Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include "svd_fill.h"
     13 #include <limits>
     14 #include <Eigen/Eigenvalues>
     15 #include <Eigen/SparseCore>
     16 
     17 
     18 template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m)
     19 {
     20   typedef typename MatrixType::Scalar Scalar;
     21   typedef typename NumTraits<Scalar>::Real RealScalar;
     22   RealScalar eival_eps = numext::mini<RealScalar>(test_precision<RealScalar>(),  NumTraits<Scalar>::dummy_precision()*20000);
     23 
     24   SelfAdjointEigenSolver<MatrixType> eiSymm(m);
     25   VERIFY_IS_EQUAL(eiSymm.info(), Success);
     26 
     27   RealScalar scaling = m.cwiseAbs().maxCoeff();
     28 
     29   if(scaling<(std::numeric_limits<RealScalar>::min)())
     30   {
     31     VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
     32   }
     33   else
     34   {
     35     VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors())/scaling,
     36                      (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling);
     37   }
     38   VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
     39   VERIFY_IS_UNITARY(eiSymm.eigenvectors());
     40 
     41   if(m.cols()<=4)
     42   {
     43     SelfAdjointEigenSolver<MatrixType> eiDirect;
     44     eiDirect.computeDirect(m);
     45     VERIFY_IS_EQUAL(eiDirect.info(), Success);
     46     if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) )
     47     {
     48       std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n"
     49                 << "obtained eigenvalues:  " << eiDirect.eigenvalues().transpose() << "\n"
     50                 << "diff:                  " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n"
     51                 << "error (eps):           " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << "  (" << eival_eps << ")\n";
     52     }
     53     if(scaling<(std::numeric_limits<RealScalar>::min)())
     54     {
     55       VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
     56     }
     57     else
     58     {
     59       VERIFY_IS_APPROX(eiSymm.eigenvalues()/scaling, eiDirect.eigenvalues()/scaling);
     60       VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors())/scaling,
     61                        (eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal())/scaling);
     62       VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues()/scaling, eiDirect.eigenvalues()/scaling);
     63     }
     64 
     65     VERIFY_IS_UNITARY(eiDirect.eigenvectors());
     66   }
     67 }
     68 
     69 template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
     70 {
     71   typedef typename MatrixType::Index Index;
     72   /* this test covers the following files:
     73      EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
     74   */
     75   Index rows = m.rows();
     76   Index cols = m.cols();
     77 
     78   typedef typename MatrixType::Scalar Scalar;
     79   typedef typename NumTraits<Scalar>::Real RealScalar;
     80 
     81   RealScalar largerEps = 10*test_precision<RealScalar>();
     82 
     83   MatrixType a = MatrixType::Random(rows,cols);
     84   MatrixType a1 = MatrixType::Random(rows,cols);
     85   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
     86   MatrixType symmC = symmA;
     87 
     88   svd_fill_random(symmA,Symmetric);
     89 
     90   symmA.template triangularView<StrictlyUpper>().setZero();
     91   symmC.template triangularView<StrictlyUpper>().setZero();
     92 
     93   MatrixType b = MatrixType::Random(rows,cols);
     94   MatrixType b1 = MatrixType::Random(rows,cols);
     95   MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
     96   symmB.template triangularView<StrictlyUpper>().setZero();
     97 
     98   CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) );
     99 
    100   SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
    101   // generalized eigen pb
    102   GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
    103 
    104   SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
    105   VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
    106   VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
    107 
    108   // generalized eigen problem Ax = lBx
    109   eiSymmGen.compute(symmC, symmB,Ax_lBx);
    110   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
    111   VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
    112           symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
    113 
    114   // generalized eigen problem BAx = lx
    115   eiSymmGen.compute(symmC, symmB,BAx_lx);
    116   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
    117   VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
    118          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
    119 
    120   // generalized eigen problem ABx = lx
    121   eiSymmGen.compute(symmC, symmB,ABx_lx);
    122   VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
    123   VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
    124          (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
    125 
    126 
    127   eiSymm.compute(symmC);
    128   MatrixType sqrtSymmA = eiSymm.operatorSqrt();
    129   VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
    130   VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
    131 
    132   MatrixType id = MatrixType::Identity(rows, cols);
    133   VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
    134 
    135   SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
    136   VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
    137   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
    138   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
    139   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
    140   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
    141 
    142   eiSymmUninitialized.compute(symmA, false);
    143   VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
    144   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
    145   VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
    146 
    147   // test Tridiagonalization's methods
    148   Tridiagonalization<MatrixType> tridiag(symmC);
    149   VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal());
    150   VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>());
    151   Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT();
    152   if(rows>1 && cols>1) {
    153     // FIXME check that upper and lower part are 0:
    154     //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
    155   }
    156   VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal());
    157   VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>());
    158   VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
    159   VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
    160 
    161   // Test computation of eigenvalues from tridiagonal matrix
    162   if(rows > 1)
    163   {
    164     SelfAdjointEigenSolver<MatrixType> eiSymmTridiag;
    165     eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors);
    166     VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues());
    167     VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose());
    168   }
    169 
    170   if (rows > 1 && rows < 20)
    171   {
    172     // Test matrix with NaN
    173     symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    174     SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
    175     VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
    176   }
    177 
    178   // regression test for bug 1098
    179   {
    180     SelfAdjointEigenSolver<MatrixType> eig(a.adjoint() * a);
    181     eig.compute(a.adjoint() * a);
    182   }
    183 
    184   // regression test for bug 478
    185   {
    186     a.setZero();
    187     SelfAdjointEigenSolver<MatrixType> ei3(a);
    188     VERIFY_IS_EQUAL(ei3.info(), Success);
    189     VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
    190     VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
    191   }
    192 }
    193 
    194 template<int>
    195 void bug_854()
    196 {
    197   Matrix3d m;
    198   m << 850.961, 51.966, 0,
    199        51.966, 254.841, 0,
    200             0,       0, 0;
    201   selfadjointeigensolver_essential_check(m);
    202 }
    203 
    204 template<int>
    205 void bug_1014()
    206 {
    207   Matrix3d m;
    208   m <<        0.11111111111111114658, 0, 0,
    209        0,     0.11111111111111109107, 0,
    210        0, 0,  0.11111111111111107719;
    211   selfadjointeigensolver_essential_check(m);
    212 }
    213 
    214 template<int>
    215 void bug_1225()
    216 {
    217   Matrix3d m1, m2;
    218   m1.setRandom();
    219   m1 = m1*m1.transpose();
    220   m2 = m1.triangularView<Upper>();
    221   SelfAdjointEigenSolver<Matrix3d> eig1(m1);
    222   SelfAdjointEigenSolver<Matrix3d> eig2(m2.selfadjointView<Upper>());
    223   VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
    224 }
    225 
    226 template<int>
    227 void bug_1204()
    228 {
    229   SparseMatrix<double> A(2,2);
    230   A.setIdentity();
    231   SelfAdjointEigenSolver<Eigen::SparseMatrix<double> > eig(A);
    232 }
    233 
    234 void test_eigensolver_selfadjoint()
    235 {
    236   int s = 0;
    237   for(int i = 0; i < g_repeat; i++) {
    238     // trivial test for 1x1 matrices:
    239     CALL_SUBTEST_1( selfadjointeigensolver(Matrix<float, 1, 1>()));
    240     CALL_SUBTEST_1( selfadjointeigensolver(Matrix<double, 1, 1>()));
    241     // very important to test 3x3 and 2x2 matrices since we provide special paths for them
    242     CALL_SUBTEST_12( selfadjointeigensolver(Matrix2f()) );
    243     CALL_SUBTEST_12( selfadjointeigensolver(Matrix2d()) );
    244     CALL_SUBTEST_13( selfadjointeigensolver(Matrix3f()) );
    245     CALL_SUBTEST_13( selfadjointeigensolver(Matrix3d()) );
    246     CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
    247 
    248     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    249     CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
    250     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
    251     CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
    252     CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
    253     TEST_SET_BUT_UNUSED_VARIABLE(s)
    254 
    255     // some trivial but implementation-wise tricky cases
    256     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
    257     CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
    258     CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
    259     CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
    260   }
    261 
    262   CALL_SUBTEST_13( bug_854<0>() );
    263   CALL_SUBTEST_13( bug_1014<0>() );
    264   CALL_SUBTEST_13( bug_1204<0>() );
    265   CALL_SUBTEST_13( bug_1225<0>() );
    266 
    267   // Test problem size constructors
    268   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
    269   CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
    270   CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
    271 
    272   TEST_SET_BUT_UNUSED_VARIABLE(s)
    273 }
    274 
    275