Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_SCALING_H
     11 #define EIGEN_SCALING_H
     12 
     13 namespace Eigen {
     14 
     15 /** \geometry_module \ingroup Geometry_Module
     16   *
     17   * \class Scaling
     18   *
     19   * \brief Represents a generic uniform scaling transformation
     20   *
     21   * \tparam _Scalar the scalar type, i.e., the type of the coefficients.
     22   *
     23   * This class represent a uniform scaling transformation. It is the return
     24   * type of Scaling(Scalar), and most of the time this is the only way it
     25   * is used. In particular, this class is not aimed to be used to store a scaling transformation,
     26   * but rather to make easier the constructions and updates of Transform objects.
     27   *
     28   * To represent an axis aligned scaling, use the DiagonalMatrix class.
     29   *
     30   * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
     31   */
     32 template<typename _Scalar>
     33 class UniformScaling
     34 {
     35 public:
     36   /** the scalar type of the coefficients */
     37   typedef _Scalar Scalar;
     38 
     39 protected:
     40 
     41   Scalar m_factor;
     42 
     43 public:
     44 
     45   /** Default constructor without initialization. */
     46   UniformScaling() {}
     47   /** Constructs and initialize a uniform scaling transformation */
     48   explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
     49 
     50   inline const Scalar& factor() const { return m_factor; }
     51   inline Scalar& factor() { return m_factor; }
     52 
     53   /** Concatenates two uniform scaling */
     54   inline UniformScaling operator* (const UniformScaling& other) const
     55   { return UniformScaling(m_factor * other.factor()); }
     56 
     57   /** Concatenates a uniform scaling and a translation */
     58   template<int Dim>
     59   inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
     60 
     61   /** Concatenates a uniform scaling and an affine transformation */
     62   template<int Dim, int Mode, int Options>
     63   inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
     64   {
     65     Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
     66     res.prescale(factor());
     67     return res;
     68   }
     69 
     70   /** Concatenates a uniform scaling and a linear transformation matrix */
     71   // TODO returns an expression
     72   template<typename Derived>
     73   inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
     74   { return other * m_factor; }
     75 
     76   template<typename Derived,int Dim>
     77   inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
     78   { return r.toRotationMatrix() * m_factor; }
     79 
     80   /** \returns the inverse scaling */
     81   inline UniformScaling inverse() const
     82   { return UniformScaling(Scalar(1)/m_factor); }
     83 
     84   /** \returns \c *this with scalar type casted to \a NewScalarType
     85     *
     86     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
     87     * then this function smartly returns a const reference to \c *this.
     88     */
     89   template<typename NewScalarType>
     90   inline UniformScaling<NewScalarType> cast() const
     91   { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
     92 
     93   /** Copy constructor with scalar type conversion */
     94   template<typename OtherScalarType>
     95   inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
     96   { m_factor = Scalar(other.factor()); }
     97 
     98   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
     99     * determined by \a prec.
    100     *
    101     * \sa MatrixBase::isApprox() */
    102   bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
    103   { return internal::isApprox(m_factor, other.factor(), prec); }
    104 
    105 };
    106 
    107 /** \addtogroup Geometry_Module */
    108 //@{
    109 
    110 /** Concatenates a linear transformation matrix and a uniform scaling
    111   * \relates UniformScaling
    112   */
    113 // NOTE this operator is defiend in MatrixBase and not as a friend function
    114 // of UniformScaling to fix an internal crash of Intel's ICC
    115 template<typename Derived,typename Scalar>
    116 EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product)
    117 operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s)
    118 { return matrix.derived() * s.factor(); }
    119 
    120 /** Constructs a uniform scaling from scale factor \a s */
    121 inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
    122 /** Constructs a uniform scaling from scale factor \a s */
    123 inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
    124 /** Constructs a uniform scaling from scale factor \a s */
    125 template<typename RealScalar>
    126 inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
    127 { return UniformScaling<std::complex<RealScalar> >(s); }
    128 
    129 /** Constructs a 2D axis aligned scaling */
    130 template<typename Scalar>
    131 inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
    132 { return DiagonalMatrix<Scalar,2>(sx, sy); }
    133 /** Constructs a 3D axis aligned scaling */
    134 template<typename Scalar>
    135 inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
    136 { return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
    137 
    138 /** Constructs an axis aligned scaling expression from vector expression \a coeffs
    139   * This is an alias for coeffs.asDiagonal()
    140   */
    141 template<typename Derived>
    142 inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
    143 { return coeffs.asDiagonal(); }
    144 
    145 /** \deprecated */
    146 typedef DiagonalMatrix<float, 2> AlignedScaling2f;
    147 /** \deprecated */
    148 typedef DiagonalMatrix<double,2> AlignedScaling2d;
    149 /** \deprecated */
    150 typedef DiagonalMatrix<float, 3> AlignedScaling3f;
    151 /** \deprecated */
    152 typedef DiagonalMatrix<double,3> AlignedScaling3d;
    153 //@}
    154 
    155 template<typename Scalar>
    156 template<int Dim>
    157 inline Transform<Scalar,Dim,Affine>
    158 UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
    159 {
    160   Transform<Scalar,Dim,Affine> res;
    161   res.matrix().setZero();
    162   res.linear().diagonal().fill(factor());
    163   res.translation() = factor() * t.vector();
    164   res(Dim,Dim) = Scalar(1);
    165   return res;
    166 }
    167 
    168 } // end namespace Eigen
    169 
    170 #endif // EIGEN_SCALING_H
    171