Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #define EIGEN_NO_STATIC_ASSERT
     11 
     12 #include "main.h"
     13 
     14 template<bool IsInteger> struct adjoint_specific;
     15 
     16 template<> struct adjoint_specific<true> {
     17   template<typename Vec, typename Mat, typename Scalar>
     18   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
     19     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
     20     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), 0));
     21 
     22     // check compatibility of dot and adjoint
     23     VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
     24   }
     25 };
     26 
     27 template<> struct adjoint_specific<false> {
     28   template<typename Vec, typename Mat, typename Scalar>
     29   static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
     30     typedef typename NumTraits<Scalar>::Real RealScalar;
     31     using std::abs;
     32 
     33     RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
     34     VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
     35     VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref));
     36 
     37     VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm());
     38     // check normalized() and normalize()
     39     VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
     40     v3 = v1;
     41     v3.normalize();
     42     VERIFY_IS_APPROX(v1, v1.norm() * v3);
     43     VERIFY_IS_APPROX(v3, v1.normalized());
     44     VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
     45 
     46     // check null inputs
     47     VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
     48 #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
     49     RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
     50     VERIFY( (v1*very_small).norm() == 0 );
     51     VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
     52     v3 = v1*very_small;
     53     v3.normalize();
     54     VERIFY_IS_APPROX(v3, (v1*very_small));
     55 #endif
     56 
     57     // check compatibility of dot and adjoint
     58     ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
     59     VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
     60 
     61     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
     62     // normalized() in order to produce a consistent result.
     63     VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
     64   }
     65 };
     66 
     67 template<typename MatrixType> void adjoint(const MatrixType& m)
     68 {
     69   /* this test covers the following files:
     70      Transpose.h Conjugate.h Dot.h
     71   */
     72   using std::abs;
     73   typedef typename MatrixType::Index Index;
     74   typedef typename MatrixType::Scalar Scalar;
     75   typedef typename NumTraits<Scalar>::Real RealScalar;
     76   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     77   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
     78   const Index PacketSize = internal::packet_traits<Scalar>::size;
     79 
     80   Index rows = m.rows();
     81   Index cols = m.cols();
     82 
     83   MatrixType m1 = MatrixType::Random(rows, cols),
     84              m2 = MatrixType::Random(rows, cols),
     85              m3(rows, cols),
     86              square = SquareMatrixType::Random(rows, rows);
     87   VectorType v1 = VectorType::Random(rows),
     88              v2 = VectorType::Random(rows),
     89              v3 = VectorType::Random(rows),
     90              vzero = VectorType::Zero(rows);
     91 
     92   Scalar s1 = internal::random<Scalar>(),
     93          s2 = internal::random<Scalar>();
     94 
     95   // check basic compatibility of adjoint, transpose, conjugate
     96   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
     97   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
     98 
     99   // check multiplicative behavior
    100   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
    101   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     numext::conj(s1) * m1.adjoint());
    102 
    103   // check basic properties of dot, squaredNorm
    104   VERIFY_IS_APPROX(numext::conj(v1.dot(v2)),               v2.dot(v1));
    105   VERIFY_IS_APPROX(numext::real(v1.dot(v1)),               v1.squaredNorm());
    106 
    107   adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
    108 
    109   VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)),  static_cast<RealScalar>(1));
    110 
    111   // like in testBasicStuff, test operator() to check const-qualification
    112   Index r = internal::random<Index>(0, rows-1),
    113       c = internal::random<Index>(0, cols-1);
    114   VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
    115   VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
    116 
    117   // check inplace transpose
    118   m3 = m1;
    119   m3.transposeInPlace();
    120   VERIFY_IS_APPROX(m3,m1.transpose());
    121   m3.transposeInPlace();
    122   VERIFY_IS_APPROX(m3,m1);
    123 
    124   if(PacketSize<m3.rows() && PacketSize<m3.cols())
    125   {
    126     m3 = m1;
    127     Index i = internal::random<Index>(0,m3.rows()-PacketSize);
    128     Index j = internal::random<Index>(0,m3.cols()-PacketSize);
    129     m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
    130     VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
    131     m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
    132     VERIFY_IS_APPROX(m3,m1);
    133   }
    134 
    135   // check inplace adjoint
    136   m3 = m1;
    137   m3.adjointInPlace();
    138   VERIFY_IS_APPROX(m3,m1.adjoint());
    139   m3.transposeInPlace();
    140   VERIFY_IS_APPROX(m3,m1.conjugate());
    141 
    142   // check mixed dot product
    143   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
    144   RealVectorType rv1 = RealVectorType::Random(rows);
    145   VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
    146   VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
    147 }
    148 
    149 void test_adjoint()
    150 {
    151   for(int i = 0; i < g_repeat; i++) {
    152     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
    153     CALL_SUBTEST_2( adjoint(Matrix3d()) );
    154     CALL_SUBTEST_3( adjoint(Matrix4f()) );
    155 
    156     CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    157     CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    158     CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    159 
    160     // Complement for 128 bits vectorization:
    161     CALL_SUBTEST_8( adjoint(Matrix2d()) );
    162     CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
    163 
    164     // 256 bits vectorization:
    165     CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
    166     CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
    167     CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
    168   }
    169   // test a large static matrix only once
    170   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
    171 
    172 #ifdef EIGEN_TEST_PART_13
    173   {
    174     MatrixXcf a(10,10), b(10,10);
    175     VERIFY_RAISES_ASSERT(a = a.transpose());
    176     VERIFY_RAISES_ASSERT(a = a.transpose() + b);
    177     VERIFY_RAISES_ASSERT(a = b + a.transpose());
    178     VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
    179     VERIFY_RAISES_ASSERT(a = a.adjoint());
    180     VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
    181     VERIFY_RAISES_ASSERT(a = b + a.adjoint());
    182 
    183     // no assertion should be triggered for these cases:
    184     a.transpose() = a.transpose();
    185     a.transpose() += a.transpose();
    186     a.transpose() += a.transpose() + b;
    187     a.transpose() = a.adjoint();
    188     a.transpose() += a.adjoint();
    189     a.transpose() += a.adjoint() + b;
    190 
    191     // regression tests for check_for_aliasing
    192     MatrixXd c(10,10);
    193     c = 1.0 * MatrixXd::Ones(10,10) + c;
    194     c = MatrixXd::Ones(10,10) * 1.0 + c;
    195     c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
    196     c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
    197   }
    198 #endif
    199 }
    200 
    201