Home | History | Annotate | Download | only in doc
      1 // A simple quickref for Eigen. Add anything that's missing.
      2 // Main author: Keir Mierle
      3 
      4 #include <Eigen/Dense>
      5 
      6 Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
      7 Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
      8 Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
      9 Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
     10 Matrix3f P, Q, R;                     // 3x3 float matrix.
     11 Vector3f x, y, z;                     // 3x1 float matrix.
     12 RowVector3f a, b, c;                  // 1x3 float matrix.
     13 VectorXd v;                           // Dynamic column vector of doubles
     14 double s;                            
     15 
     16 // Basic usage
     17 // Eigen          // Matlab           // comments
     18 x.size()          // length(x)        // vector size
     19 C.rows()          // size(C,1)        // number of rows
     20 C.cols()          // size(C,2)        // number of columns
     21 x(i)              // x(i+1)           // Matlab is 1-based
     22 C(i,j)            // C(i+1,j+1)       //
     23 
     24 A.resize(4, 4);   // Runtime error if assertions are on.
     25 B.resize(4, 9);   // Runtime error if assertions are on.
     26 A.resize(3, 3);   // Ok; size didn't change.
     27 B.resize(3, 9);   // Ok; only dynamic cols changed.
     28                   
     29 A << 1, 2, 3,     // Initialize A. The elements can also be
     30      4, 5, 6,     // matrices, which are stacked along cols
     31      7, 8, 9;     // and then the rows are stacked.
     32 B << A, A, A;     // B is three horizontally stacked A's.
     33 A.fill(10);       // Fill A with all 10's.
     34 
     35 // Eigen                                    // Matlab
     36 MatrixXd::Identity(rows,cols)               // eye(rows,cols)
     37 C.setIdentity(rows,cols)                    // C = eye(rows,cols)
     38 MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)
     39 C.setZero(rows,cols)                        // C = zeros(rows,cols)
     40 MatrixXd::Ones(rows,cols)                   // ones(rows,cols)
     41 C.setOnes(rows,cols)                        // C = ones(rows,cols)
     42 MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1            // MatrixXd::Random returns uniform random numbers in (-1, 1).
     43 C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1
     44 VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'
     45 v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)'
     46 VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi
     47                     low,low+step*(size-1))  //
     48 
     49 
     50 // Matrix slicing and blocks. All expressions listed here are read/write.
     51 // Templated size versions are faster. Note that Matlab is 1-based (a size N
     52 // vector is x(1)...x(N)).
     53 // Eigen                           // Matlab
     54 x.head(n)                          // x(1:n)
     55 x.head<n>()                        // x(1:n)
     56 x.tail(n)                          // x(end - n + 1: end)
     57 x.tail<n>()                        // x(end - n + 1: end)
     58 x.segment(i, n)                    // x(i+1 : i+n)
     59 x.segment<n>(i)                    // x(i+1 : i+n)
     60 P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
     61 P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
     62 P.row(i)                           // P(i+1, :)
     63 P.col(j)                           // P(:, j+1)
     64 P.leftCols<cols>()                 // P(:, 1:cols)
     65 P.leftCols(cols)                   // P(:, 1:cols)
     66 P.middleCols<cols>(j)              // P(:, j+1:j+cols)
     67 P.middleCols(j, cols)              // P(:, j+1:j+cols)
     68 P.rightCols<cols>()                // P(:, end-cols+1:end)
     69 P.rightCols(cols)                  // P(:, end-cols+1:end)
     70 P.topRows<rows>()                  // P(1:rows, :)
     71 P.topRows(rows)                    // P(1:rows, :)
     72 P.middleRows<rows>(i)              // P(i+1:i+rows, :)
     73 P.middleRows(i, rows)              // P(i+1:i+rows, :)
     74 P.bottomRows<rows>()               // P(end-rows+1:end, :)
     75 P.bottomRows(rows)                 // P(end-rows+1:end, :)
     76 P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
     77 P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
     78 P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
     79 P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
     80 P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
     81 P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
     82 P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
     83 P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)
     84 
     85 // Of particular note is Eigen's swap function which is highly optimized.
     86 // Eigen                           // Matlab
     87 R.row(i) = P.col(j);               // R(i, :) = P(:, j)
     88 R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])
     89 
     90 // Views, transpose, etc;
     91 // Eigen                           // Matlab
     92 R.adjoint()                        // R'
     93 R.transpose()                      // R.' or conj(R')       // Read-write
     94 R.diagonal()                       // diag(R)               // Read-write
     95 x.asDiagonal()                     // diag(x)
     96 R.transpose().colwise().reverse()  // rot90(R)              // Read-write
     97 R.rowwise().reverse()              // fliplr(R)
     98 R.colwise().reverse()              // flipud(R)
     99 R.replicate(i,j)                   // repmat(P,i,j)
    100 
    101 
    102 // All the same as Matlab, but matlab doesn't have *= style operators.
    103 // Matrix-vector.  Matrix-matrix.   Matrix-scalar.
    104 y  = M*x;          R  = P*Q;        R  = P*s;
    105 a  = b*M;          R  = P - Q;      R  = s*P;
    106 a *= M;            R  = P + Q;      R  = P/s;
    107                    R *= Q;          R  = s*P;
    108                    R += Q;          R *= s;
    109                    R -= Q;          R /= s;
    110 
    111 // Vectorized operations on each element independently
    112 // Eigen                       // Matlab
    113 R = P.cwiseProduct(Q);         // R = P .* Q
    114 R = P.array() * s.array();     // R = P .* s
    115 R = P.cwiseQuotient(Q);        // R = P ./ Q
    116 R = P.array() / Q.array();     // R = P ./ Q
    117 R = P.array() + s.array();     // R = P + s
    118 R = P.array() - s.array();     // R = P - s
    119 R.array() += s;                // R = R + s
    120 R.array() -= s;                // R = R - s
    121 R.array() < Q.array();         // R < Q
    122 R.array() <= Q.array();        // R <= Q
    123 R.cwiseInverse();              // 1 ./ P
    124 R.array().inverse();           // 1 ./ P
    125 R.array().sin()                // sin(P)
    126 R.array().cos()                // cos(P)
    127 R.array().pow(s)               // P .^ s
    128 R.array().square()             // P .^ 2
    129 R.array().cube()               // P .^ 3
    130 R.cwiseSqrt()                  // sqrt(P)
    131 R.array().sqrt()               // sqrt(P)
    132 R.array().exp()                // exp(P)
    133 R.array().log()                // log(P)
    134 R.cwiseMax(P)                  // max(R, P)
    135 R.array().max(P.array())       // max(R, P)
    136 R.cwiseMin(P)                  // min(R, P)
    137 R.array().min(P.array())       // min(R, P)
    138 R.cwiseAbs()                   // abs(P)
    139 R.array().abs()                // abs(P)
    140 R.cwiseAbs2()                  // abs(P.^2)
    141 R.array().abs2()               // abs(P.^2)
    142 (R.array() < s).select(P,Q );  // (R < s ? P : Q)
    143 R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0)
    144 R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)   // with: scalar func(const scalar &x);
    145 
    146 
    147 // Reductions.
    148 int r, c;
    149 // Eigen                  // Matlab
    150 R.minCoeff()              // min(R(:))
    151 R.maxCoeff()              // max(R(:))
    152 s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
    153 s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
    154 R.sum()                   // sum(R(:))
    155 R.colwise().sum()         // sum(R)
    156 R.rowwise().sum()         // sum(R, 2) or sum(R')'
    157 R.prod()                  // prod(R(:))
    158 R.colwise().prod()        // prod(R)
    159 R.rowwise().prod()        // prod(R, 2) or prod(R')'
    160 R.trace()                 // trace(R)
    161 R.all()                   // all(R(:))
    162 R.colwise().all()         // all(R)
    163 R.rowwise().all()         // all(R, 2)
    164 R.any()                   // any(R(:))
    165 R.colwise().any()         // any(R)
    166 R.rowwise().any()         // any(R, 2)
    167 
    168 // Dot products, norms, etc.
    169 // Eigen                  // Matlab
    170 x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
    171 x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
    172 x.dot(y)                  // dot(x, y)
    173 x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>
    174 
    175 //// Type conversion
    176 // Eigen                  // Matlab
    177 A.cast<double>();         // double(A)
    178 A.cast<float>();          // single(A)
    179 A.cast<int>();            // int32(A)
    180 A.real();                 // real(A)
    181 A.imag();                 // imag(A)
    182 // if the original type equals destination type, no work is done
    183 
    184 // Note that for most operations Eigen requires all operands to have the same type:
    185 MatrixXf F = MatrixXf::Zero(3,3);
    186 A += F;                // illegal in Eigen. In Matlab A = A+F is allowed
    187 A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
    188 
    189 // Eigen can map existing memory into Eigen matrices.
    190 float array[3];
    191 Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10
    192 int data[4] = {1, 2, 3, 4};
    193 Matrix2i mat2x2(data);                    // copies data into mat2x2
    194 Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2
    195 MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
    196 
    197 // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
    198 x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
    199 x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
    200 x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
    201 x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
    202 x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
    203 // .ldlt() -> .matrixL() and .matrixD()
    204 // .llt()  -> .matrixL()
    205 // .lu()   -> .matrixL() and .matrixU()
    206 // .qr()   -> .matrixQ() and .matrixR()
    207 // .svd()  -> .matrixU(), .singularValues(), and .matrixV()
    208 
    209 // Eigenvalue problems
    210 // Eigen                          // Matlab
    211 A.eigenvalues();                  // eig(A);
    212 EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
    213 eig.eigenvalues();                // diag(val)
    214 eig.eigenvectors();               // vec
    215 // For self-adjoint matrices use SelfAdjointEigenSolver<>
    216