Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 template<typename MatrixType> void product_extra(const MatrixType& m)
     13 {
     14   typedef typename MatrixType::Index Index;
     15   typedef typename MatrixType::Scalar Scalar;
     16   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
     17   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
     18   typedef Matrix<Scalar, Dynamic, Dynamic,
     19                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
     20 
     21   Index rows = m.rows();
     22   Index cols = m.cols();
     23 
     24   MatrixType m1 = MatrixType::Random(rows, cols),
     25              m2 = MatrixType::Random(rows, cols),
     26              m3(rows, cols),
     27              mzero = MatrixType::Zero(rows, cols),
     28              identity = MatrixType::Identity(rows, rows),
     29              square = MatrixType::Random(rows, rows),
     30              res = MatrixType::Random(rows, rows),
     31              square2 = MatrixType::Random(cols, cols),
     32              res2 = MatrixType::Random(cols, cols);
     33   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
     34   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
     35   OtherMajorMatrixType tm1 = m1;
     36 
     37   Scalar s1 = internal::random<Scalar>(),
     38          s2 = internal::random<Scalar>(),
     39          s3 = internal::random<Scalar>();
     40 
     41   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
     42   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
     43   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
     44   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
     45   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2);
     46   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
     47   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
     48   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());
     49 
     50   // a very tricky case where a scale factor has to be automatically conjugated:
     51   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
     52 
     53 
     54   // test all possible conjugate combinations for the four matrix-vector product cases:
     55 
     56   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
     57                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
     58   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
     59                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
     60   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
     61                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
     62 
     63   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
     64                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
     65   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
     66                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
     67   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
     68                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
     69 
     70   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
     71                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
     72   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
     73                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
     74   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
     75                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
     76 
     77   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
     78                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
     79   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
     80                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
     81   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
     82                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
     83 
     84   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
     85                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
     86 
     87   // test the vector-matrix product with non aligned starts
     88   Index i = internal::random<Index>(0,m1.rows()-2);
     89   Index j = internal::random<Index>(0,m1.cols()-2);
     90   Index r = internal::random<Index>(1,m1.rows()-i);
     91   Index c = internal::random<Index>(1,m1.cols()-j);
     92   Index i2 = internal::random<Index>(0,m1.rows()-1);
     93   Index j2 = internal::random<Index>(0,m1.cols()-1);
     94 
     95   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
     96   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
     97 
     98   // regression test
     99   MatrixType tmp = m1 * m1.adjoint() * s1;
    100   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
    101 
    102   // regression test for bug 1343, assignment to arrays
    103   Array<Scalar,Dynamic,1> a1 = m1 * vc2;
    104   VERIFY_IS_APPROX(a1.matrix(),m1*vc2);
    105   Array<Scalar,Dynamic,1> a2 = s1 * (m1 * vc2);
    106   VERIFY_IS_APPROX(a2.matrix(),s1*m1*vc2);
    107   Array<Scalar,1,Dynamic> a3 = v1 * m1;
    108   VERIFY_IS_APPROX(a3.matrix(),v1*m1);
    109   Array<Scalar,Dynamic,Dynamic> a4 = m1 * m2.adjoint();
    110   VERIFY_IS_APPROX(a4.matrix(),m1*m2.adjoint());
    111 }
    112 
    113 // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
    114 void mat_mat_scalar_scalar_product()
    115 {
    116   Eigen::Matrix2Xd dNdxy(2, 3);
    117   dNdxy << -0.5, 0.5, 0,
    118            -0.3, 0, 0.3;
    119   double det = 6.0, wt = 0.5;
    120   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
    121 }
    122 
    123 template <typename MatrixType>
    124 void zero_sized_objects(const MatrixType& m)
    125 {
    126   typedef typename MatrixType::Scalar Scalar;
    127   const int PacketSize  = internal::packet_traits<Scalar>::size;
    128   const int PacketSize1 = PacketSize>1 ?  PacketSize-1 : 1;
    129   Index rows = m.rows();
    130   Index cols = m.cols();
    131 
    132   {
    133     MatrixType res, a(rows,0), b(0,cols);
    134     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) );
    135     VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) );
    136     VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) );
    137     VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) );
    138   }
    139 
    140   {
    141     MatrixType res, a(rows,cols), b(cols,0);
    142     res = a*b;
    143     VERIFY(res.rows()==rows && res.cols()==0);
    144     b.resize(0,rows);
    145     res = b*a;
    146     VERIFY(res.rows()==0 && res.cols()==cols);
    147   }
    148 
    149   {
    150     Matrix<Scalar,PacketSize,0> a;
    151     Matrix<Scalar,0,1> b;
    152     Matrix<Scalar,PacketSize,1> res;
    153     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
    154     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
    155   }
    156 
    157   {
    158     Matrix<Scalar,PacketSize1,0> a;
    159     Matrix<Scalar,0,1> b;
    160     Matrix<Scalar,PacketSize1,1> res;
    161     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
    162     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
    163   }
    164 
    165   {
    166     Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0);
    167     Matrix<Scalar,Dynamic,1> b(0,1);
    168     Matrix<Scalar,PacketSize,1> res;
    169     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
    170     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
    171   }
    172 
    173   {
    174     Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0);
    175     Matrix<Scalar,Dynamic,1> b(0,1);
    176     Matrix<Scalar,PacketSize1,1> res;
    177     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
    178     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
    179   }
    180 }
    181 
    182 template<int>
    183 void bug_127()
    184 {
    185   // Bug 127
    186   //
    187   // a product of the form lhs*rhs with
    188   //
    189   // lhs:
    190   // rows = 1, cols = 4
    191   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
    192   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
    193   //
    194   // rhs:
    195   // rows = 4, cols = 0
    196   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
    197   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
    198   //
    199   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
    200   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
    201 
    202   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
    203   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
    204   a*b;
    205 }
    206 
    207 template<int> void bug_817()
    208 {
    209   ArrayXXf B = ArrayXXf::Random(10,10), C;
    210   VectorXf x = VectorXf::Random(10);
    211   C = (x.transpose()*B.matrix());
    212   B = (x.transpose()*B.matrix());
    213   VERIFY_IS_APPROX(B,C);
    214 }
    215 
    216 template<int>
    217 void unaligned_objects()
    218 {
    219   // Regression test for the bug reported here:
    220   // http://forum.kde.org/viewtopic.php?f=74&t=107541
    221   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
    222   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
    223   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
    224   for(int m=450;m<460;++m)
    225   {
    226     for(int n=8;n<12;++n)
    227     {
    228       MatrixXf M(m, n);
    229       VectorXf v1(n), r1(500);
    230       RowVectorXf v2(m), r2(16);
    231 
    232       M.setRandom();
    233       v1.setRandom();
    234       v2.setRandom();
    235       for(int o=0; o<4; ++o)
    236       {
    237         r1.segment(o,m).noalias() = M * v1;
    238         VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
    239         r2.segment(o,n).noalias() = v2 * M;
    240         VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
    241       }
    242     }
    243   }
    244 }
    245 
    246 template<typename T>
    247 EIGEN_DONT_INLINE
    248 Index test_compute_block_size(Index m, Index n, Index k)
    249 {
    250   Index mc(m), nc(n), kc(k);
    251   internal::computeProductBlockingSizes<T,T>(kc, mc, nc);
    252   return kc+mc+nc;
    253 }
    254 
    255 template<typename T>
    256 Index compute_block_size()
    257 {
    258   Index ret = 0;
    259   ret += test_compute_block_size<T>(0,1,1);
    260   ret += test_compute_block_size<T>(1,0,1);
    261   ret += test_compute_block_size<T>(1,1,0);
    262   ret += test_compute_block_size<T>(0,0,1);
    263   ret += test_compute_block_size<T>(0,1,0);
    264   ret += test_compute_block_size<T>(1,0,0);
    265   ret += test_compute_block_size<T>(0,0,0);
    266   return ret;
    267 }
    268 
    269 template<typename>
    270 void aliasing_with_resize()
    271 {
    272   Index m = internal::random<Index>(10,50);
    273   Index n = internal::random<Index>(10,50);
    274   MatrixXd A, B, C(m,n), D(m,m);
    275   VectorXd a, b, c(n);
    276   C.setRandom();
    277   D.setRandom();
    278   c.setRandom();
    279   double s = internal::random<double>(1,10);
    280 
    281   A = C;
    282   B = A * A.transpose();
    283   A = A * A.transpose();
    284   VERIFY_IS_APPROX(A,B);
    285 
    286   A = C;
    287   B = (A * A.transpose())/s;
    288   A = (A * A.transpose())/s;
    289   VERIFY_IS_APPROX(A,B);
    290 
    291   A = C;
    292   B = (A * A.transpose()) + D;
    293   A = (A * A.transpose()) + D;
    294   VERIFY_IS_APPROX(A,B);
    295 
    296   A = C;
    297   B = D + (A * A.transpose());
    298   A = D + (A * A.transpose());
    299   VERIFY_IS_APPROX(A,B);
    300 
    301   A = C;
    302   B = s * (A * A.transpose());
    303   A = s * (A * A.transpose());
    304   VERIFY_IS_APPROX(A,B);
    305 
    306   A = C;
    307   a = c;
    308   b = (A * a)/s;
    309   a = (A * a)/s;
    310   VERIFY_IS_APPROX(a,b);
    311 }
    312 
    313 template<int>
    314 void bug_1308()
    315 {
    316   int n = 10;
    317   MatrixXd r(n,n);
    318   VectorXd v = VectorXd::Random(n);
    319   r = v * RowVectorXd::Ones(n);
    320   VERIFY_IS_APPROX(r, v.rowwise().replicate(n));
    321   r = VectorXd::Ones(n) * v.transpose();
    322   VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose());
    323 
    324   Matrix4d ones44 = Matrix4d::Ones();
    325   Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones();
    326   VERIFY_IS_APPROX(m44,Matrix4d::Constant(4));
    327   VERIFY_IS_APPROX(m44.noalias()=ones44*Matrix4d::Ones(), Matrix4d::Constant(4));
    328   VERIFY_IS_APPROX(m44.noalias()=ones44.transpose()*Matrix4d::Ones(), Matrix4d::Constant(4));
    329   VERIFY_IS_APPROX(m44.noalias()=Matrix4d::Ones()*ones44, Matrix4d::Constant(4));
    330   VERIFY_IS_APPROX(m44.noalias()=Matrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
    331 
    332   typedef Matrix<double,4,4,RowMajor> RMatrix4d;
    333   RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones();
    334   VERIFY_IS_APPROX(r44,Matrix4d::Constant(4));
    335   VERIFY_IS_APPROX(r44.noalias()=ones44*Matrix4d::Ones(), Matrix4d::Constant(4));
    336   VERIFY_IS_APPROX(r44.noalias()=ones44.transpose()*Matrix4d::Ones(), Matrix4d::Constant(4));
    337   VERIFY_IS_APPROX(r44.noalias()=Matrix4d::Ones()*ones44, Matrix4d::Constant(4));
    338   VERIFY_IS_APPROX(r44.noalias()=Matrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
    339   VERIFY_IS_APPROX(r44.noalias()=ones44*RMatrix4d::Ones(), Matrix4d::Constant(4));
    340   VERIFY_IS_APPROX(r44.noalias()=ones44.transpose()*RMatrix4d::Ones(), Matrix4d::Constant(4));
    341   VERIFY_IS_APPROX(r44.noalias()=RMatrix4d::Ones()*ones44, Matrix4d::Constant(4));
    342   VERIFY_IS_APPROX(r44.noalias()=RMatrix4d::Ones()*ones44.transpose(), Matrix4d::Constant(4));
    343 
    344 //   RowVector4d r4;
    345   m44.setOnes();
    346   r44.setZero();
    347   VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44);
    348   r44.setZero();
    349   VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44);
    350   r44.setZero();
    351   VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44);
    352   r44.setZero();
    353   VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44);
    354 }
    355 
    356 void test_product_extra()
    357 {
    358   for(int i = 0; i < g_repeat; i++) {
    359     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    360     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    361     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
    362     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    363     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    364     CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    365   }
    366   CALL_SUBTEST_5( bug_127<0>() );
    367   CALL_SUBTEST_5( bug_817<0>() );
    368   CALL_SUBTEST_5( bug_1308<0>() );
    369   CALL_SUBTEST_6( unaligned_objects<0>() );
    370   CALL_SUBTEST_7( compute_block_size<float>() );
    371   CALL_SUBTEST_7( compute_block_size<double>() );
    372   CALL_SUBTEST_7( compute_block_size<std::complex<double> >() );
    373   CALL_SUBTEST_8( aliasing_with_resize<void>() );
    374 
    375 }
    376