Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/LU>
     12 using namespace std;
     13 
     14 template<typename MatrixType>
     15 typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
     16   return m.cwiseAbs().colwise().sum().maxCoeff();
     17 }
     18 
     19 template<typename MatrixType> void lu_non_invertible()
     20 {
     21   typedef typename MatrixType::Index Index;
     22   typedef typename MatrixType::RealScalar RealScalar;
     23   /* this test covers the following files:
     24      LU.h
     25   */
     26   Index rows, cols, cols2;
     27   if(MatrixType::RowsAtCompileTime==Dynamic)
     28   {
     29     rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
     30   }
     31   else
     32   {
     33     rows = MatrixType::RowsAtCompileTime;
     34   }
     35   if(MatrixType::ColsAtCompileTime==Dynamic)
     36   {
     37     cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
     38     cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
     39   }
     40   else
     41   {
     42     cols2 = cols = MatrixType::ColsAtCompileTime;
     43   }
     44 
     45   enum {
     46     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     47     ColsAtCompileTime = MatrixType::ColsAtCompileTime
     48   };
     49   typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
     50   typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
     51   typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
     52           CMatrixType;
     53   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
     54           RMatrixType;
     55 
     56   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
     57 
     58   // The image of the zero matrix should consist of a single (zero) column vector
     59   VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
     60 
     61   MatrixType m1(rows, cols), m3(rows, cols2);
     62   CMatrixType m2(cols, cols2);
     63   createRandomPIMatrixOfRank(rank, rows, cols, m1);
     64 
     65   FullPivLU<MatrixType> lu;
     66 
     67   // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
     68   // of singular values are either 0 or 1.
     69   // So it's not clear at all that the epsilon should play any role there.
     70   lu.setThreshold(RealScalar(0.01));
     71   lu.compute(m1);
     72 
     73   MatrixType u(rows,cols);
     74   u = lu.matrixLU().template triangularView<Upper>();
     75   RMatrixType l = RMatrixType::Identity(rows,rows);
     76   l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
     77     = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
     78 
     79   VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
     80 
     81   KernelMatrixType m1kernel = lu.kernel();
     82   ImageMatrixType m1image = lu.image(m1);
     83 
     84   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
     85   VERIFY(rank == lu.rank());
     86   VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
     87   VERIFY(!lu.isInjective());
     88   VERIFY(!lu.isInvertible());
     89   VERIFY(!lu.isSurjective());
     90   VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
     91   VERIFY(m1image.fullPivLu().rank() == rank);
     92   VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
     93 
     94   m2 = CMatrixType::Random(cols,cols2);
     95   m3 = m1*m2;
     96   m2 = CMatrixType::Random(cols,cols2);
     97   // test that the code, which does resize(), may be applied to an xpr
     98   m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
     99   VERIFY_IS_APPROX(m3, m1*m2);
    100 
    101   // test solve with transposed
    102   m3 = MatrixType::Random(rows,cols2);
    103   m2 = m1.transpose()*m3;
    104   m3 = MatrixType::Random(rows,cols2);
    105   lu.template _solve_impl_transposed<false>(m2, m3);
    106   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
    107   m3 = MatrixType::Random(rows,cols2);
    108   m3 = lu.transpose().solve(m2);
    109   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
    110 
    111   // test solve with conjugate transposed
    112   m3 = MatrixType::Random(rows,cols2);
    113   m2 = m1.adjoint()*m3;
    114   m3 = MatrixType::Random(rows,cols2);
    115   lu.template _solve_impl_transposed<true>(m2, m3);
    116   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
    117   m3 = MatrixType::Random(rows,cols2);
    118   m3 = lu.adjoint().solve(m2);
    119   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
    120 }
    121 
    122 template<typename MatrixType> void lu_invertible()
    123 {
    124   /* this test covers the following files:
    125      LU.h
    126   */
    127   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    128   Index size = MatrixType::RowsAtCompileTime;
    129   if( size==Dynamic)
    130     size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
    131 
    132   MatrixType m1(size, size), m2(size, size), m3(size, size);
    133   FullPivLU<MatrixType> lu;
    134   lu.setThreshold(RealScalar(0.01));
    135   do {
    136     m1 = MatrixType::Random(size,size);
    137     lu.compute(m1);
    138   } while(!lu.isInvertible());
    139 
    140   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
    141   VERIFY(0 == lu.dimensionOfKernel());
    142   VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
    143   VERIFY(size == lu.rank());
    144   VERIFY(lu.isInjective());
    145   VERIFY(lu.isSurjective());
    146   VERIFY(lu.isInvertible());
    147   VERIFY(lu.image(m1).fullPivLu().isInvertible());
    148   m3 = MatrixType::Random(size,size);
    149   m2 = lu.solve(m3);
    150   VERIFY_IS_APPROX(m3, m1*m2);
    151   MatrixType m1_inverse = lu.inverse();
    152   VERIFY_IS_APPROX(m2, m1_inverse*m3);
    153 
    154   RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
    155   const RealScalar rcond_est = lu.rcond();
    156   // Verify that the estimated condition number is within a factor of 10 of the
    157   // truth.
    158   VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
    159 
    160   // test solve with transposed
    161   lu.template _solve_impl_transposed<false>(m3, m2);
    162   VERIFY_IS_APPROX(m3, m1.transpose()*m2);
    163   m3 = MatrixType::Random(size,size);
    164   m3 = lu.transpose().solve(m2);
    165   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
    166 
    167   // test solve with conjugate transposed
    168   lu.template _solve_impl_transposed<true>(m3, m2);
    169   VERIFY_IS_APPROX(m3, m1.adjoint()*m2);
    170   m3 = MatrixType::Random(size,size);
    171   m3 = lu.adjoint().solve(m2);
    172   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
    173 
    174   // Regression test for Bug 302
    175   MatrixType m4 = MatrixType::Random(size,size);
    176   VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
    177 }
    178 
    179 template<typename MatrixType> void lu_partial_piv()
    180 {
    181   /* this test covers the following files:
    182      PartialPivLU.h
    183   */
    184   typedef typename MatrixType::Index Index;
    185   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    186   Index size = internal::random<Index>(1,4);
    187 
    188   MatrixType m1(size, size), m2(size, size), m3(size, size);
    189   m1.setRandom();
    190   PartialPivLU<MatrixType> plu(m1);
    191 
    192   VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
    193 
    194   m3 = MatrixType::Random(size,size);
    195   m2 = plu.solve(m3);
    196   VERIFY_IS_APPROX(m3, m1*m2);
    197   MatrixType m1_inverse = plu.inverse();
    198   VERIFY_IS_APPROX(m2, m1_inverse*m3);
    199 
    200   RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
    201   const RealScalar rcond_est = plu.rcond();
    202   // Verify that the estimate is within a factor of 10 of the truth.
    203   VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
    204 
    205   // test solve with transposed
    206   plu.template _solve_impl_transposed<false>(m3, m2);
    207   VERIFY_IS_APPROX(m3, m1.transpose()*m2);
    208   m3 = MatrixType::Random(size,size);
    209   m3 = plu.transpose().solve(m2);
    210   VERIFY_IS_APPROX(m2, m1.transpose()*m3);
    211 
    212   // test solve with conjugate transposed
    213   plu.template _solve_impl_transposed<true>(m3, m2);
    214   VERIFY_IS_APPROX(m3, m1.adjoint()*m2);
    215   m3 = MatrixType::Random(size,size);
    216   m3 = plu.adjoint().solve(m2);
    217   VERIFY_IS_APPROX(m2, m1.adjoint()*m3);
    218 }
    219 
    220 template<typename MatrixType> void lu_verify_assert()
    221 {
    222   MatrixType tmp;
    223 
    224   FullPivLU<MatrixType> lu;
    225   VERIFY_RAISES_ASSERT(lu.matrixLU())
    226   VERIFY_RAISES_ASSERT(lu.permutationP())
    227   VERIFY_RAISES_ASSERT(lu.permutationQ())
    228   VERIFY_RAISES_ASSERT(lu.kernel())
    229   VERIFY_RAISES_ASSERT(lu.image(tmp))
    230   VERIFY_RAISES_ASSERT(lu.solve(tmp))
    231   VERIFY_RAISES_ASSERT(lu.determinant())
    232   VERIFY_RAISES_ASSERT(lu.rank())
    233   VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
    234   VERIFY_RAISES_ASSERT(lu.isInjective())
    235   VERIFY_RAISES_ASSERT(lu.isSurjective())
    236   VERIFY_RAISES_ASSERT(lu.isInvertible())
    237   VERIFY_RAISES_ASSERT(lu.inverse())
    238 
    239   PartialPivLU<MatrixType> plu;
    240   VERIFY_RAISES_ASSERT(plu.matrixLU())
    241   VERIFY_RAISES_ASSERT(plu.permutationP())
    242   VERIFY_RAISES_ASSERT(plu.solve(tmp))
    243   VERIFY_RAISES_ASSERT(plu.determinant())
    244   VERIFY_RAISES_ASSERT(plu.inverse())
    245 }
    246 
    247 void test_lu()
    248 {
    249   for(int i = 0; i < g_repeat; i++) {
    250     CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
    251     CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
    252     CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
    253 
    254     CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
    255     CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
    256 
    257     CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
    258     CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
    259     CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
    260 
    261     CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
    262     CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
    263     CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() );
    264     CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
    265 
    266     CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
    267     CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
    268     CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
    269 
    270     CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
    271     CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
    272     CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() );
    273     CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
    274 
    275     CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
    276 
    277     // Test problem size constructors
    278     CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
    279     CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
    280   }
    281 }
    282