Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 static bool g_called;
     12 #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
     13 
     14 #include "main.h"
     15 
     16 template<typename MatrixType> void linearStructure(const MatrixType& m)
     17 {
     18   using std::abs;
     19   /* this test covers the following files:
     20      CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
     21   */
     22   typedef typename MatrixType::Index Index;
     23   typedef typename MatrixType::Scalar Scalar;
     24   typedef typename MatrixType::RealScalar RealScalar;
     25 
     26   Index rows = m.rows();
     27   Index cols = m.cols();
     28 
     29   // this test relies a lot on Random.h, and there's not much more that we can do
     30   // to test it, hence I consider that we will have tested Random.h
     31   MatrixType m1 = MatrixType::Random(rows, cols),
     32              m2 = MatrixType::Random(rows, cols),
     33              m3(rows, cols);
     34 
     35   Scalar s1 = internal::random<Scalar>();
     36   while (abs(s1)<RealScalar(1e-3)) s1 = internal::random<Scalar>();
     37 
     38   Index r = internal::random<Index>(0, rows-1),
     39         c = internal::random<Index>(0, cols-1);
     40 
     41   VERIFY_IS_APPROX(-(-m1),                  m1);
     42   VERIFY_IS_APPROX(m1+m1,                   2*m1);
     43   VERIFY_IS_APPROX(m1+m2-m1,                m2);
     44   VERIFY_IS_APPROX(-m2+m1+m2,               m1);
     45   VERIFY_IS_APPROX(m1*s1,                   s1*m1);
     46   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
     47   VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2);
     48   m3 = m2; m3 += m1;
     49   VERIFY_IS_APPROX(m3,                      m1+m2);
     50   m3 = m2; m3 -= m1;
     51   VERIFY_IS_APPROX(m3,                      m2-m1);
     52   m3 = m2; m3 *= s1;
     53   VERIFY_IS_APPROX(m3,                      s1*m2);
     54   if(!NumTraits<Scalar>::IsInteger)
     55   {
     56     m3 = m2; m3 /= s1;
     57     VERIFY_IS_APPROX(m3,                    m2/s1);
     58   }
     59 
     60   // again, test operator() to check const-qualification
     61   VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
     62   VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
     63   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
     64   VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
     65   VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
     66   if(!NumTraits<Scalar>::IsInteger)
     67     VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
     68 
     69   // use .block to disable vectorization and compare to the vectorized version
     70   VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
     71   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
     72   VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
     73   VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
     74 }
     75 
     76 // Make sure that complex * real and real * complex are properly optimized
     77 template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
     78 {
     79   typedef typename MatrixType::Scalar Scalar;
     80   typedef typename MatrixType::RealScalar RealScalar;
     81 
     82   RealScalar s = internal::random<RealScalar>();
     83   MatrixType m1 = MatrixType::Random(rows, cols);
     84 
     85   g_called = false;
     86   VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
     87   VERIFY(g_called && "real * matrix<complex> not properly optimized");
     88 
     89   g_called = false;
     90   VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
     91   VERIFY(g_called && "matrix<complex> * real not properly optimized");
     92 
     93   g_called = false;
     94   VERIFY_IS_APPROX(m1/s, m1/Scalar(s));
     95   VERIFY(g_called && "matrix<complex> / real not properly optimized");
     96 
     97   g_called = false;
     98   VERIFY_IS_APPROX(s+m1.array(), Scalar(s)+m1.array());
     99   VERIFY(g_called && "real + matrix<complex> not properly optimized");
    100 
    101   g_called = false;
    102   VERIFY_IS_APPROX(m1.array()+s, m1.array()+Scalar(s));
    103   VERIFY(g_called && "matrix<complex> + real not properly optimized");
    104 
    105   g_called = false;
    106   VERIFY_IS_APPROX(s-m1.array(), Scalar(s)-m1.array());
    107   VERIFY(g_called && "real - matrix<complex> not properly optimized");
    108 
    109   g_called = false;
    110   VERIFY_IS_APPROX(m1.array()-s, m1.array()-Scalar(s));
    111   VERIFY(g_called && "matrix<complex> - real not properly optimized");
    112 }
    113 
    114 void test_linearstructure()
    115 {
    116   g_called = true;
    117   VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
    118   for(int i = 0; i < g_repeat; i++) {
    119     CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
    120     CALL_SUBTEST_2( linearStructure(Matrix2f()) );
    121     CALL_SUBTEST_3( linearStructure(Vector3d()) );
    122     CALL_SUBTEST_4( linearStructure(Matrix4d()) );
    123     CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    124     CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    125     CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    126     CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    127     CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    128     CALL_SUBTEST_10( linearStructure(ArrayXXcf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    129 
    130     CALL_SUBTEST_11( real_complex<Matrix4cd>() );
    131     CALL_SUBTEST_11( real_complex<MatrixXcf>(10,10) );
    132     CALL_SUBTEST_11( real_complex<ArrayXXcf>(10,10) );
    133   }
    134 
    135 #ifdef EIGEN_TEST_PART_4
    136   {
    137     // make sure that /=scalar and /scalar do not overflow
    138     // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
    139     Matrix4d m2, m3;
    140     m3 = m2 =  Matrix4d::Random()*1e-20;
    141     m2 = m2 / 4.9e-320;
    142     VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
    143     m3 /= 4.9e-320;
    144     VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
    145 
    146 
    147   }
    148 #endif
    149 }
    150