Home | History | Annotate | Download | only in MatrixFunctions
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011, 2013 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      5 // Copyright (C) 2011 Chen-Pang He <jdh8 (at) ms63.hinet.net>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_MATRIX_LOGARITHM
     12 #define EIGEN_MATRIX_LOGARITHM
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 template <typename Scalar>
     19 struct matrix_log_min_pade_degree
     20 {
     21   static const int value = 3;
     22 };
     23 
     24 template <typename Scalar>
     25 struct matrix_log_max_pade_degree
     26 {
     27   typedef typename NumTraits<Scalar>::Real RealScalar;
     28   static const int value = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
     29                            std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
     30                            std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
     31                            std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
     32                                                                          11;  // quadruple precision
     33 };
     34 
     35 /** \brief Compute logarithm of 2x2 triangular matrix. */
     36 template <typename MatrixType>
     37 void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
     38 {
     39   typedef typename MatrixType::Scalar Scalar;
     40   typedef typename MatrixType::RealScalar RealScalar;
     41   using std::abs;
     42   using std::ceil;
     43   using std::imag;
     44   using std::log;
     45 
     46   Scalar logA00 = log(A(0,0));
     47   Scalar logA11 = log(A(1,1));
     48 
     49   result(0,0) = logA00;
     50   result(1,0) = Scalar(0);
     51   result(1,1) = logA11;
     52 
     53   Scalar y = A(1,1) - A(0,0);
     54   if (y==Scalar(0))
     55   {
     56     result(0,1) = A(0,1) / A(0,0);
     57   }
     58   else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
     59   {
     60     result(0,1) = A(0,1) * (logA11 - logA00) / y;
     61   }
     62   else
     63   {
     64     // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
     65     int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
     66     result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
     67   }
     68 }
     69 
     70 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
     71 inline int matrix_log_get_pade_degree(float normTminusI)
     72 {
     73   const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
     74             5.3149729967117310e-1 };
     75   const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
     76   const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
     77   int degree = minPadeDegree;
     78   for (; degree <= maxPadeDegree; ++degree)
     79     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
     80       break;
     81   return degree;
     82 }
     83 
     84 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
     85 inline int matrix_log_get_pade_degree(double normTminusI)
     86 {
     87   const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
     88             1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
     89   const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
     90   const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
     91   int degree = minPadeDegree;
     92   for (; degree <= maxPadeDegree; ++degree)
     93     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
     94       break;
     95   return degree;
     96 }
     97 
     98 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
     99 inline int matrix_log_get_pade_degree(long double normTminusI)
    100 {
    101 #if   LDBL_MANT_DIG == 53         // double precision
    102   const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
    103             1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
    104 #elif LDBL_MANT_DIG <= 64         // extended precision
    105   const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
    106             5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
    107             2.32777776523703892094e-1L };
    108 #elif LDBL_MANT_DIG <= 106        // double-double
    109   const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
    110             9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
    111             1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
    112             4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
    113             1.05026503471351080481093652651105e-1L };
    114 #else                             // quadruple precision
    115   const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
    116             5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
    117             8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
    118             3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
    119             8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
    120 #endif
    121   const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
    122   const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
    123   int degree = minPadeDegree;
    124   for (; degree <= maxPadeDegree; ++degree)
    125     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
    126       break;
    127   return degree;
    128 }
    129 
    130 /* \brief Compute Pade approximation to matrix logarithm */
    131 template <typename MatrixType>
    132 void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
    133 {
    134   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    135   const int minPadeDegree = 3;
    136   const int maxPadeDegree = 11;
    137   assert(degree >= minPadeDegree && degree <= maxPadeDegree);
    138 
    139   const RealScalar nodes[][maxPadeDegree] = {
    140     { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,  // degree 3
    141       0.8872983346207416885179265399782400L },
    142     { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,  // degree 4
    143       0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
    144     { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,  // degree 5
    145       0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
    146       0.9530899229693319963988134391496965L },
    147     { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,  // degree 6
    148       0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
    149       0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
    150     { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,  // degree 7
    151       0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
    152       0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
    153       0.9745539561713792622630948420239256L },
    154     { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,  // degree 8
    155       0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
    156       0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
    157       0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
    158     { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,  // degree 9
    159       0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
    160       0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
    161       0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
    162       0.9840801197538130449177881014518364L },
    163     { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,  // degree 10
    164       0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
    165       0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
    166       0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
    167       0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
    168     { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,  // degree 11
    169       0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
    170       0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
    171       0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
    172       0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
    173       0.9891143290730284964019690005614287L } };
    174 
    175   const RealScalar weights[][maxPadeDegree] = {
    176     { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,  // degree 3
    177       0.2777777777777777777777777777777778L },
    178     { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,  // degree 4
    179       0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
    180     { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,  // degree 5
    181       0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
    182       0.1184634425280945437571320203599587L },
    183     { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,  // degree 6
    184       0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
    185       0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
    186     { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,  // degree 7
    187       0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
    188       0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
    189       0.0647424830844348466353057163395410L },
    190     { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,  // degree 8
    191       0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
    192       0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
    193       0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
    194     { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,  // degree 9
    195       0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
    196       0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
    197       0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
    198       0.0406371941807872059859460790552618L },
    199     { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,  // degree 10
    200       0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
    201       0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
    202       0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
    203       0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
    204     { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,  // degree 11
    205       0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
    206       0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
    207       0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
    208       0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
    209       0.0278342835580868332413768602212743L } };
    210 
    211   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    212   result.setZero(T.rows(), T.rows());
    213   for (int k = 0; k < degree; ++k) {
    214     RealScalar weight = weights[degree-minPadeDegree][k];
    215     RealScalar node = nodes[degree-minPadeDegree][k];
    216     result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
    217                        .template triangularView<Upper>().solve(TminusI);
    218   }
    219 }
    220 
    221 /** \brief Compute logarithm of triangular matrices with size > 2.
    222   * \details This uses a inverse scale-and-square algorithm. */
    223 template <typename MatrixType>
    224 void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
    225 {
    226   typedef typename MatrixType::Scalar Scalar;
    227   typedef typename NumTraits<Scalar>::Real RealScalar;
    228   using std::pow;
    229 
    230   int numberOfSquareRoots = 0;
    231   int numberOfExtraSquareRoots = 0;
    232   int degree;
    233   MatrixType T = A, sqrtT;
    234 
    235   int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
    236   const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L:                    // single precision
    237                                     maxPadeDegree<= 7? 2.6429608311114350e-1L:                    // double precision
    238                                     maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
    239                                     maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
    240                                                        1.1880960220216759245467951592883642e-1L;  // quadruple precision
    241 
    242   while (true) {
    243     RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
    244     if (normTminusI < maxNormForPade) {
    245       degree = matrix_log_get_pade_degree(normTminusI);
    246       int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
    247       if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
    248         break;
    249       ++numberOfExtraSquareRoots;
    250     }
    251     matrix_sqrt_triangular(T, sqrtT);
    252     T = sqrtT.template triangularView<Upper>();
    253     ++numberOfSquareRoots;
    254   }
    255 
    256   matrix_log_compute_pade(result, T, degree);
    257   result *= pow(RealScalar(2), numberOfSquareRoots);
    258 }
    259 
    260 /** \ingroup MatrixFunctions_Module
    261   * \class MatrixLogarithmAtomic
    262   * \brief Helper class for computing matrix logarithm of atomic matrices.
    263   *
    264   * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
    265   *
    266   * \sa class MatrixFunctionAtomic, MatrixBase::log()
    267   */
    268 template <typename MatrixType>
    269 class MatrixLogarithmAtomic
    270 {
    271 public:
    272   /** \brief Compute matrix logarithm of atomic matrix
    273     * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
    274     * \returns  The logarithm of \p A.
    275     */
    276   MatrixType compute(const MatrixType& A);
    277 };
    278 
    279 template <typename MatrixType>
    280 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
    281 {
    282   using std::log;
    283   MatrixType result(A.rows(), A.rows());
    284   if (A.rows() == 1)
    285     result(0,0) = log(A(0,0));
    286   else if (A.rows() == 2)
    287     matrix_log_compute_2x2(A, result);
    288   else
    289     matrix_log_compute_big(A, result);
    290   return result;
    291 }
    292 
    293 } // end of namespace internal
    294 
    295 /** \ingroup MatrixFunctions_Module
    296   *
    297   * \brief Proxy for the matrix logarithm of some matrix (expression).
    298   *
    299   * \tparam Derived  Type of the argument to the matrix function.
    300   *
    301   * This class holds the argument to the matrix function until it is
    302   * assigned or evaluated for some other reason (so the argument
    303   * should not be changed in the meantime). It is the return type of
    304   * MatrixBase::log() and most of the time this is the only way it
    305   * is used.
    306   */
    307 template<typename Derived> class MatrixLogarithmReturnValue
    308 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
    309 {
    310 public:
    311   typedef typename Derived::Scalar Scalar;
    312   typedef typename Derived::Index Index;
    313 
    314 protected:
    315   typedef typename internal::ref_selector<Derived>::type DerivedNested;
    316 
    317 public:
    318 
    319   /** \brief Constructor.
    320     *
    321     * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
    322     */
    323   explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
    324 
    325   /** \brief Compute the matrix logarithm.
    326     *
    327     * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
    328     */
    329   template <typename ResultType>
    330   inline void evalTo(ResultType& result) const
    331   {
    332     typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
    333     typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
    334     typedef internal::traits<DerivedEvalTypeClean> Traits;
    335     static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
    336     static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
    337     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    338     typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
    339     typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
    340     AtomicType atomic;
    341 
    342     internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
    343   }
    344 
    345   Index rows() const { return m_A.rows(); }
    346   Index cols() const { return m_A.cols(); }
    347 
    348 private:
    349   const DerivedNested m_A;
    350 };
    351 
    352 namespace internal {
    353   template<typename Derived>
    354   struct traits<MatrixLogarithmReturnValue<Derived> >
    355   {
    356     typedef typename Derived::PlainObject ReturnType;
    357   };
    358 }
    359 
    360 
    361 /********** MatrixBase method **********/
    362 
    363 
    364 template <typename Derived>
    365 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
    366 {
    367   eigen_assert(rows() == cols());
    368   return MatrixLogarithmReturnValue<Derived>(derived());
    369 }
    370 
    371 } // end namespace Eigen
    372 
    373 #endif // EIGEN_MATRIX_LOGARITHM
    374