, i.e. if z > 1, then the mask
     78   // is set to ones for that entry.
     79   Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ);
     80 
     81   // Evaluate the polynomial for the interval [1,3] in z.
     82   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f);
     83   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01f);
     84   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02f);
     85   _EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04f);
     86   Packet8f z_minus_two = psub(z, p8f_two);
     87   Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two);
     88   Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4);
     89   right = pmadd(right, z_minus_two2, p8f_coeff_right_2);
     90   right = pmadd(right, z_minus_two2, p8f_coeff_right_0);
     91 
     92   // Evaluate the polynomial for the interval [-1,1] in z.
     93   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01f);
     94   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02f);
     95   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03f);
     96   _EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05f);
     97   Packet8f z2 = pmul(z, z);
     98   Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5);
     99   left = pmadd(left, z2, p8f_coeff_left_3);
    100   left = pmadd(left, z2, p8f_coeff_left_1);
    101   left = pmul(left, z);
    102 
    103   // Assemble the results, i.e. select the left and right polynomials.
    104   left = _mm256_andnot_ps(ival_mask, left);
    105   right = _mm256_and_ps(ival_mask, right);
    106   Packet8f res = _mm256_or_ps(left, right);
    107 
    108   // Flip the sign on the odd intervals and return the result.
    109   res = _mm256_xor_ps(res, _mm256_castsi256_ps(sign_flip_mask));
    110   return res;
    111 }
    112 
    113 // Natural logarithm
    114 // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
    115 // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
    116 // be easily approximated by a polynomial centered on m=1 for stability.
    117 // TODO(gonnet): Further reduce the interval allowing for lower-degree
    118 //               polynomial interpolants -> ... -> profit!
    119 template <>
    120 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
    121 plog<Packet8f>(const Packet8f& _x) {
    122   Packet8f x = _x;
    123   _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
    124   _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
    125   _EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f);
    126 
    127   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000);
    128 
    129   // The smallest non denormalized float number.
    130   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000);
    131   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000);
    132 
    133   // Polynomial coefficients.
    134   _EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f);
    135   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f);
    136   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f);
    137   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f);
    138   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f);
    139   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f);
    140   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f);
    141   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f);
    142   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f);
    143   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f);
    144   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f);
    145   _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f);
    146 
    147   Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ); // not greater equal is true if x is NaN
    148   Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ);
    149 
    150   // Truncate input values to the minimum positive normal.
    151   x = pmax(x, p8f_min_norm_pos);
    152 
    153   Packet8f emm0 = pshiftright(x,23);
    154   Packet8f e = _mm256_sub_ps(emm0, p8f_126f);
    155 
    156   // Set the exponents to -1, i.e. x are in the range [0.5,1).
    157   x = _mm256_and_ps(x, p8f_inv_mant_mask);
    158   x = _mm256_or_ps(x, p8f_half);
    159 
    160   // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
    161   // and shift by -1. The values are then centered around 0, which improves
    162   // the stability of the polynomial evaluation.
    163   //   if( x < SQRTHF ) {
    164   //     e -= 1;
    165   //     x = x + x - 1.0;
    166   //   } else { x = x - 1.0; }
    167   Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ);
    168   Packet8f tmp = _mm256_and_ps(x, mask);
    169   x = psub(x, p8f_1);
    170   e = psub(e, _mm256_and_ps(p8f_1, mask));
    171   x = padd(x, tmp);
    172 
    173   Packet8f x2 = pmul(x, x);
    174   Packet8f x3 = pmul(x2, x);
    175 
    176   // Evaluate the polynomial approximant of degree 8 in three parts, probably
    177   // to improve instruction-level parallelism.
    178   Packet8f y, y1, y2;
    179   y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1);
    180   y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4);
    181   y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7);
    182   y = pmadd(y, x, p8f_cephes_log_p2);
    183   y1 = pmadd(y1, x, p8f_cephes_log_p5);
    184   y2 = pmadd(y2, x, p8f_cephes_log_p8);
    185   y = pmadd(y, x3, y1);
    186   y = pmadd(y, x3, y2);
    187   y = pmul(y, x3);
    188 
    189   // Add the logarithm of the exponent back to the result of the interpolation.
    190   y1 = pmul(e, p8f_cephes_log_q1);
    191   tmp = pmul(x2, p8f_half);
    192   y = padd(y, y1);
    193   x = psub(x, tmp);
    194   y2 = pmul(e, p8f_cephes_log_q2);
    195   x = padd(x, y);
    196   x = padd(x, y2);
    197 
    198   // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF.
    199   return _mm256_or_ps(
    200       _mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)),
    201       _mm256_and_ps(iszero_mask, p8f_minus_inf));
    202 }
    203 
    204 // Exponential function. Works by writing "x = m*log(2) + r" where
    205 // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
    206 // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
    207 template <>
    208 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
    209 pexp<Packet8f>(const Packet8f& _x) {
    210   _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
    211   _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
    212   _EIGEN_DECLARE_CONST_Packet8f(127, 127.0f);
    213 
    214   _EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f);
    215   _EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f);
    216 
    217   _EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f);
    218 
    219   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f);
    220   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f);
    221   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f);
    222   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f);
    223   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f);
    224   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f);
    225 
    226   // Clamp x.
    227   Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo);
    228 
    229   // Express exp(x) as exp(m*ln(2) + r), start by extracting
    230   // m = floor(x/ln(2) + 0.5).
    231   Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half));
    232 
    233 // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
    234 // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
    235 // truncation errors. Note that we don't use the "pmadd" function here to
    236 // ensure that a precision-preserving FMA instruction is used.
    237 #ifdef EIGEN_VECTORIZE_FMA
    238   _EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f);
    239   Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x);
    240 #else
    241   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f);
    242   _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f);
    243   Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1));
    244   r = psub(r, pmul(m, p8f_cephes_exp_C2));
    245 #endif
    246 
    247   Packet8f r2 = pmul(r, r);
    248 
    249   // TODO(gonnet): Split into odd/even polynomials and try to exploit
    250   //               instruction-level parallelism.
    251   Packet8f y = p8f_cephes_exp_p0;
    252   y = pmadd(y, r, p8f_cephes_exp_p1);
    253   y = pmadd(y, r, p8f_cephes_exp_p2);
    254   y = pmadd(y, r, p8f_cephes_exp_p3);
    255   y = pmadd(y, r, p8f_cephes_exp_p4);
    256   y = pmadd(y, r, p8f_cephes_exp_p5);
    257   y = pmadd(y, r2, r);
    258   y = padd(y, p8f_1);
    259 
    260   // Build emm0 = 2^m.
    261   Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127));
    262   emm0 = pshiftleft(emm0, 23);
    263 
    264   // Return 2^m * exp(r).
    265   return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x);
    266 }
    267 
    268 // Hyperbolic Tangent function.
    269 template <>
    270 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
    271 ptanh<Packet8f>(const Packet8f& x) {
    272   return internal::generic_fast_tanh_float(x);
    273 }
    274 
    275 template <>
    276 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
    277 pexp<Packet4d>(const Packet4d& _x) {
    278   Packet4d x = _x;
    279 
    280   _EIGEN_DECLARE_CONST_Packet4d(1, 1.0);
    281   _EIGEN_DECLARE_CONST_Packet4d(2, 2.0);
    282   _EIGEN_DECLARE_CONST_Packet4d(half, 0.5);
    283 
    284   _EIGEN_DECLARE_CONST_Packet4d(exp_hi, 709.437);
    285   _EIGEN_DECLARE_CONST_Packet4d(exp_lo, -709.436139303);
    286 
    287   _EIGEN_DECLARE_CONST_Packet4d(cephes_LOG2EF, 1.4426950408889634073599);
    288 
    289   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p0, 1.26177193074810590878e-4);
    290   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p1, 3.02994407707441961300e-2);
    291   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p2, 9.99999999999999999910e-1);
    292 
    293   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q0, 3.00198505138664455042e-6);
    294   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q1, 2.52448340349684104192e-3);
    295   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q2, 2.27265548208155028766e-1);
    296   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q3, 2.00000000000000000009e0);
    297 
    298   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C1, 0.693145751953125);
    299   _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C2, 1.42860682030941723212e-6);
    300   _EIGEN_DECLARE_CONST_Packet4i(1023, 1023);
    301 
    302   Packet4d tmp, fx;
    303 
    304   // clamp x
    305   x = pmax(pmin(x, p4d_exp_hi), p4d_exp_lo);
    306   // Express exp(x) as exp(g + n*log(2)).
    307   fx = pmadd(p4d_cephes_LOG2EF, x, p4d_half);
    308 
    309   // Get the integer modulus of log(2), i.e. the "n" described above.
    310   fx = _mm256_floor_pd(fx);
    311 
    312   // Get the remainder modulo log(2), i.e. the "g" described above. Subtract
    313   // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
    314   // digits right.
    315   tmp = pmul(fx, p4d_cephes_exp_C1);
    316   Packet4d z = pmul(fx, p4d_cephes_exp_C2);
    317   x = psub(x, tmp);
    318   x = psub(x, z);
    319 
    320   Packet4d x2 = pmul(x, x);
    321 
    322   // Evaluate the numerator polynomial of the rational interpolant.
    323   Packet4d px = p4d_cephes_exp_p0;
    324   px = pmadd(px, x2, p4d_cephes_exp_p1);
    325   px = pmadd(px, x2, p4d_cephes_exp_p2);
    326   px = pmul(px, x);
    327 
    328   // Evaluate the denominator polynomial of the rational interpolant.
    329   Packet4d qx = p4d_cephes_exp_q0;
    330   qx = pmadd(qx, x2, p4d_cephes_exp_q1);
    331   qx = pmadd(qx, x2, p4d_cephes_exp_q2);
    332   qx = pmadd(qx, x2, p4d_cephes_exp_q3);
    333 
    334   // I don't really get this bit, copied from the SSE2 routines, so...
    335   // TODO(gonnet): Figure out what is going on here, perhaps find a better
    336   // rational interpolant?
    337   x = _mm256_div_pd(px, psub(qx, px));
    338   x = pmadd(p4d_2, x, p4d_1);
    339 
    340   // Build e=2^n by constructing the exponents in a 128-bit vector and
    341   // shifting them to where they belong in double-precision values.
    342   __m128i emm0 = _mm256_cvtpd_epi32(fx);
    343   emm0 = _mm_add_epi32(emm0, p4i_1023);
    344   emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0));
    345   __m128i lo = _mm_slli_epi64(emm0, 52);
    346   __m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52);
    347   __m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0);
    348   e = _mm256_insertf128_si256(e, hi, 1);
    349 
    350   // Construct the result 2^n * exp(g) = e * x. The max is used to catch
    351   // non-finite values in the input.
    352   return pmax(pmul(x, _mm256_castsi256_pd(e)), _x);
    353 }
    354 
    355 // Functions for sqrt.
    356 // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
    357 // of Newton's method, at a cost of 1-2 bits of precision as opposed to the
    358 // exact solution. It does not handle +inf, or denormalized numbers correctly.
    359 // The main advantage of this approach is not just speed, but also the fact that
    360 // it can be inlined and pipelined with other computations, further reducing its
    361 // effective latency. This is similar to Quake3's fast inverse square root.
    362 // For detail see here: http://www.beyond3d.com/content/articles/8/
    363 #if EIGEN_FAST_MATH
    364 template <>
    365 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
    366 psqrt<Packet8f>(const Packet8f& _x) {
    367   Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
    368   Packet8f denormal_mask = _mm256_and_ps(
    369       _mm256_cmp_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)()),
    370                     _CMP_LT_OQ),
    371       _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
    372 
    373   // Compute approximate reciprocal sqrt.
    374   Packet8f x = _mm256_rsqrt_ps(_x);
    375   // Do a single step of Newton's iteration.
    376   x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
    377   // Flush results for denormals to zero.
    378   return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
    379 }
    380 #else
    381 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
    382 Packet8f psqrt<Packet8f>(const Packet8f& x) {
    383   return _mm256_sqrt_ps(x);
    384 }
    385 #endif
    386 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
    387 Packet4d psqrt<Packet4d>(const Packet4d& x) {
    388   return _mm256_sqrt_pd(x);
    389 }
    390 #if EIGEN_FAST_MATH
    391 
    392 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
    393 Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
    394   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
    395   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(nan, 0x7fc00000);
    396   _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
    397   _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
    398   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
    399 
    400   Packet8f neg_half = pmul(_x, p8f_minus_half);
    401 
    402   // select only the inverse sqrt of positive normal inputs (denormals are
    403   // flushed to zero and cause infs as well).
    404   Packet8f le_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
    405   Packet8f x = _mm256_andnot_ps(le_zero_mask, _mm256_rsqrt_ps(_x));
    406 
    407   // Fill in NaNs and Infs for the negative/zero entries.
    408   Packet8f neg_mask = _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_LT_OQ);
    409   Packet8f zero_mask = _mm256_andnot_ps(neg_mask, le_zero_mask);
    410   Packet8f infs_and_nans = _mm256_or_ps(_mm256_and_ps(neg_mask, p8f_nan),
    411                                         _mm256_and_ps(zero_mask, p8f_inf));
    412 
    413   // Do a single step of Newton's iteration.
    414   x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
    415 
    416   // Insert NaNs and Infs in all the right places.
    417   return _mm256_or_ps(x, infs_and_nans);
    418 }
    419 
    420 #else
    421 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
    422 Packet8f prsqrt<Packet8f>(const Packet8f& x) {
    423   _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
    424   return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x));
    425 }
    426 #endif
    427 
    428 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
    429 Packet4d prsqrt<Packet4d>(const Packet4d& x) {
    430   _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
    431   return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x));
    432 }
    433 
    434 
    435 }  // end namespace internal
    436 
    437 }  // end namespace Eigen
    438 
    439 #endif  // EIGEN_MATH_FUNCTIONS_AVX_H
    440