Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef SVD_DEFAULT
     12 #error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
     13 #endif
     14 
     15 #ifndef SVD_FOR_MIN_NORM
     16 #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
     17 #endif
     18 
     19 #include "svd_fill.h"
     20 
     21 // Check that the matrix m is properly reconstructed and that the U and V factors are unitary
     22 // The SVD must have already been computed.
     23 template<typename SvdType, typename MatrixType>
     24 void svd_check_full(const MatrixType& m, const SvdType& svd)
     25 {
     26   typedef typename MatrixType::Index Index;
     27   Index rows = m.rows();
     28   Index cols = m.cols();
     29 
     30   enum {
     31     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     32     ColsAtCompileTime = MatrixType::ColsAtCompileTime
     33   };
     34 
     35   typedef typename MatrixType::Scalar Scalar;
     36   typedef typename MatrixType::RealScalar RealScalar;
     37   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
     38   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
     39 
     40   MatrixType sigma = MatrixType::Zero(rows,cols);
     41   sigma.diagonal() = svd.singularValues().template cast<Scalar>();
     42   MatrixUType u = svd.matrixU();
     43   MatrixVType v = svd.matrixV();
     44   RealScalar scaling = m.cwiseAbs().maxCoeff();
     45   if(scaling<(std::numeric_limits<RealScalar>::min)())
     46   {
     47     VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
     48   }
     49   else
     50   {
     51     VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint());
     52   }
     53   VERIFY_IS_UNITARY(u);
     54   VERIFY_IS_UNITARY(v);
     55 }
     56 
     57 // Compare partial SVD defined by computationOptions to a full SVD referenceSvd
     58 template<typename SvdType, typename MatrixType>
     59 void svd_compare_to_full(const MatrixType& m,
     60                          unsigned int computationOptions,
     61                          const SvdType& referenceSvd)
     62 {
     63   typedef typename MatrixType::RealScalar RealScalar;
     64   Index rows = m.rows();
     65   Index cols = m.cols();
     66   Index diagSize = (std::min)(rows, cols);
     67   RealScalar prec = test_precision<RealScalar>();
     68 
     69   SvdType svd(m, computationOptions);
     70 
     71   VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
     72 
     73   if(computationOptions & (ComputeFullV|ComputeThinV))
     74   {
     75     VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
     76     VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
     77                       referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
     78   }
     79 
     80   if(computationOptions & (ComputeFullU|ComputeThinU))
     81   {
     82     VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
     83     VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
     84                       referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
     85   }
     86 
     87   // The following checks are not critical.
     88   // For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
     89   // and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
     90   ++g_test_level;
     91   if(computationOptions & ComputeFullU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
     92   if(computationOptions & ComputeThinU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
     93   if(computationOptions & ComputeFullV)  VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
     94   if(computationOptions & ComputeThinV)  VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
     95   --g_test_level;
     96 }
     97 
     98 //
     99 template<typename SvdType, typename MatrixType>
    100 void svd_least_square(const MatrixType& m, unsigned int computationOptions)
    101 {
    102   typedef typename MatrixType::Scalar Scalar;
    103   typedef typename MatrixType::RealScalar RealScalar;
    104   typedef typename MatrixType::Index Index;
    105   Index rows = m.rows();
    106   Index cols = m.cols();
    107 
    108   enum {
    109     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    110     ColsAtCompileTime = MatrixType::ColsAtCompileTime
    111   };
    112 
    113   typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
    114   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
    115 
    116   RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
    117   SvdType svd(m, computationOptions);
    118 
    119        if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
    120   else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(2e-4);
    121 
    122   SolutionType x = svd.solve(rhs);
    123 
    124   RealScalar residual = (m*x-rhs).norm();
    125   RealScalar rhs_norm = rhs.norm();
    126   if(!test_isMuchSmallerThan(residual,rhs.norm()))
    127   {
    128     // ^^^ If the residual is very small, then we have an exact solution, so we are already good.
    129 
    130     // evaluate normal equation which works also for least-squares solutions
    131     if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
    132     {
    133       using std::sqrt;
    134       // This test is not stable with single precision.
    135       // This is probably because squaring m signicantly affects the precision.
    136       if(internal::is_same<RealScalar,float>::value) ++g_test_level;
    137 
    138       VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
    139 
    140       if(internal::is_same<RealScalar,float>::value) --g_test_level;
    141     }
    142 
    143     // Check that there is no significantly better solution in the neighborhood of x
    144     for(Index k=0;k<x.rows();++k)
    145     {
    146       using std::abs;
    147 
    148       SolutionType y(x);
    149       y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k);
    150       RealScalar residual_y = (m*y-rhs).norm();
    151       VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
    152       if(internal::is_same<RealScalar,float>::value) ++g_test_level;
    153       VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
    154       if(internal::is_same<RealScalar,float>::value) --g_test_level;
    155 
    156       y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k);
    157       residual_y = (m*y-rhs).norm();
    158       VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
    159       if(internal::is_same<RealScalar,float>::value) ++g_test_level;
    160       VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
    161       if(internal::is_same<RealScalar,float>::value) --g_test_level;
    162     }
    163   }
    164 }
    165 
    166 // check minimal norm solutions, the inoput matrix m is only used to recover problem size
    167 template<typename MatrixType>
    168 void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
    169 {
    170   typedef typename MatrixType::Scalar Scalar;
    171   typedef typename MatrixType::Index Index;
    172   Index cols = m.cols();
    173 
    174   enum {
    175     ColsAtCompileTime = MatrixType::ColsAtCompileTime
    176   };
    177 
    178   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
    179 
    180   // generate a full-rank m x n problem with m<n
    181   enum {
    182     RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
    183     RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
    184   };
    185   typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
    186   typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
    187   typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
    188   Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
    189   MatrixType2 m2(rank,cols);
    190   int guard = 0;
    191   do {
    192     m2.setRandom();
    193   } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
    194   VERIFY(guard<10);
    195 
    196   RhsType2 rhs2 = RhsType2::Random(rank);
    197   // use QR to find a reference minimal norm solution
    198   HouseholderQR<MatrixType2T> qr(m2.adjoint());
    199   Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
    200   tmp.conservativeResize(cols);
    201   tmp.tail(cols-rank).setZero();
    202   SolutionType x21 = qr.householderQ() * tmp;
    203   // now check with SVD
    204   SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
    205   SolutionType x22 = svd2.solve(rhs2);
    206   VERIFY_IS_APPROX(m2*x21, rhs2);
    207   VERIFY_IS_APPROX(m2*x22, rhs2);
    208   VERIFY_IS_APPROX(x21, x22);
    209 
    210   // Now check with a rank deficient matrix
    211   typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
    212   typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
    213   Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
    214   Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
    215   MatrixType3 m3 = C * m2;
    216   RhsType3 rhs3 = C * rhs2;
    217   SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
    218   SolutionType x3 = svd3.solve(rhs3);
    219   VERIFY_IS_APPROX(m3*x3, rhs3);
    220   VERIFY_IS_APPROX(m3*x21, rhs3);
    221   VERIFY_IS_APPROX(m2*x3, rhs2);
    222   VERIFY_IS_APPROX(x21, x3);
    223 }
    224 
    225 // Check full, compare_to_full, least_square, and min_norm for all possible compute-options
    226 template<typename SvdType, typename MatrixType>
    227 void svd_test_all_computation_options(const MatrixType& m, bool full_only)
    228 {
    229 //   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
    230 //     return;
    231   SvdType fullSvd(m, ComputeFullU|ComputeFullV);
    232   CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
    233   CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
    234   CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
    235 
    236   #if defined __INTEL_COMPILER
    237   // remark #111: statement is unreachable
    238   #pragma warning disable 111
    239   #endif
    240   if(full_only)
    241     return;
    242 
    243   CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
    244   CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
    245   CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
    246 
    247   if (MatrixType::ColsAtCompileTime == Dynamic) {
    248     // thin U/V are only available with dynamic number of columns
    249     CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
    250     CALL_SUBTEST(( svd_compare_to_full(m,              ComputeThinV, fullSvd) ));
    251     CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
    252     CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU             , fullSvd) ));
    253     CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
    254 
    255     CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
    256     CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
    257     CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
    258 
    259     CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
    260     CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
    261     CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
    262 
    263     // test reconstruction
    264     typedef typename MatrixType::Index Index;
    265     Index diagSize = (std::min)(m.rows(), m.cols());
    266     SvdType svd(m, ComputeThinU | ComputeThinV);
    267     VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
    268   }
    269 }
    270 
    271 
    272 // work around stupid msvc error when constructing at compile time an expression that involves
    273 // a division by zero, even if the numeric type has floating point
    274 template<typename Scalar>
    275 EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
    276 
    277 // workaround aggressive optimization in ICC
    278 template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
    279 
    280 // all this function does is verify we don't iterate infinitely on nan/inf values
    281 template<typename SvdType, typename MatrixType>
    282 void svd_inf_nan()
    283 {
    284   SvdType svd;
    285   typedef typename MatrixType::Scalar Scalar;
    286   Scalar some_inf = Scalar(1) / zero<Scalar>();
    287   VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
    288   svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
    289 
    290   Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
    291   VERIFY(nan != nan);
    292   svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
    293 
    294   MatrixType m = MatrixType::Zero(10,10);
    295   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
    296   svd.compute(m, ComputeFullU | ComputeFullV);
    297 
    298   m = MatrixType::Zero(10,10);
    299   m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
    300   svd.compute(m, ComputeFullU | ComputeFullV);
    301 
    302   // regression test for bug 791
    303   m.resize(3,3);
    304   m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5,
    305        0,   -0.5,                             0,
    306        nan,  0,                               0;
    307   svd.compute(m, ComputeFullU | ComputeFullV);
    308 
    309   m.resize(4,4);
    310   m <<  1, 0, 0, 0,
    311         0, 3, 1, 2e-308,
    312         1, 0, 1, nan,
    313         0, nan, nan, 0;
    314   svd.compute(m, ComputeFullU | ComputeFullV);
    315 }
    316 
    317 // Regression test for bug 286: JacobiSVD loops indefinitely with some
    318 // matrices containing denormal numbers.
    319 template<typename>
    320 void svd_underoverflow()
    321 {
    322 #if defined __INTEL_COMPILER
    323 // shut up warning #239: floating point underflow
    324 #pragma warning push
    325 #pragma warning disable 239
    326 #endif
    327   Matrix2d M;
    328   M << -7.90884e-313, -4.94e-324,
    329                  0, 5.60844e-313;
    330   SVD_DEFAULT(Matrix2d) svd;
    331   svd.compute(M,ComputeFullU|ComputeFullV);
    332   CALL_SUBTEST( svd_check_full(M,svd) );
    333 
    334   // Check all 2x2 matrices made with the following coefficients:
    335   VectorXd value_set(9);
    336   value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
    337   Array4i id(0,0,0,0);
    338   int k = 0;
    339   do
    340   {
    341     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
    342     svd.compute(M,ComputeFullU|ComputeFullV);
    343     CALL_SUBTEST( svd_check_full(M,svd) );
    344 
    345     id(k)++;
    346     if(id(k)>=value_set.size())
    347     {
    348       while(k<3 && id(k)>=value_set.size()) id(++k)++;
    349       id.head(k).setZero();
    350       k=0;
    351     }
    352 
    353   } while((id<int(value_set.size())).all());
    354 
    355 #if defined __INTEL_COMPILER
    356 #pragma warning pop
    357 #endif
    358 
    359   // Check for overflow:
    360   Matrix3d M3;
    361   M3 << 4.4331978442502944e+307, -5.8585363752028680e+307,  6.4527017443412964e+307,
    362         3.7841695601406358e+307,  2.4331702789740617e+306, -3.5235707140272905e+307,
    363        -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
    364 
    365   SVD_DEFAULT(Matrix3d) svd3;
    366   svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
    367   CALL_SUBTEST( svd_check_full(M3,svd3) );
    368 }
    369 
    370 // void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
    371 
    372 template<typename MatrixType>
    373 void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
    374 {
    375   MatrixType M;
    376   VectorXd value_set(3);
    377   value_set << 0, 1, -1;
    378   Array4i id(0,0,0,0);
    379   int k = 0;
    380   do
    381   {
    382     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
    383 
    384     cb(M,false);
    385 
    386     id(k)++;
    387     if(id(k)>=value_set.size())
    388     {
    389       while(k<3 && id(k)>=value_set.size()) id(++k)++;
    390       id.head(k).setZero();
    391       k=0;
    392     }
    393 
    394   } while((id<int(value_set.size())).all());
    395 }
    396 
    397 template<typename>
    398 void svd_preallocate()
    399 {
    400   Vector3f v(3.f, 2.f, 1.f);
    401   MatrixXf m = v.asDiagonal();
    402 
    403   internal::set_is_malloc_allowed(false);
    404   VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
    405   SVD_DEFAULT(MatrixXf) svd;
    406   internal::set_is_malloc_allowed(true);
    407   svd.compute(m);
    408   VERIFY_IS_APPROX(svd.singularValues(), v);
    409 
    410   SVD_DEFAULT(MatrixXf) svd2(3,3);
    411   internal::set_is_malloc_allowed(false);
    412   svd2.compute(m);
    413   internal::set_is_malloc_allowed(true);
    414   VERIFY_IS_APPROX(svd2.singularValues(), v);
    415   VERIFY_RAISES_ASSERT(svd2.matrixU());
    416   VERIFY_RAISES_ASSERT(svd2.matrixV());
    417   svd2.compute(m, ComputeFullU | ComputeFullV);
    418   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
    419   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
    420   internal::set_is_malloc_allowed(false);
    421   svd2.compute(m);
    422   internal::set_is_malloc_allowed(true);
    423 
    424   SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
    425   internal::set_is_malloc_allowed(false);
    426   svd2.compute(m);
    427   internal::set_is_malloc_allowed(true);
    428   VERIFY_IS_APPROX(svd2.singularValues(), v);
    429   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
    430   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
    431   internal::set_is_malloc_allowed(false);
    432   svd2.compute(m, ComputeFullU|ComputeFullV);
    433   internal::set_is_malloc_allowed(true);
    434 }
    435 
    436 template<typename SvdType,typename MatrixType>
    437 void svd_verify_assert(const MatrixType& m)
    438 {
    439   typedef typename MatrixType::Scalar Scalar;
    440   typedef typename MatrixType::Index Index;
    441   Index rows = m.rows();
    442   Index cols = m.cols();
    443 
    444   enum {
    445     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    446     ColsAtCompileTime = MatrixType::ColsAtCompileTime
    447   };
    448 
    449   typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
    450   RhsType rhs(rows);
    451   SvdType svd;
    452   VERIFY_RAISES_ASSERT(svd.matrixU())
    453   VERIFY_RAISES_ASSERT(svd.singularValues())
    454   VERIFY_RAISES_ASSERT(svd.matrixV())
    455   VERIFY_RAISES_ASSERT(svd.solve(rhs))
    456   MatrixType a = MatrixType::Zero(rows, cols);
    457   a.setZero();
    458   svd.compute(a, 0);
    459   VERIFY_RAISES_ASSERT(svd.matrixU())
    460   VERIFY_RAISES_ASSERT(svd.matrixV())
    461   svd.singularValues();
    462   VERIFY_RAISES_ASSERT(svd.solve(rhs))
    463 
    464   if (ColsAtCompileTime == Dynamic)
    465   {
    466     svd.compute(a, ComputeThinU);
    467     svd.matrixU();
    468     VERIFY_RAISES_ASSERT(svd.matrixV())
    469     VERIFY_RAISES_ASSERT(svd.solve(rhs))
    470     svd.compute(a, ComputeThinV);
    471     svd.matrixV();
    472     VERIFY_RAISES_ASSERT(svd.matrixU())
    473     VERIFY_RAISES_ASSERT(svd.solve(rhs))
    474   }
    475   else
    476   {
    477     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
    478     VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
    479   }
    480 }
    481 
    482 #undef SVD_DEFAULT
    483 #undef SVD_FOR_MIN_NORM
    484