Home | History | Annotate | Download | only in blas
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "common.h"
     11 
     12 struct scalar_norm1_op {
     13   typedef RealScalar result_type;
     14   EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
     15   inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
     16 };
     17 namespace Eigen {
     18   namespace internal {
     19     template<> struct functor_traits<scalar_norm1_op >
     20     {
     21       enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
     22     };
     23   }
     24 }
     25 
     26 // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
     27 // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
     28 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
     29 {
     30 //   std::cerr << "__asum " << *n << " " << *incx << "\n";
     31   Complex* x = reinterpret_cast<Complex*>(px);
     32 
     33   if(*n<=0) return 0;
     34 
     35   if(*incx==1)  return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
     36   else          return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
     37 }
     38 
     39 // computes a dot product of a conjugated vector with another vector.
     40 int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
     41 {
     42 //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
     43   Scalar* res = reinterpret_cast<Scalar*>(pres);
     44 
     45   if(*n<=0)
     46   {
     47     *res = Scalar(0);
     48     return 0;
     49   }
     50 
     51   Scalar* x = reinterpret_cast<Scalar*>(px);
     52   Scalar* y = reinterpret_cast<Scalar*>(py);
     53 
     54   if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).dot(make_vector(y,*n)));
     55   else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
     56   else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
     57   else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
     58   else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
     59   return 0;
     60 }
     61 
     62 // computes a vector-vector dot product without complex conjugation.
     63 int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
     64 {
     65   Scalar* res = reinterpret_cast<Scalar*>(pres);
     66 
     67   if(*n<=0)
     68   {
     69     *res = Scalar(0);
     70     return 0;
     71   }
     72 
     73   Scalar* x = reinterpret_cast<Scalar*>(px);
     74   Scalar* y = reinterpret_cast<Scalar*>(py);
     75 
     76   if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
     77   else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
     78   else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
     79   else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
     80   else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
     81   return 0;
     82 }
     83 
     84 RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
     85 {
     86 //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
     87   if(*n<=0) return 0;
     88 
     89   Scalar* x = reinterpret_cast<Scalar*>(px);
     90 
     91   if(*incx==1)
     92     return make_vector(x,*n).stableNorm();
     93 
     94   return make_vector(x,*n,*incx).stableNorm();
     95 }
     96 
     97 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
     98 {
     99   if(*n<=0) return 0;
    100 
    101   Scalar* x = reinterpret_cast<Scalar*>(px);
    102   Scalar* y = reinterpret_cast<Scalar*>(py);
    103   RealScalar c = *pc;
    104   RealScalar s = *ps;
    105 
    106   StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
    107   StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));
    108 
    109   Reverse<StridedVectorType> rvx(vx);
    110   Reverse<StridedVectorType> rvy(vy);
    111 
    112   // TODO implement mixed real-scalar rotations
    113        if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
    114   else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
    115   else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s));
    116 
    117   return 0;
    118 }
    119 
    120 int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
    121 {
    122   if(*n<=0) return 0;
    123 
    124   Scalar* x = reinterpret_cast<Scalar*>(px);
    125   RealScalar alpha = *palpha;
    126 
    127 //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
    128 
    129   if(*incx==1)  make_vector(x,*n) *= alpha;
    130   else          make_vector(x,*n,std::abs(*incx)) *= alpha;
    131 
    132   return 0;
    133 }
    134