Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud (a] inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 // workaround issue between gcc >= 4.7 and cuda 5.5
     11 #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
     12   #undef _GLIBCXX_ATOMIC_BUILTINS
     13   #undef _GLIBCXX_USE_INT128
     14 #endif
     15 
     16 #define EIGEN_TEST_NO_LONGDOUBLE
     17 #define EIGEN_TEST_NO_COMPLEX
     18 #define EIGEN_TEST_FUNC cuda_basic
     19 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
     20 
     21 #include <math_constants.h>
     22 #include <cuda.h>
     23 #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
     24 #include <cuda_fp16.h>
     25 #endif
     26 #include "main.h"
     27 #include "cuda_common.h"
     28 
     29 // Check that dense modules can be properly parsed by nvcc
     30 #include <Eigen/Dense>
     31 
     32 // struct Foo{
     33 //   EIGEN_DEVICE_FUNC
     34 //   void operator()(int i, const float* mats, float* vecs) const {
     35 //     using namespace Eigen;
     36 //   //   Matrix3f M(data);
     37 //   //   Vector3f x(data+9);
     38 //   //   Map<Vector3f>(data+9) = M.inverse() * x;
     39 //     Matrix3f M(mats+i/16);
     40 //     Vector3f x(vecs+i*3);
     41 //   //   using std::min;
     42 //   //   using std::sqrt;
     43 //     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x();
     44 //     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
     45 //   }
     46 // };
     47 
     48 template<typename T>
     49 struct coeff_wise {
     50   EIGEN_DEVICE_FUNC
     51   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
     52   {
     53     using namespace Eigen;
     54     T x1(in+i);
     55     T x2(in+i+1);
     56     T x3(in+i+2);
     57     Map<T> res(out+i*T::MaxSizeAtCompileTime);
     58     
     59     res.array() += (in[0] * x1 + x2).array() * x3.array();
     60   }
     61 };
     62 
     63 template<typename T>
     64 struct replicate {
     65   EIGEN_DEVICE_FUNC
     66   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
     67   {
     68     using namespace Eigen;
     69     T x1(in+i);
     70     int step   = x1.size() * 4;
     71     int stride = 3 * step;
     72     
     73     typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
     74     MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
     75     MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
     76     MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
     77   }
     78 };
     79 
     80 template<typename T>
     81 struct redux {
     82   EIGEN_DEVICE_FUNC
     83   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
     84   {
     85     using namespace Eigen;
     86     int N = 10;
     87     T x1(in+i);
     88     out[i*N+0] = x1.minCoeff();
     89     out[i*N+1] = x1.maxCoeff();
     90     out[i*N+2] = x1.sum();
     91     out[i*N+3] = x1.prod();
     92     out[i*N+4] = x1.matrix().squaredNorm();
     93     out[i*N+5] = x1.matrix().norm();
     94     out[i*N+6] = x1.colwise().sum().maxCoeff();
     95     out[i*N+7] = x1.rowwise().maxCoeff().sum();
     96     out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
     97   }
     98 };
     99 
    100 template<typename T1, typename T2>
    101 struct prod_test {
    102   EIGEN_DEVICE_FUNC
    103   void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
    104   {
    105     using namespace Eigen;
    106     typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
    107     T1 x1(in+i);
    108     T2 x2(in+i+1);
    109     Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
    110     res += in[i] * x1 * x2;
    111   }
    112 };
    113 
    114 template<typename T1, typename T2>
    115 struct diagonal {
    116   EIGEN_DEVICE_FUNC
    117   void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
    118   {
    119     using namespace Eigen;
    120     T1 x1(in+i);
    121     Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
    122     res += x1.diagonal();
    123   }
    124 };
    125 
    126 template<typename T>
    127 struct eigenvalues {
    128   EIGEN_DEVICE_FUNC
    129   void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
    130   {
    131     using namespace Eigen;
    132     typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
    133     T M(in+i);
    134     Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
    135     T A = M*M.adjoint();
    136     SelfAdjointEigenSolver<T> eig;
    137     eig.computeDirect(M);
    138     res = eig.eigenvalues();
    139   }
    140 };
    141 
    142 void test_cuda_basic()
    143 {
    144   ei_test_init_cuda();
    145   
    146   int nthreads = 100;
    147   Eigen::VectorXf in, out;
    148   
    149   #ifndef __CUDA_ARCH__
    150   int data_size = nthreads * 512;
    151   in.setRandom(data_size);
    152   out.setRandom(data_size);
    153   #endif
    154   
    155   CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Vector3f>(), nthreads, in, out) );
    156   CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Array44f>(), nthreads, in, out) );
    157   
    158   CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array4f>(), nthreads, in, out) );
    159   CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array33f>(), nthreads, in, out) );
    160   
    161   CALL_SUBTEST( run_and_compare_to_cuda(redux<Array4f>(), nthreads, in, out) );
    162   CALL_SUBTEST( run_and_compare_to_cuda(redux<Matrix3f>(), nthreads, in, out) );
    163   
    164   CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
    165   CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
    166   
    167   CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
    168   CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
    169   
    170   CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) );
    171   CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) );
    172 
    173 }
    174