Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <limits>
     13 #include <Eigen/Eigenvalues>
     14 #include <Eigen/LU>
     15 
     16 template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0)
     17 {
     18   bool match = diffs.diagonal().sum() <= tol;
     19   if(match || col==diffs.cols())
     20   {
     21     return match;
     22   }
     23   else
     24   {
     25     Index n = diffs.cols();
     26     std::vector<std::pair<Index,Index> > transpositions;
     27     for(Index i=col; i<n; ++i)
     28     {
     29       Index best_index(0);
     30       if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol)
     31         break;
     32 
     33       best_index += col;
     34 
     35       diffs.row(col).swap(diffs.row(best_index));
     36       if(find_pivot(tol,diffs,col+1)) return true;
     37       diffs.row(col).swap(diffs.row(best_index));
     38 
     39       // move current pivot to the end
     40       diffs.row(n-(i-col)-1).swap(diffs.row(best_index));
     41       transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index));
     42     }
     43     // restore
     44     for(Index k=transpositions.size()-1; k>=0; --k)
     45       diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second));
     46   }
     47   return false;
     48 }
     49 
     50 /* Check that two column vectors are approximately equal upto permutations.
     51  * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(),
     52  * however this strategy is numerically inacurate because of numerical cancellation issues.
     53  */
     54 template<typename VectorType>
     55 void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
     56 {
     57   typedef typename VectorType::Scalar Scalar;
     58   typedef typename NumTraits<Scalar>::Real RealScalar;
     59 
     60   VERIFY(vec1.cols() == 1);
     61   VERIFY(vec2.cols() == 1);
     62   VERIFY(vec1.rows() == vec2.rows());
     63 
     64   Index n = vec1.rows();
     65   RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm());
     66   Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2();
     67 
     68   VERIFY( find_pivot(tol, diffs) );
     69 }
     70 
     71 
     72 template<typename MatrixType> void eigensolver(const MatrixType& m)
     73 {
     74   typedef typename MatrixType::Index Index;
     75   /* this test covers the following files:
     76      ComplexEigenSolver.h, and indirectly ComplexSchur.h
     77   */
     78   Index rows = m.rows();
     79   Index cols = m.cols();
     80 
     81   typedef typename MatrixType::Scalar Scalar;
     82   typedef typename NumTraits<Scalar>::Real RealScalar;
     83 
     84   MatrixType a = MatrixType::Random(rows,cols);
     85   MatrixType symmA =  a.adjoint() * a;
     86 
     87   ComplexEigenSolver<MatrixType> ei0(symmA);
     88   VERIFY_IS_EQUAL(ei0.info(), Success);
     89   VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
     90 
     91   ComplexEigenSolver<MatrixType> ei1(a);
     92   VERIFY_IS_EQUAL(ei1.info(), Success);
     93   VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
     94   // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
     95   // another algorithm so results may differ slightly
     96   verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
     97 
     98   ComplexEigenSolver<MatrixType> ei2;
     99   ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
    100   VERIFY_IS_EQUAL(ei2.info(), Success);
    101   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
    102   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
    103   if (rows > 2) {
    104     ei2.setMaxIterations(1).compute(a);
    105     VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
    106     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
    107   }
    108 
    109   ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
    110   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
    111   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
    112 
    113   // Regression test for issue #66
    114   MatrixType z = MatrixType::Zero(rows,cols);
    115   ComplexEigenSolver<MatrixType> eiz(z);
    116   VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
    117 
    118   MatrixType id = MatrixType::Identity(rows, cols);
    119   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
    120 
    121   if (rows > 1 && rows < 20)
    122   {
    123     // Test matrix with NaN
    124     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    125     ComplexEigenSolver<MatrixType> eiNaN(a);
    126     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
    127   }
    128 
    129   // regression test for bug 1098
    130   {
    131     ComplexEigenSolver<MatrixType> eig(a.adjoint() * a);
    132     eig.compute(a.adjoint() * a);
    133   }
    134 
    135   // regression test for bug 478
    136   {
    137     a.setZero();
    138     ComplexEigenSolver<MatrixType> ei3(a);
    139     VERIFY_IS_EQUAL(ei3.info(), Success);
    140     VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
    141     VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
    142   }
    143 }
    144 
    145 template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
    146 {
    147   ComplexEigenSolver<MatrixType> eig;
    148   VERIFY_RAISES_ASSERT(eig.eigenvectors());
    149   VERIFY_RAISES_ASSERT(eig.eigenvalues());
    150 
    151   MatrixType a = MatrixType::Random(m.rows(),m.cols());
    152   eig.compute(a, false);
    153   VERIFY_RAISES_ASSERT(eig.eigenvectors());
    154 }
    155 
    156 void test_eigensolver_complex()
    157 {
    158   int s = 0;
    159   for(int i = 0; i < g_repeat; i++) {
    160     CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
    161     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    162     CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
    163     CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
    164     CALL_SUBTEST_4( eigensolver(Matrix3f()) );
    165     TEST_SET_BUT_UNUSED_VARIABLE(s)
    166   }
    167   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) );
    168   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    169   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) );
    170   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) );
    171   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) );
    172 
    173   // Test problem size constructors
    174   CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s));
    175 
    176   TEST_SET_BUT_UNUSED_VARIABLE(s)
    177 }
    178