Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_NO_STATIC_ASSERT
     11 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
     12 #endif
     13 
     14 #include "main.h"
     15 
     16 #define EIGEN_TESTMAP_MAX_SIZE 256
     17 
     18 template<typename VectorType> void map_class_vector(const VectorType& m)
     19 {
     20   typedef typename VectorType::Index Index;
     21   typedef typename VectorType::Scalar Scalar;
     22 
     23   Index size = m.size();
     24 
     25   Scalar* array1 = internal::aligned_new<Scalar>(size);
     26   Scalar* array2 = internal::aligned_new<Scalar>(size);
     27   Scalar* array3 = new Scalar[size+1];
     28   Scalar* array3unaligned = (internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3;
     29   Scalar  array4[EIGEN_TESTMAP_MAX_SIZE];
     30 
     31   Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size);
     32   Map<VectorType, AlignedMax>(array2, size) = Map<VectorType,AlignedMax>(array1, size);
     33   Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size);
     34   Map<VectorType>(array4, size)          = Map<VectorType,AlignedMax>(array1, size);
     35   VectorType ma1 = Map<VectorType, AlignedMax>(array1, size);
     36   VectorType ma2 = Map<VectorType, AlignedMax>(array2, size);
     37   VectorType ma3 = Map<VectorType>(array3unaligned, size);
     38   VectorType ma4 = Map<VectorType>(array4, size);
     39   VERIFY_IS_EQUAL(ma1, ma2);
     40   VERIFY_IS_EQUAL(ma1, ma3);
     41   VERIFY_IS_EQUAL(ma1, ma4);
     42   #ifdef EIGEN_VECTORIZE
     43   if(internal::packet_traits<Scalar>::Vectorizable && size>=AlignedMax)
     44     VERIFY_RAISES_ASSERT((Map<VectorType,AlignedMax>(array3unaligned, size)))
     45   #endif
     46 
     47   internal::aligned_delete(array1, size);
     48   internal::aligned_delete(array2, size);
     49   delete[] array3;
     50 }
     51 
     52 template<typename MatrixType> void map_class_matrix(const MatrixType& m)
     53 {
     54   typedef typename MatrixType::Index Index;
     55   typedef typename MatrixType::Scalar Scalar;
     56 
     57   Index rows = m.rows(), cols = m.cols(), size = rows*cols;
     58   Scalar s1 = internal::random<Scalar>();
     59 
     60   // array1 and array2 -> aligned heap allocation
     61   Scalar* array1 = internal::aligned_new<Scalar>(size);
     62   for(int i = 0; i < size; i++) array1[i] = Scalar(1);
     63   Scalar* array2 = internal::aligned_new<Scalar>(size);
     64   for(int i = 0; i < size; i++) array2[i] = Scalar(1);
     65   // array3unaligned -> unaligned pointer to heap
     66   Scalar* array3 = new Scalar[size+1];
     67   for(int i = 0; i < size+1; i++) array3[i] = Scalar(1);
     68   Scalar* array3unaligned = internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3;
     69   Scalar array4[256];
     70   if(size<=256)
     71     for(int i = 0; i < size; i++) array4[i] = Scalar(1);
     72 
     73   Map<MatrixType> map1(array1, rows, cols);
     74   Map<MatrixType, AlignedMax> map2(array2, rows, cols);
     75   Map<MatrixType> map3(array3unaligned, rows, cols);
     76   Map<MatrixType> map4(array4, rows, cols);
     77 
     78   VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows,cols));
     79   VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows,cols));
     80   VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows,cols));
     81   map1 = MatrixType::Random(rows,cols);
     82   map2 = map1;
     83   map3 = map1;
     84   MatrixType ma1 = map1;
     85   MatrixType ma2 = map2;
     86   MatrixType ma3 = map3;
     87   VERIFY_IS_EQUAL(map1, map2);
     88   VERIFY_IS_EQUAL(map1, map3);
     89   VERIFY_IS_EQUAL(ma1, ma2);
     90   VERIFY_IS_EQUAL(ma1, ma3);
     91   VERIFY_IS_EQUAL(ma1, map3);
     92 
     93   VERIFY_IS_APPROX(s1*map1, s1*map2);
     94   VERIFY_IS_APPROX(s1*ma1, s1*ma2);
     95   VERIFY_IS_EQUAL(s1*ma1, s1*ma3);
     96   VERIFY_IS_APPROX(s1*map1, s1*map3);
     97 
     98   map2 *= s1;
     99   map3 *= s1;
    100   VERIFY_IS_APPROX(s1*map1, map2);
    101   VERIFY_IS_APPROX(s1*map1, map3);
    102 
    103   if(size<=256)
    104   {
    105     VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows,cols));
    106     map4 = map1;
    107     MatrixType ma4 = map4;
    108     VERIFY_IS_EQUAL(map1, map4);
    109     VERIFY_IS_EQUAL(ma1, map4);
    110     VERIFY_IS_EQUAL(ma1, ma4);
    111     VERIFY_IS_APPROX(s1*map1, s1*map4);
    112 
    113     map4 *= s1;
    114     VERIFY_IS_APPROX(s1*map1, map4);
    115   }
    116 
    117   internal::aligned_delete(array1, size);
    118   internal::aligned_delete(array2, size);
    119   delete[] array3;
    120 }
    121 
    122 template<typename VectorType> void map_static_methods(const VectorType& m)
    123 {
    124   typedef typename VectorType::Index Index;
    125   typedef typename VectorType::Scalar Scalar;
    126 
    127   Index size = m.size();
    128 
    129   Scalar* array1 = internal::aligned_new<Scalar>(size);
    130   Scalar* array2 = internal::aligned_new<Scalar>(size);
    131   Scalar* array3 = new Scalar[size+1];
    132   Scalar* array3unaligned = internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3;
    133 
    134   VectorType::MapAligned(array1, size) = VectorType::Random(size);
    135   VectorType::Map(array2, size) = VectorType::Map(array1, size);
    136   VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size);
    137   VectorType ma1 = VectorType::Map(array1, size);
    138   VectorType ma2 = VectorType::MapAligned(array2, size);
    139   VectorType ma3 = VectorType::Map(array3unaligned, size);
    140   VERIFY_IS_EQUAL(ma1, ma2);
    141   VERIFY_IS_EQUAL(ma1, ma3);
    142 
    143   internal::aligned_delete(array1, size);
    144   internal::aligned_delete(array2, size);
    145   delete[] array3;
    146 }
    147 
    148 template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
    149 {
    150   // there's a lot that we can't test here while still having this test compile!
    151   // the only possible approach would be to run a script trying to compile stuff and checking that it fails.
    152   // CMake can help with that.
    153 
    154   // verify that map-to-const don't have LvalueBit
    155   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
    156   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
    157   VERIFY( !(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit) );
    158   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
    159   VERIFY( !(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit) );
    160 }
    161 
    162 template<typename Scalar>
    163 void map_not_aligned_on_scalar()
    164 {
    165   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
    166   typedef typename MatrixType::Index Index;
    167   Index size = 11;
    168   Scalar* array1 = internal::aligned_new<Scalar>((size+1)*(size+1)+1);
    169   Scalar* array2 = reinterpret_cast<Scalar*>(sizeof(Scalar)/2+std::size_t(array1));
    170   Map<MatrixType,0,OuterStride<> > map2(array2, size, size, OuterStride<>(size+1));
    171   MatrixType m2 = MatrixType::Random(size,size);
    172   map2 = m2;
    173   VERIFY_IS_EQUAL(m2, map2);
    174 
    175   typedef Matrix<Scalar,Dynamic,1> VectorType;
    176   Map<VectorType> map3(array2, size);
    177   MatrixType v3 = VectorType::Random(size);
    178   map3 = v3;
    179   VERIFY_IS_EQUAL(v3, map3);
    180 
    181   internal::aligned_delete(array1, (size+1)*(size+1)+1);
    182 }
    183 
    184 void test_mapped_matrix()
    185 {
    186   for(int i = 0; i < g_repeat; i++) {
    187     CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) );
    188     CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) );
    189     CALL_SUBTEST_2( map_class_vector(Vector4d()) );
    190     CALL_SUBTEST_2( map_class_vector(VectorXd(13)) );
    191     CALL_SUBTEST_2( check_const_correctness(Matrix4d()) );
    192     CALL_SUBTEST_3( map_class_vector(RowVector4f()) );
    193     CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) );
    194     CALL_SUBTEST_5( map_class_vector(VectorXi(12)) );
    195     CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) );
    196 
    197     CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) );
    198     CALL_SUBTEST_2( map_class_matrix(Matrix4d()) );
    199     CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) );
    200     CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) );
    201     CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) );
    202 
    203     CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) );
    204     CALL_SUBTEST_7( map_static_methods(Vector3f()) );
    205     CALL_SUBTEST_8( map_static_methods(RowVector3d()) );
    206     CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) );
    207     CALL_SUBTEST_10( map_static_methods(VectorXf(12)) );
    208 
    209     CALL_SUBTEST_11( map_not_aligned_on_scalar<double>() );
    210   }
    211 }
    212